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Abstract
We formulate a framework for soft margin estimation-based

linear regression (SMELR) and apply it to supervised speaker
adaptation. Enhanced separation capability and increased dis-
criminative ability are two key properties in margin-based dis-
criminative training. For the adaptation process to be able to
flexibly utilize any amount of data, we also propose a novel in-
terpolation scheme to linearly combine the speaker independent
(SI) and speaker adaptive SMELR (SMELR/SA) models. The
two proposed SMELR algorithms were evaluated on a Japanese
large vocabulary continuous speech recognition task. Both the
SMELR and interpolated SI+SMELR/SA techniques showed
improved speech adaptation performance in comparison with
the well-known maximum likelihood linear regression (MLLR)
method. We also found that the interpolation framework works
even more effectively than SMELR when the amount of adap-
tation data is relatively small.
Index Terms: speech recognition, speaker adaptation, discrim-
inative training, soft margin estimation

1. Introduction
In recent years, discriminative training (DT) has been exten-
sively studied to boost the performance of automatic speech
recognition (ASR) systems, with acoustic models based on
hidden Markov models (HMMs) with state observation densi-
ties characterized by Gaussian mixture models (GMMs). The
most successful DT criteria used to estimate HMM parame-
ters are maximum mutual information (MMI) [1], minimum
classification error (MCE) [2], and minimum word/phone error
(MWE/MPE) [3] in acoustic modeling. MMI training increases
the distance between correct and competing candidates by max-
imizing the posterior probabilities of the observed speech ut-
terances when correct transcriptions are provided. MCE mini-
mizes the loss function defined to approximate string errors. Fi-
nally, MPE attempts to directly minimize an approximate word
or phone error. If the acoustic conditions in the testing data
closely match those in the training set, these DT algorithms
usually achieve very good performance. However, such a good
match cannot always be guaranteed for practical recognition sit-
uations, and therefore generalization capabilities of learning al-
gorithms to unseen conditions are important research issues in
DT.
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On another front, margin-based algorithms such as large
margin estimation (LME) [4], large margin GMM/HMM (LM-
GMM [5], LM-HMM [6]) and soft margin estimation (SME) [7]
have recently been proposed to reduce the degree of model over-
fitting to the training data. In contrast to the above conventional
DT methods, these margin-based techniques deal with the gen-
eralization issue from the perspective of statistical learning the-
ory [9]. Among them, SME attempts to make a direct use of soft
margins in support vector machines [10] to optimize a combi-
nation of a measure of generalization and an empirical risk in
order to enhance model separation in classifier learning.

In addition to estimating HMM parameters directly from
training data, one can also learn a set of global transforma-
tions to project these parameters to obtain transformed HMMs.
Linear regression (LR) matrix transformations are the most
commonly used indirect method, and they are often estimated
with a maximum likelihood criterion, resulting in the pop-
ular MLLR [13] method. Because of its ability to trans-
form all HMM parameters simultaneously, MLLR is often
used for model adaptation, especially when the amount of
training/adaptation data is relatively limited. To explore DT-
based adaptation, MCE has been studied to adapt LR parame-
ters [11, 12], and MCELR demonstrated a better performance
than conventional MLLR in speaker adaptation.

When only a small amount of adaptation data is avail-
able, class boundaries between correct and competing candi-
dates must be estimated carefully from the viewpoint of “over-
fitting” on adaptation data. The recently proposed SME frame-
work seems a good candidate for this purpose because of its
built-in frame selection mechanism and generalization capabil-
ity. In this paper, we propose a soft margin estimation-based
linear regression (SMELR) framework for speaker adaptation.
To be able to flexibly use any amount of adaptation data, we
also propose a model interpolation scheme that is based on
using a weighted combination of the SMELR-based speaker
adaptive (SMELR/SA) model and the speaker-independent (SI)
model before adaptation. We call this combination strategy
SI+SMELR/SA. The combination weight can be adjusted ac-
cording to the amount of available adaptation data.

The two proposed SMELR algorithms were evaluated on a
Japanese large vocabulary continuous speech recognition task.
Both the SMELR and interpolated SI+SMELR/SA techniques
showed improved speech adaptation performance in compari-
son with the well-known MLLR method. We also found that
the interpolation framework works even more effectively than
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SMELR when the amount of adaptation data is relatively small.

2. Soft Margin Estimation of Linear
Regression

We now briefly review the theory of SME and formulate a
framework involving soft margin estimation for linear regres-
sion.

2.1. Soft Margin Estimation

In statistical learning theory, a test risk is bounded by the sum-
mation of two terms: an empirical risk (i.e., the risk on the train-
ing set) and a generalization function. Hence, there are two tar-
gets for optimization. One is to minimize the empirical risk;
the other, to maximize the margin. The generalization function
is defined using a monotonic increasing function of Vapnik &
Chervonenkis dimension (V Cdim). Usually a classifier gener-
alizes better with a small V Cdim, then V Cdim can be reduced
by increasing the margin. The objective function to be mini-
mized is

LSME(Λ) =
λ

ρ
+ Remp(Λ) (1)

=
λ

ρ
+

1

N

NX
i=1

l(Oi, Λ) (2)

where Λ denotes the set of model parameters; l(Oi, Λ) is a loss
function for a training sample Oi such as an utterance, word,
phone, or frame; N is the number of training samples. ρ is a
soft margin; and λ is a coefficient to balance soft margin maxi-
mization and empirical risk minimization. Remp(Λ) is the em-
pirical risk of the set of model parameters Λ, and it can be cal-
culated using the loss function. Posterior probabilities are used
for measuring the margin in this paper. The empirical risk is
calculated using the set of training samples that have smaller
posterior probabilities than the margin (i.e. are difficult to rec-
ognize).

Only a small amount of data is usually available for speaker
adaptation. We decided to employ frame selection [8] to effi-
ciently extract key local discrimination information from indi-
vidual frames:

l(Oi, Λ) =
X

j

l(Oij , Λ) (3)

l(Oij , Λ) =

(
ρ − d(Oij , Λ), if τ < p(Si|Oij) < ρ

0, otherwise
(4)

where Oij denotes the j-th frame of the i-th training utterance.
d(Oij , Λ) is a separation measure between the correct and com-
peting candidates for Oij . p(Si|Oij) is the posterior probabil-
ity of the correct transcription Si at the j-th frame. The hinge
loss function has an additional threshold τ . A training sample
whose posterior probability is too small will not contribute to
the loss computation because it could be an outlier. p(Si|Oij)
is calculated from a lattice obtained by decoding as follows:

p(Si|Oij) =
X

S∈Hij

PΛ(Oi|S)P (S)P
Ŝ∈Gi

PΛ(Oi|Ŝ)P (Ŝ)
(5)

where Gi is the set of all word sequences in a lattice obtained by
decoding the i-th training utterance Oi. Hij denotes all word
sequences that contain correct words passing the j-th frame.
p(Si|Oij) can be calculated by applying a forward-backward
algorithm on the lattice.

2.2. Linear Regression Based on SME

Model parameters of continuous density HMMs are trans-
formed by means of two linear transformations as follows:

μ̂mr = Ŵmξmr (6)

Σ̂mr = BTr
mr

ĤmBmr (7)

where Ŵm and Ĥm are the respective linear transformations
for a mean vector and a covariance matrix, and m and r denote
the respective class and Gaussian density indices. Each class
consists of R similar Gaussian components. ξmr is the extended
vector of a mean vector μmr . Σmr is a covariance matrix, and
Bmr is the inverse covariance matrix.

These transformations are estimated using the SME. A sep-
aration measure between correct and competing candidates is
defined as follows:

d(Oij , Λ) = −g(Oij , Λ) + ḡ(Oij , Λ) (8)

where g(Oij , Λ) and ḡ(Oij , Λ) are the likelihoods of correct
and competing candidates, respectively. The derivative of an
SME loss function is calculated as:

∂l(Oij , Λ)

∂Λ
=

∂(ρ − d(Oij , Λ))

∂Λ
(9)

=
∂g(Oij , Λ)

∂Λ
− ∂ḡ(Oij , Λ)

∂Λ
(10)

Linear transformation parameters are optimized by apply-
ing a generalized probabilistic descent algorithm [14]:

Λm
k+1 = Λm

k − εk

X
Oij∈Fi

∂l

∂Λm

˛̨̨
Λm=Λm

k

(11)

where Fi is the set of selected frames obtained with Eq. (4) We

use Λ to generically denote the linear transformation, Ŵ or Ĥ .
Note that MCELR [12] can be implemented by replacing the
summation in Eq. (11) with the derivative of a sigmoid function.
The learning rate εk is calculated as:

εk+1 = εk − ε0Tk

E
PK

k=1 Tk

(12)

where E and Tk are total number of epochs and number of
frames in the k-th adaptation utterance, respectively.

2.3. Model Interpolation

Since SME was originally formulated to enhance the discrimi-
native power of acoustic models and improve separation among
competing models it may not be as effective when the amount
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Figure 1: Performance comparison with respect to the number
of adaptation utterances: MLLR versus SMELR.

of adaptation data is relatively small. To flexibly utilize SMELR
for any amount of data we also propose a model interpolation
scheme that is based on using a weighted combination of the
SMELR-based speaker adaptive (SMELR/SA) model and the
speaker-independent (SI) model before adaptation. Interpolated
mean vectors μ̂ are obtained using the mean vectors μSI of the
available SI model and the mean vectors μSMELR/SA of the
SMELR-adapted model.

μ̂mr = (w − 1)μSI
mr

+ wμSMELR/SA
mr

(13)

where w is the weight assigned to the interpolation; it can be
adjusted according to the amount of available data. When only
a limited set is provided, this weight should be a small value so
that we can rely more on prior information in the SI model. On
the other hand, if more data is available, we expect the weight
to approach 1, i.e., only the SMELR/SA model is used to reflect
the dominance of posterior information. This is similar to the
weighting mechanism used in MAPLR [15] but our proposed
approach avoids using complex prior densities, which may be
difficult to obtain.

3. Adaptation Experiments
3.1. System Configurations

We tested the proposed SMELR techniques on Japanese large
vocabulary continuous speech recognition experiments. The
Japanese Newspaper Article Sentences (JNAS) corpus [16] was
used in our evaluations. We first used HTK to build the base-
line speaker-independent (SI) HMMs with maximum likelihood
(ML) training using a total of 25848 utterances from 250 speak-
ers (125 male and 125 female). There were 3,000 tied-states,
and each state had four Gaussian mixture components with di-
agonal covariance matrices. The acoustic feature comprised 12
MFCCs, 12 ΔMFCCs, and a Δpow, extracted with a 10-ms
frame shift and a 20-ms frame length. The ATR speech recogni-
tion engine was used for decoding. Our ASR system uses word
uni-, bi-, and tri-gram language models, that were estimated us-
ing the Mainichi Newspaper Corpus of 510M words spanning
an 11-year period. The vocabulary size was 60,000.
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Figure 2: Histograms of frame posterior probabilities of SI,
MLLR-adapted, SMELR-adapted models.

A group comprising 23 male and 23 female speakers in the
JNAS corpus was tested. We used 50 utterances for testing
and 10, 20, and 40 sentences from each speaker for adaptation.
MLLR adaptation was performed on a regression tree with 64
leaf nodes. The leaf occupation count threshold was set to 500.
Full transformation matrices were used. The proposed SMELR
commenced the adaptation process using transformation matri-
ces estimated by MLLR. The initial learning rate ε0 was fixed
at 3 × 10−6. The total number of training epochs was set to
20. Margin ρ and threshold τ were set to 0.83 and 0.10, re-
spectively. The word lattices used for SMELR adaptation were
obtained using the MLLR-adapted models.

3.2. Experimental Results

Fig. 1 shows the word accuracies provided by SI, MLLR, and
SMELR. It is noted that SMELR can achieve better perfor-
mance than MLLR. SMELR obtained slight relative error rate
reductions of 1.4% and 2.5% from the MLLR baseline for the
male and female speakers, respectively. In Fig. 2, we plot the
histogram of the frame posterior probabilities of SI, MLLR, and
SMELR on the adaptation set. When compared with the SI and
MLLR models, SMELR can efficiently reduce the training sam-
ples that have posterior probabilities smaller than τ . It is clear
that SMELR achieved a better separation than either the ML-
estimated SI or MLLR-adapted models.

For model interpolation between SI and SMELR-adapted
models with different combination weights (from 0.0 to 1.0), the
resulting word accuracies are shown in Fig. 3. The best inter-
polation weight apparently depends on the amount of data used
for adaptation. With 20 adaptation utterances (the two middle
curves in Fig. 3), the optimal weight was 0.7 and the interpola-
tion approach yielded an average 4.7% word error rate reduction
over SMELR for both genders. With only 10 adaptation utter-
ances (the two lower curves in Fig. 3), the optimal weight was
0.6 and the interpolation approach still achieved relative word
error rate reductions of about 2.6% and 4.5% for male and fe-
male speakers, respectively. With 40 adaptation utterances the
optimal weight for SMELR was 1.0. Thus, this set of experi-
ments verifies that in comparison with the MLLR-adapted and
SMELR-adapted models, model interpolation with appropriate
combination weights can provide improved performance or at
least the same level of performance.
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Figure 3: Performance comparison for model interpolation with
several weights on 10, 20, and 40 adaptation utterances. Each
small circle on the curves indicates the best performance for
each adaptation case.

4. Summary and Future Work
We presented a model adaptation formulation of linear regres-
sion matrix parameters based on soft margin estimation, called
SMELR, to improve the effectiveness of adaptation when the
amount of training/adaptation data is relatively small. To be
able to flexibly use any amount of data, we also proposed a
novel model interpolation scheme between SI and SMELR-
adapted models. Experimental results showed that SMELR can
achieve better model separation than the MLLR-adapted mod-
els, and the model interpolation can further reduce recognition
errors of the SMELR-adapted models by using an appropri-
ate combination weight, depending on the amount of available
adaptation data. In future work, we plan to analyze speaker-
dependency properties of the soft margin. We expect that
SMELR with an optimized speaker-dependent soft margin will
achieve even higher accuracies.
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