
SubPolyhedra: A (more) scalable approach to
infer linear inequalities

Vincent Laviron1 Francesco Logozzo2

1 École Normale Supérieure, 45, rue d’Ulm, Paris (France)
Vincent.Laviron@ens.fr

2 Microsoft Research, Redmond, WA (USA)
logozzo@microsoft.com

Abstract. We introduce Subpolyhedra (SubPoly) a new numerical ab-
stract domain to infer and propagate linear inequalities. SubPoly is as
expressive as Polyhedra, but it drops some of the deductive power to
achieve scalability. SubPoly is based on the insight that the reduced prod-
uct of linear equalities and intervals produces powerful yet scalable anal-
yses. Precision can be recovered using hints. Hints can be automatically
generated or provided by the user in the form of annotations.
We implemented SubPoly on the top of Clousot, a generic abstract inter-
preter for .Net. Clousot with SubPoly analyzes very large and complex
code bases in few minutes. SubPoly can efficiently capture linear inequal-
ities among hundreds of variables, a result well-beyond state-of-the-art
implementations of Polyhedra.

1 Introduction

The goal of an abstract interpretation-based static analyzer is to statically infer
properties of the execution of a program that can be used to check its spec-
ification. The specification usually includes the absence of runtime exceptions
(division by zero, integer overflow, array index out of bounds . . .) and program-
mer annotations in the form of preconditions, postconditions, object invariants
and assertions (“contracts” [23]). Proving that a piece of code satisfies its spec-
ification often requires discovering numerical invariants on program variables.

The concept of abstract domain is central in the design and the implementa-
tion of a static analyzer [9]. Abstract domains capture the properties of interest
on programs. In particular numerical abstract domains are used to infer numer-
ical relationships among program variables. Cousot and Halbwachs introduced
the Polyhedra numerical abstract domain (Poly) in [11]. Poly infers all the linear
inequalities on the program variables. The application and scalability of Poly has
been severely limited by its performance which is worst-case exponential (easily
attained in practice). To overcome this shortcoming and to achieve scalability,
new numerical abstract domains have been designed either considering only in-
equalities of a particular shape (weakly relational domains) or fixing ahead of the
analysis the maximum number of linear inequalities to be considered (bounded
domains). The first class includes Octagons (which capture properties in the form

class StringBuilder {

int ChunkLen; char[] ChunkChars;

public void Append(int wb, int count) {

Contract.Requires(wb >= 2 * count);

if (count + ChunkLen > ChunkChars.Length)

(*) CopyChars(wb, ChunkChars.Length - ChunkLen);

// ... }

private void CopyChars(int wb, int len) {

Contract.Requires(wb >= 2 * len);

// ... }

Fig. 1. An example extracted from mscorlib.dll. Contract.Requires(. . .) expresses
method preconditions. Proving the precondition of CopyChars requires propagating an
invariant involving three variables and non-unary coefficients.

±x±y ≤ c) [24], TVPI (a ·x+ b ·y ≤ c) [29], Pentagons (x ≤ y∧a ≤ x ≤ b) [22],
Stripes (x + a · (y + z) > b) [14] and Octahedra (±x0 · · · ± xn ≤ c) [7]. The
latter includes constraint template matrices (which capture at most m linear
inequalities) [28] and methods to generate polynomial invariants e.g. [25, 26].

Although impressive results have been achieved using weakly relational and
bounded abstract domains, we experienced situations where the full expressive
power of Poly is required. As an example, let us consider the code snippet of
Fig. 1, extracted from mscorlib.dll, the main library of the .Net framework.
Checking the precondition at the call site (∗) involves (i) propagating the con-
straints wb ≥ 2 · count and count + ChunkLen > ChunkChars.Length; and (ii)
deducing that wb ≥ 2 · (ChunkChars.Length − ChunkLen). The aforementioned
weakly relational domains cannot be used to check the precondition: Octahedra
do not capture the first constraint (it involves a constraint with a non-unary co-
efficient); TVPI do not propagate the second constraint (it involves three vari-
ables); Pentagons and Octagons cannot represent any of the two constraints;
Stripes can propagate both constraints, but because of the incomplete closure it
cannot deduce the precondition. Bounded domains do the job, provided we fix
before the analysis the template of the constraints. This is inadequate for our
purposes: The analysis of a single method in mscorlib.dll may involve hun-
dreds of constraints, whose shape cannot be fixed ahead of the analysis, e.g. by
a textual inspection. Poly easily propagates the constraints. However, in the gen-
eral case the price to pay for using Poly is too high: the analysis will be limited
to few dozens of variables.

Subpolyhedra We propose a new abstract domain, Subpolyhedra (SubPoly),
which has the same expressive power as Poly, but it drops some inference power
to achieve scalability: SubPoly exactly represents and propagates linear inequal-
ities containing hundreds of variables and constraints. SubPoly is based on the
fundamental insight that the reduced product of linear equalities, LinEq [17],
and intervals, Intv [9], can produce very powerful yet efficient program analyses.

2

SubPoly can represent linear inequalities using slack variables, e.g. wb ≥ 2 ·count
is represented in SubPoly by wb−2 ·count = β ∧β ∈ [0,+∞]. As a consequence,
SubPoly easily proves that the precondition for CopyChars is satisfied at the call
site (∗). In general the join of SubPoly is less precise than the one on Poly, so that
it may not infer all the linear inequalities. Hints, either automatically generated
or provided by the user, help recover precision.

Cardinal operations for SubPoly are: (i) the reduction, which propagates the
information between LinEq and Intv; (ii) the join, which derives a compact yet
precise upper approximation of two incoming abstract states; and (iii) the hint
generator, which recovers information lost at join points.

void Foo(int i, int j) {

int x = i, y = j;

if (x <= 0) return;

while (x > 0) { x--; y--; }

if (y == 0) Assert(i == j); }

Fig. 2. An example from [27]. SubPoly
infers the loop invariant x − i = y −
j∧ x ≥ 0, propagates it and proves the
assertion.

Reduction Let us consider the exam-
ple in Fig. 2, taken from [27]. The pro-
gram contains operations and predicates
that can be exactly represented with Oc-
tagons. Proving that the assertion is not
violated requires discovering the loop in-
variant x − y = i − j ∧ x ≥ 0. The loop
invariant cannot be fully represented in
Octagons: it involves a relation on four
variables. Bounded numerical domains are
unlikely to help here as there is no way to
syntactically figure out the required tem-
plate. The LinEq component of SubPoly

infers the relation x− y = i− j. The Intv component of SubPoly infers the loop
invariant x ∈ [0,+∞], which in conjunction with the negation of the guard im-
plies that x ∈ [0, 0]. The reduction of SubPoly propagates the interval, refining
the linear constraint to y = j− i. This is enough to prove the assertion (in con-
junction with the if-statement guard). It is worth noting that unlike [27] SubPoly
does not require any hypothesis on the order of variables to prove the assertion.
Join and Hints Let us consider the code in Fig. 3, taken from [15]. The loop
invariant required to prove that the assertion is unreached (and hence that the
program is correct) is x ≤ y ≤ 100 · x ∧ z = 10 · w. Without hints, SubPoly can
only infer z = 10 · w. Template hints, inspired by [28], are used to recover linear
inequalities that are dropped by the imprecision of the join: In the example the
template is x − y ≤ b, and the analysis automatically figures out that b = 0.
Planar Convex hull hints, inspired by [29], are used to introduce at join points
linear inequalities derived by a planar convex hull: In the example it helps the
analysis figure out that y ≤ 100 · x. It is worth noting that SubPoly does not
need any of the techniques of [15] to infer the loop invariant.

2 Abstract Interpretation Background

We assume the concrete domain to be the complete Boolean lattice of en-
vironments, i.e. C = 〈P(Σ),⊆, ∅, Σ,∪,∩〉, where Σ = [Vars → Z]. An ab-
stract domain A is a tuple 〈D, γ,v,⊥,>,t,u,O, ρ〉. The set of abstract elements

3

int x = 0, y = 0, w = 0, z = 0;

while (...) {

if (...) { x++; y += 100; }

else if (...) { if (x >= 4) { x++; y++; } }

else if (y > 10 * w && z >= 100 * x) { y = -y; }

w++; z += 10; }

if (x >= 4 && y <= 2) Assert(false);

Fig. 3. An example from [15]. SubPoly infers the loop invariant x ≤ y ≤ 100·x∧z = 10·w,
propagates it out of the loop, and proves that the assertion is unreached.

D is related to the concrete domain by a monotonic concretization function
γ ∈ [D→ C]. With an abuse of notation, we will not distinguish between an ab-
stract domain and the set of its elements. The approximation order v soundly
approximates the concrete order: ∀d0, d1 ∈ D. d0vd1 =⇒ γ(d0) ⊆ γ(d1). The
smallest element is ⊥, the largest element is >. The join operator t satisfies
∀d0, d1 ∈ D. d0vd0td1 ∧ d1vd0td1. The meet operator u satisfies ∀d0, d1 ∈
D. d0ud1vd0 ∧ d0ud1vd1. The widening O ensures the convergence of the fix-
point iterations, i.e. it satisfies: (i) ∀d0, d1 ∈ D. d0vd0Od1 ∧ d1vd0Od1; and
(ii) for each sequence of abstract elements d0, d1, . . . dk the sequence defined by
dO
0 = d0, d

O
1 = dO

0 Od1 . . . d
O
k = dO

k−1Odk is ultimately stationary. In general, we
do not require abstract elements to be in some canonical or closed form, i.e.
there may exist d0, d1 ∈ D, such that d0 6= d1, but γ(d0) = γ(d1). The reduction
operator ρ ∈ [D → D] puts an abstract element into a (pseudo-)canonical form
without adding or losing any information: ∀d. γ(ρ(d)) = γ(d) ∧ ρ(d)vd. We do
not require ρ to be idempotent. New abstract domains can be systematically
derived by cartesian composition or functional lifting [10]. Following [8], we use
the dot-notation to denote point wise extensions.
Intervals The abstract domain of interval environments is 〈Intv, γIntv,vIntv,⊥Intv,
>Intv,tIntv,uIntv,OIntv〉. The abstract elements are maps from program variables
to open intervals. The concretization of an interval environment i is γIntv(i) =
{s ∈ Σ | ∀x ∈ dom(i). i(x) = [a, b] ∧ a ≤ s(x) ≤ b}. The order is interval inclu-
sion, the bottom element is the empty interval, the top is the interval [−∞,+∞],
the join is the smallest interval which contains the two arguments, the meet is
interval intersection, and the widening keeps the stable bounds. The reduction
is the identity function. All the domain operations can be implemented to take
linear time.
Linear Equalities The abstract domain of linear equalities is 〈LinEq, γLinEq,
vLinEq,⊥LinEq,>LinEq,tLinEq,uLinEq〉. The elements are sets of linear equalities,
their meaning is given by the set of concrete states which satisfy the constraints,
i.e. γLinEq = λl. {s ∈ Σ | ∀(

∑
ai · xi = b) ∈ l.

∑
ai · s(xi) = b}. The order

is sub-space inclusion, the bottom is the empty space, the top is the whole
space, the join is the smallest space which contains the two arguments, the
meet is space intersection. LinEq has finite height, so the join suffices to ensure
analysis termination. The reduction is Gaussian elimination. The complexity of

4

the domain operations is subsumed by the complexity of Gaussian elimination,
which is cubic.
Polyhedra The abstract domain of linear inequalities is 〈Poly, γPoly,vPoly,⊥Poly,
>Poly,tPoly,uPoly,OPoly〉. The elements are sets of linear inequalities, the con-
cretization is the set of concrete states which satisfy the constraints i.e. γPoly =
λp. {s ∈ Σ | ∀(

∑
ai · xi ≤ b) ∈ p.

∑
ai · s(xi) ≤ b}, the order is the polyhedron

inclusion, the bottom is the empty polyhedron, the top is the whole space, the
join is the convex hull, the meet is just the union of the set of constraints, and
the widening preserves the inequalities stable among two successive iterations.
The reduction infers the set of generators and removes the redundant inequali-
ties. The cost of the Poly operations is subsumed by the cost of the conversion
between the algebraic representation (set of inequalities) and the geometric rep-
resentation (set of generators) used in the implementation [1]. In fact, some
operations require the algebraic representation (e.g. uPoly), some require the ge-
ometrical representation (e.g. tPoly), and some others require both (e.g. vPoly).
The conversion between the two representations is exponential in the number of
variables, and it cannot be done better [18].

3 Subpolyhedra

We introduce the numerical abstract domain of Subpolyhedra, SubPoly. The
main idea of SubPoly is to combine Intv and LinEq to capture complex linear
inequalities. Slack variables are introduced to replace inequality constraints with
equalities.
Variables A variable v ∈ Vars can either be a program variable (x ∈ VarP)
or a slack variable (β ∈ VarS). A slack variable β has associated information,
denoted by info(β), which is a linear form a1 · v1 + · · · + ak · vk. Let κ ≡∑
ai · xi +

∑
bj · βj = c be a linear equality: sκ =

∑
xi∈VarP ai · xi denotes the

partial sum of the monomials involving just program variables; VarP(κ) = {xi |
ai ·xi ∈ κ, ai 6= 0} and VarS(κ) = {βj | bj ·βj ∈ κ, bj 6= 0} denote respectively the
program variables and the slack variables in κ. The generalization to inequalities
and sets of equalities and inequalities is straightforward.
Elements The elements of SubPoly belong to the reduced product LinEq ⊗
Intv [10]. Inequalities are represented in SubPoly with slack variables:

∑
ai ·xi ≤

c ⇐⇒
∑
ai · xi − c = β ∧ β ∈ [−∞, 0] (β is a fresh slack variable with the

associated information info(β) =
∑
ai · xi).

Concretization A subpolyhedron can be interpreted as a polyhedron by pro-
jecting out the slack variables: γPoly

S ∈ [SubPoly→ Poly] is γPoly
S = λ〈l; i〉. πVarS(l∪

{a ≤ v ≤ b | i(v) = [a, b]}), where π denotes the projection of variables in Poly.
The concretization γS ∈ [SubPoly→ P(Σ)] is then γS = γPoly ◦ γPoly

S .

Approximation Order The order on SubPoly may be defined in terms of order
over Poly. Given two subpolyhedra s0, s1, the most precise order relation v∗S
is s0v∗Ss1 ⇐⇒ γPoly

S (s0)vPolyγ
Poly
S (s1). However, v∗S may be too expensive to

compute: it involves mapping subpolyhedra in the dual representation of Poly.

5

if(...)

{ assume x - y <= 0; }

else

{ assume x - y <= 5; }
(a)

if(...)

{ assume x == y; assume y <= z; }

else

{ assume x <= y; assume y == z; }
(b)

Fig. 4. Examples illustrating the need for Step 1 in the join algorithm

This can easily cause an exponential blow up. We define a weaker approximation
order relation which first tries to find a renaming θ for the slack variables, and
then checks the pairwise order. Formally (· inj−→ · denotes an injective function):

〈l0; i0〉vS〈l1; i1〉 ⇐⇒ ∃θ. VarS(〈l0; i0〉)
inj−→ VarS(〈l1; i1〉).

∀β ∈ VarS(〈l0; i0〉). info(β) = info(θ(β)) ∧ θ(〈l0; i0〉)v̇〈l1; i1〉.

In general vS (v∗S . In practice, vS is used to check if a fixpoint has been
reached. A weaker order relation means that the analysis may perform some
extra widening steps, which may introduce precision loss. However, we found
the definition of vS satisfactory in our experience.
Bottom A subpolyhedron is equivalent to bottom if after a reduction one of the
two components is bottom: s = ⊥S ⇐⇒ ρ(s) = 〈l, i〉 ∧ (i = ⊥̇Intv ∨ l = ⊥LinEq).
Top A subpolyhedron is top if both components are top: s = >S ⇐⇒ s =
〈l, i〉 ∧ i = >Intv ∧ l = >LinEq.
Linear form evaluation Let s be a linear form: JsK ∈ [SubPoly → Intv] de-
notes the evaluation of s in a subpolyhedron after the reduction has inferred the
tightest bounds: J

∑
ai · viK 〈l; i〉 = let 〈l∗; i∗〉 = ρ(〈l; i〉) in

∑
ai · i∗(vi).

Join The join tS is computed in three steps. First, inject the information of the
slack variables into the abstract elements. Second, perform the pairwise join on
the saturated arguments. Third, add the constraints that are implied by the two
operands of the join, but that were not preserved by the previous step. The join,
parameterized by the reduction ρ, is defined by the Algorithm 1 (We let 0 = 1,
1 = 0). We illustrate the join with examples. We postpone the discussion of the
reduction to Sect. 4.

Example 1 (Steps 1 & 2). Let us consider the code in Fig. 4(a). After the assump-
tion, the abstract states on the true branch and the false branch are respectively:
s0 = 〈x− y = β0; β0 ∈ [−∞, 0]〉 and s1 = 〈x− y = β1; β1 ∈ [−∞, 5]〉. The infor-
mation associated with the slack variables is info(β0) = info(β1) = x − y. At
the join point we apply Algorithm 1. Step 1 refines the abstract states by intro-
ducing the information associated with the slack variables: s′0 = 〈x − y = β0 =
β1; β0 ∈ [−∞, 0]〉 and s′1 = 〈x− y = β1 = β0; β1 ∈ [−∞, 5]〉. Step 2 requires the
reduction of the operands. The interval for β1 (resp. β0) in s′0 (resp. s′1) is refined:
ρ(s′0) = 〈x−y = β0 = β1; β0 ∈ [−∞, 0], β1 ∈ [−∞, 0]〉 and ρ(s′1) = 〈x−y = β1 =
β0; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. The pairwise join gets the expected invariant:
st = ρ(s′0)ṫρ(s′1) = 〈x− y = β0 = β1; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. ut

6

Algorithm 1 The join tS on Subpolyhedra
input 〈li; ii〉 ∈ SubPoly, i ∈ {0, 1}

let 〈l
′
i; i

′
i〉 = 〈li; ii〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(li) \ VarS(li) do

〈l
′
i; i

′
i〉 := 〈l′i uLinEq {β = info(β)}; i′i〉

{Step 2. Perform the point-wise join on the saturated operands}
let 〈lt; it〉 = ρ(〈l

′
0; i

′
0〉)ṫρ(〈l

′
1; i

′
1〉)

{Step 3. Recover the lost information }
let Di be the linear equalities dropped from l′i at the previous step
for all κ ∈ Di do

let isκ = JsκK〈l
′
i; i

′
i〉

if κ contains no slack variable then
if isκ 6= >Intv then

let β be a fresh slack variable
〈lt; it〉 := 〈lt uLinEq {β = κ}; it uIntv {β = isκ tIntv [0, 0]}〉

else if κ contains exactly one slack variable β then
if isκ 6= >Intv then

〈lt; it〉 := 〈lt uLinEq {κ}; it uIntv {β = isκ tIntv ii(β)}〉
return 〈lt; it〉

Example 2 (Non-trivial information for slack variables). Let us consider the
code snippet in Fig. 4(b). The abstract states to be joined are 〈x−y = 0, y−z =
β0;β0 ∈ [−∞, 0]〉 and 〈y − z = 0, x − y = β1;β1 ∈ [−∞, 0]〉. The associated
information are info(β0) = y− z and info(β1) = x− y. Step 1 allows to refine
the abstract states with the slack variable information, and hence to infer that
after the join x ≤ y and y ≤ z. ut

The two examples above show the importance of introducing the information
associated with slack variables in Step 1 and the reduction in Step 2. Without
those, the relation between the slack variables and the program point where they
were introduced would have been lost.

The join of LinEq is precise in that if a linear equality is implied by both
operands, then it is implied by the result too. The same for the join of Intv. The
pairwise join in LinEq ⊗ Intv may drop some inequalities. Some of those can be
recovered by the refinement step. The next example illustrates it.

Example 3 (Step 3). Let us consider the code in Fig. 5(a). The analysis of the two
branches of the conditional produces the abstract states: s0 = 〈x−3·y = 0; >Intv〉
and s1 = 〈x = 0, y = 1; x ∈ [0, 0], y ∈ [1, 1]〉. The reduction ρ does not refine the
states (we already have the tightest bounds). The point-wise join produces the
abstract state >S . Step 3 identifies the dropped constraints: D0 = {x−3 ·y = 0}
and D1 = {x = 0, y = 1}. The algorithm inspects them to check if they are
satisfied by the “other” branch. The constraint in D0 is also satisfied in the false
branch: Jx− 3 · yK(s1) = [−3,−3] (6= >Intv). Therefore it can be safely added to

7

Algorithm 2 The widening OS on Subpolyhedra
input 〈li; ii〉 ∈ SubPoly, i ∈ {0, 1}

let 〈l
′
i; i

′
i〉 = 〈li; ii〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(l0) \ VarS(l1) do

〈l
′
0; i

′
0〉 := 〈l′0 uLinEq {β = info(β)}; i′0〉

{Step 2. Perform the point-wise widening}
let 〈lO; iO〉 = 〈l

′
0; i

′
0〉Ȯρ(〈l

′
1; i

′
1〉)

{Step 3. Recover the lost information }
let D0 be the linear equalities dropped from l′0 at the previous step
for all κ ∈ D0 do

let isκ = JsκK〈l
′
1; i

′
1〉

if κ contains no slack variables then
if isκ 6= >Intv then

let β be a fresh slack variable
〈lO; iO〉 := 〈lO uLinEq {β = κ}; iO uIntv {β = [0, 0]Oisκ}〉

else if κ contains exactly one slack variable β then
if isκ 6= >Intv then

〈lO; iO〉 := 〈lO uLinEq {κ}; iO uIntv {β = i0(v)Oisκ}〉
return 〈lO; iO〉

the result. The constraints of D2 do not hold on the left branch and they are
discarded. The abstract state after the join is st = 〈x−3·y = β; β ∈ [−3, 0]〉. ut

Meet The meet uS is simply the pairwise meet on LinEq⊗ Intv.

Widening The definition of the widening (Algorithm 2) is similar to the join,
with the main differences that: (i) the information associated to slack variables is
propagated only in one direction; (ii) only the right argument is saturated; and
(iii) the recovery step is applied only to one of the operands. Those hypotheses
avoid the well-known problems of interaction between reduction, refinement and
convergence of the iterations [24].

Example 4 (Refinement step for the widening). Let us consider the code snippet
in Fig. 5(b). The entry state to the loop is s0 = 〈i − k = 0; >Intv〉. The state
after one iteration is s1 = 〈i − k = 1; >Intv〉. We apply the widening operator.
Step 1 does not refine the states as there are no slack variables. The pairwise
widening of Step 2 loses all the information. Step 3 recovers the constraint k ≤ i:
D0 = {i − k = 0} contains no slack variables and Ji− kK(s1) = [1, 1] so that
sO = 〈i− k = β; β ∈ [0,+∞]〉. ut

Theorem 1 (Fixpoint convergence). The operator defined in Algorithm 2
is a widening. Moreover, vS can be used to check that the fixpoint iterations
eventually stabilize.

8

if(...) { assume x == 3 * y; }

else { x = 0; y = 1; }
(a)

i := k;

while(...) i++;

assert i >= k;
(b)

Fig. 5. Examples illustrating the need for the Step 3 in the join and the widening.

4 Reduction for Subpolyhedra

The reduction in SubPoly infers tighter bounds on linear forms and hence on
program variables. Reduction is cardinal to fine tuning the precision/cost ratio.
We propose two reduction algorithms, one based on linear programming, ρLP ,
and the other on basis exploration, ρBE . Both of them have been implemented
in Clousot, our abstract interpretation-based static analyzer for .Net [4].
Linear programming-based reduction A linear programming problem is
the problem of maximizing (or minimizing) a linear function subject to a fi-
nite number of linear constraints. We consider upper bounding linear problems
(UBLP) [6], i.e. problems in the form (n is the number of variables, m is the
number of equations):

maximize c · vk k ∈ 1 . . . n, c ∈ {−1,+1}

subject to

n∑
j=1

aij · vj = bj (i = 1, . . .m) and lj ≤ vj ≤ uj (j = 1, . . . n).

The Linear programming-based reduction ρLP is trivially an instance of
UBLP: To infer the tightest upper bound (resp. lower bound) on a variable vk in
a subpolyhedron 〈l; i〉 instantiate UBLP with c = 1 (resp. c = −1) subject to the
linear equalities l and the numerical bounds i. UBLP can be solved in polynomial
time [6]. However, polynomial time algorithms for UBLP do not perform well
in practice. The Simplex method [12], exponential in the worst-case, in practice
performs a lot better than other known linear programming algorithms [30]. The
Simplex algorithm works by visiting the feasible bases (informally, the vertexes)
of the polyhedron associated with the constraints. At each step, the algorithm
visits the adjacent basis (vertex) that maximizes the current value of the objec-
tive by the largest amount. The iteration strategy of the Simplex guarantees the
convergence to a basis which exhibits the optimal value for the objective.

The advantages of using Simplex for ρLP are that: (i) it is well-studied and
optimized; (ii) it is complete in R, i.e. it finds the best solution over real numbers;
and (iii) it guarantees that all the information is propagated at once: ρLP ◦ρLP =
ρLP .

The drawbacks of using Simplex are that (i) the computation over machine
floating point may introduce imprecision or unsoundness in the result; and (ii)
the reduction ρLP requires to solve 2 ·n UBLP problems to find the lower bound
and the upper bound for each of the n variables in an abstract state. We have
observed (i) in our experiences (cf. Sect. 6). There exist methods to circum-
vent the problem at the price of extra computational cost, e.g. using arbitrary
precision rationals, or a combination of machine floating arithmetic and precise

9

Algorithm 3 The reduction algorithm ρBE , parametrized by the oracle δ
input 〈l; i〉 ∈ SubPoly, δ ∈ P({ζ | ζ is a basis change})

Put l into row echelon form. Call the result l′

let 〈l∗, i∗〉 = 〈l′, i〉
for all ζ ∈ δ do

l∗ := ζ(l∗)
for all vk + ak+1 · vk+1 + · · ·+ an · vn = b ∈ l∗ do

i∗ := i∗[vk 7→ i∗(vk) uIntv Jb− ak+1 · vk+1 + · · ·+ an · vnK(i∗)]
return 〈l∗, i∗〉

arithmetic. Even if (i) is solved, we observed that (ii) dominates the cost of the
reduction, in particular in the presence of abstract states with a large number
of variables: the 2 · n UBLP problems are disjoints and there is no easy way to
share the sequence of bases visited by the Simplex algorithm over the different
runs of the algorithm for the same abstract state.

Basis exploration-based reduction We have developed a new reduction ρBE ,
less subject to the drawbacks from floating point computation than ρLP , which
enables a better tuning of the precision/cost ratio than the Simplex. The basic
ideas are: (i) to fix ahead of time the bases we want to explore; and (ii) to refine
at each step the variable bounds. The reduction ρBE , parametrized by a set of
changes of basis δ, is formalized by Algorithm 3. First, we put the initial set of
linear constraints into triangular form (row echelon form). Then, we apply the
basis changes in δ and we refine all the variables in the basis. With respect to
ρLP , ρBE is faster: (i) the number of bases to explore is statically bounded; (ii)
at each step, k variables may be refined at once.

In theory, ρBE is an abstraction of ρLP , in that it may not infer the optimal
bounds on variables (it depends on the choice of δ). In practice, we found that
ρLP is much more numerically stable and it can infer better bounds than ρLP .
The reason is in the handling of numerical errors in the computation. Suppose we
are seeking a (lower or upper) bound for a variable using the Simplex. If we detect
a numerical error (i.e., a huge coefficient in the exact arithmetic computation),
the only sound solution is to stop the iterations, and return the current value
of the objective function as the result. On the other hand, when we detect a
numerical error in ρBE , we can just skip the current basis (abstraction), and
move to the next one in δ.

We are left with the problem of defining δ. We have two instantiations for it:
a linear explorer and combinatorial explorer. The algorithm in Sect. 9.3.3 of [13]
may also be used when the all the variables are known to be positive.

Linear Explorer (δL) The linear bases explorer is based on the empirical ob-
servation that in most cases having some variable v0 in the basis and some
other variable v1 out of the basis is enough to infer good bounds. The ex-
plorer generates a sequence of bases δL with the property that for each un-
ordered pair of distinct variables 〈v0, v1〉, it exists ζ ∈ δL such that v0 is

10

in the basis and v1 is not. The sequence δL is defined as δL = {ζi | i ∈
[0, n], vi . . . v(i+m−1)mod n are in basis for ζi}.

Example 5. (Reduction with the linear explorer) Let the initial state be s =
〈v0 + v2 + v3 = 1, v1 + v2 − v3 = 0; v0 ∈ [0, 2], v1 ∈ [0, 3]〉, so that δL =
{{v0, v1}, {v1, v2}, {v2, v3}, {v3, v0}}. The reduction ρBE (s) contains the tightest
bounds for v2, v3: 〈v2 + 1

2 · v0 + 1
2 · v1 = 0, v3 + 1

2 · v0− 1
2 · v1 = 0; v0 ∈ [0, 2], v1 ∈

[0, 3], v2 ∈ [0, 5
2], v3 ∈ [− 1

2 , 1]〉. ut

Properties of δL are that: (i) each variable appears exactly m times in the basis;
(ii) it can be implemented efficiently as the basis change from ζi to ζi+1, i ∈
[0, n− 1] requires just one variable swap; (iii) in general it is not idempotent: it
may be the case that ρL ◦ ρL 6= ρL; (iv) the result may depend on the initial
order of variables, as shown by the next example.

Example 6 (Incompleteness of the linear explorer). Let us consider an initial
state s = 〈v0 + v1 + v2 = 0, v3 + v1 = 0; v2 ∈ [0, 1], v3 ∈ [0, 1]〉. The reduced
state ρBE (s) = 〈v3 + v1 = 0, v2 + v0 − v1 = 0; v1 ∈ [−1, 0], v2 ∈ [0, 1], v3 ∈ [0, 1]〉
does not contain the bound v0 ∈ [−1, 1]. ut

Combinatorial Explorer (δC) The combinatorial explorer δC systematically
visits all the bases. It generates all possible combinations of m variables trying to
minimize the number of swaps at each basis change. It is very costly, but it finds
the best bounds for each variable: it visits all the bases, in particular the one
where the optimum is reached. The main advantage with respect to the Simplex
is a better tolerance to numerical errors. However it is largely impractical because
of (i) the huge cost; and (ii) the negligible gain of precision w.r.t. the use of δL
that it showed in our benchmark examples.

5 Hints

The inference power of SubPoly can be increased using hints. Hints are linear
functionals associated with a subpolyhedron s. They represent some linear in-
equality that may hold in s, but that it is not explicitly represented by a slack
variable, or that it is not been checked to hold in s yet.

Hints increase the precision of joins and widenings. Let h be an hint, let s0
and s1 two subpolyhedra, and let b = JhK(s0)tIntv JhK(s1). If b 6= >Intv, then h ∈ b
holds in both s0 and s1, so that the constraint can be safely added to s0 tS s1.
That helps recovering linear inequalities that may have been dropped by the
Algorithm 1. The situation for widening is similar, with the main difference that
the number of hints should be bounded, to ensure convergence. Hints can be
automatically generated during the analysis or they can be provided by the user
in the form of annotations. In our current implementation, we have three ways
to generate hints, inspired by existing solutions in the literature: program text,
templates and planar convex hull. They provide very powerful hints, but some
of them may be expensive.

11

Bounds SubPoly with ρLP SubPoly with ρBE Max
Assembly Methods Checked Valid % Time Valid % Time Vars

mscorlib.dll 18 084 17 181 14 432 84.00 73:48 (3) 14 466 84.20 23:19 (0) 373
System.dll 13 776 11 891 10 225 85.99 58:15 (2) 10 427 87.69 14:45 (0) 140

System.Web.dll 22 076 14 165 13 068 92.26 24:41 (0) 13 078 92.33 6:33 (0) 182
System.
Design.dll 11 419 10 519 10 119 96.20 26:07 (0) 10 148 96.47 5:18 (0) 73

Average 89.00 89.51

Fig. 6. The experimental results of checking array creation and accesses in representa-
tive .Net assemblies. SubPoly is instantiated with two reductions: ρLP and ρBE . Time
is in minutes. The number of methods that reached the timeout (two minutes) is in
parentheses. The last column reports the maximum number of variables simultaneously
related by a SubPoly abstract state.

Program text hints They introduce a new hint each time a guard or assume
statement (user annotation) is encountered in the analysis. This way, properties
that are obvious when looking at the syntax of the program will be proved. Also,
every time a slack variable β is removed, info(β) is added to the hints. This
is useful in the realistic case when SubPoly is used in conjunction with a heap
analysis which may introduce unwanted renamings.
Template hints They consider hints of fixed shape [28]. For instance, hints in
the form x0 − x1 guarantee a precision at least as good as difference bounds
matrices [24], provided that the reduction is complete.
Planar convex hull hint It materializes new hints by performing the planar
convex hull of the subpolyhedra to join [29]. First, it projects the interval com-
ponents on every two-dimensional plane (there are a quadratic number of such
planes). Then it performs the convex hull of the resulting pair of rectangles (in
constant time, since the number of vertexes is at most eight). The resulting new
linear constraints are a sound approximation by construction. They can be safely
added to the result of the join.

6 Experience

We have implemented SubPoly on top of Clousot, our modular abstract inter-
pretation-based static analyzer for .Net [3]. A stand-alone version of the SubPoly
library is available for download [19]. Clousot directly analyzes MSIL, a bytecode
target for more than seventy compilers (including C#, Managed C++, VB.NET,
F#). Prior to the numerical analysis Clousot performs a heap analysis and an
expression recovery analysis [21]. Clousot performs intra-procedural analysis
and it supports assume-guarantee reasoning via Foxtrot annotations [4]. Con-
tracts are expressed directly in the language as method calls and are persisted
to MSIL using the normal compilation process of the source language. Classes
and methods may be annotated with class invariants, preconditions and post-
conditions. Preconditions are asserted at call sites and assumed at the method
entry point. Postconditions are assumed at call sites and asserted at the method

12

exit point. Clousot also checks the absence of specific errors, e.g. out of bounds
array accesses, null dereferences, buffer overruns, and divisions by zero.

Figure 6 summarizes our experience in analyzing array creations and accesses
in four libraries shipped with .Net. The test machine is an ordinary 2.4Ghz
dual core machine, running Windows Vista. The assemblies are directly taken
from the %WINDIR%\Microsoft\Framework\v2.0.50727 directory of the PC.
The analyzed assemblies do not contain contracts (We are actively working to
annotate the .Net libraries). On average, we were able to validate almost 89.5%
of the proof obligations. We manually inspected some of the warnings issued
for mscorlib.dll. Most of them are due to lack of contracts, e.g. an array is
accessed using a method parameter or the return value of some helper method.
However, we also found real bugs (dead code and off-by-one). That is remarkable
considering that mscorlib.dll has been tested in extenso. We also tried SubPoly
on the examples of [11, 27, 15, 16], proving all of them.

Reduction Algorithms We run the tests using the Simplex-based and the Lin-
ear explorer-based reduction algorithms. We used the Simplex implementation
shipped with the Microsoft Automatic Graph Layout tool, widely tested and
optimized. The results in Fig. 6 show that ρLP is significantly slower than ρBE ,
and in particular the analysis of five methods was aborted as it reached the two
minutes time-out. Larger time-outs did not help.

SubPoly with the reduction ρLP validates less accesses than ρBE . Two rea-
sons for that. First, it is slower, so that the analysis of some methods is aborted
and hence their proof obligations cannot be validated. Second, our implemen-
tation of the Simplex uses floating point arithmetic which induces some loss of
precision. In particular we need to read back the result (a double) into an in-
terval of ints containing it. In general this may cause a loss of precision and
even worse unsoundness. We experienced both of them in our tests. For instance
the 39 “missing” proof obligations in System.Web.dll and System.Design.dll
(validated using ρBE , but not with ρLP) are due to floating point imprecision in
the Simplex. We have considered replacing a floating point-based Simplex with
one using exact rationals. However, the Simplex has the tendency to generate
coefficients with large denominators. The code we analyze contains many large
constants which cause the Simplex to produce enormous denominators.

SubPoly with ρBE instantiated with the linear bases explorer perform very
well in practice: it is extremely fast and precise. Our implementation uses 64 bits
Rationals. When an arithmetic overflow is detected, we abstract away the current
computation, e.g., by removing the suitable row in the matrix representation.
On the negative side, the result may depend on the variables order. A “bad”
variable order may cause ρBE not to infer bounds tight enough. One solution is
to iterate the application of ρBE (it is not idempotent). Other solutions are: (i)
to reduce the number of variables by simplifying a subpolyhedron (less bases to
explore); (ii) to mark variables which can be safely kept in the basis at all times:
In the best case, only one basis needs to be explored. In the general case, it still
makes the reduction more precise because the bases explored are more likely to
give bounds on the variables.

13

Max Variables It is worth noting that even if Clousot performs an intra-
procedural analysis, the methods we analyze may be very complex, and they
may require tracking linear inequalities among many abstract locations. Ab-
stract locations are produced by the heap analysis [20], and they abstract stack
locations and heap locations. Figure 6 shows that it is not uncommon to have
methods which require the abstract state to track more than 100 variables. One
single method of mscorlib.dll required to track relations among 373 distinct
variables. SubPoly handles it: the analysis with ρBE took a little bit more than a
minute. To the best of our knowledge those performances in presence of so many
variables are largely beyond current Poly implementations. For instance, in some
preliminary study we tried to instantiate Clousot with the Poly library included
in Boogie [2]. The results were quite disappointing: under the same experimental
conditions (except for a 5 minutes time out), the analysis of System.dll took 257
minutes, and the time out was reached more than 20 times. We did not notice
any remarkable gain of precision using Poly. Furthermore, Poly is concerned by
floating points soundness issues, too [5].

7 Conclusions

We introduced SubPoly, a new numerical abstract domain based on the com-
bination of linear equalities and intervals. SubPoly can track linear inequalities
involving hundreds of variables. We defined the operations of the abstract do-
main (order, join, meet, widening) and two reduction operators (one based on
linear programming and another based on basis exploration). We found Simplex-
based reduction quite unsatisfactory for program analysis purposes: because of
floating point errors the result may be too imprecise or worse, unsound. We
introduced then the basis exploration-based reduction, in practice more precise
and faster.

SubPoly precisely propagates linear inequalities, but it may fail to infer some
of them at join points. Precision can be recovered using hints either provided
by the programmer in the form of program annotations; or automatically gener-
ated (at some extra cost). SubPoly worked fine on some well known examples in
literature that required the use of Poly. We tried SubPoly on shipped code, and
we showed that it scales to several hundreds of variables, a result far beyond
the capabilities of existing Poly implementations. Acknowledgments Thanks
to L. Nachmanson for providing us the Simplex implementation. Thanks to M.
Fähndrich, J. Feret, S. Gulwani, C. Popeea and J. Smans for the useful discus-
sions.

References

1. R. Bagnara, P.M. Hill, and E. Zaffanella. The Parma Polyhedra Library.
http://www.cs.unipr.it/ppl/.

2. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for Object-Oriented programs. In FMCO’05.

3. M. Barnett, M. Fähndrich, and F. Logozzo. Managed contract tools.
http://research.microsoft.com/downloads.

14

4. M. Barnett, M. A. Fähndrich, and F. Logozzo. Foxtrot and Clousot: Language
agnostic dynamic and static contract checking for .Net. Technical Report MSR-
TR-2008-105, Microsoft Research, 2008.

5. L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract
domain. In APLAS’08.

6. V. Chvátal. Linear Programming. W. H. Freeman, 1983.
7. R. Clarisó and J. Cortadella. The octahedron abstract domain. In SAS’04.
8. P. Cousot. The calculational design of a generic abstract interpreter. In Calcula-

tional System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.
9. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL’77.
10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

POPL ’79.
11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In POPL ’78.
12. G. B. Dantzig. Programming in linear structures. Technical report, USAF, 1948.
13. J. Feret. Analysis of mobile systems by abstract interpretation. PhD thesis.
14. P. Ferrara, F. Logozzo, and M. A. Fähndrich. Safer unsafe code in .Net. In

OOPSLA’08.
15. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically

refining abstract interpretations. In TACAS’08.
16. S. Gulwani, K. Mehra, , and T. Chilimbi. Speed: Precise and efficient static esti-

mation of program computational complexity. In POPL’09.
17. M. Karr. On affine relationships among variables of a program. Acta Informatica,

6(2):133–151, July 1976.
18. L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, and M. Gurvich. Generating

all vertices of a polyhedron is hard. In SODA’06.
19. V. Laviron and F. Logozzo. The Subpoly Library.

http://research.microsoft.com/downloads.
20. F. Logozzo. Cibai: An abstract interpretation-based static analyzer for modular

analysis and verification of Java classes. In VMCAI’07, 2007.
21. F. Logozzo and M. A. Fähndrich. On the relative completeness of bytecode analysis

versus source code analysis. In CC’08.
22. F. Logozzo and M. A. Fähndrich. Pentagons: A weakly relational abstract domain

for the efficient validation of array accesses. In SAC’08.
23. B. Meyer. Object-Oriented Software Construction (2nd Edition). Professional

Technical Reference. Prentice Hall, 1997.
24. A. Miné. The octagon abstract domain. In WCRE 2001.
25. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-

bra. In POPL’04.
26. E. Rodŕıguez-Carbonell and D. Kapur. Automatic generation of polynomial in-

variants of bounded degree using abstract interpretation. Sci. Comput. Program.,
64(1), 2007.

27. S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program analysis using symbolic
ranges. In SAS’07.

28. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In VMCAI’05.

29. A. Simon, A. King, and J. Howe. Two variables per linear inequality as an abstract
domain. In LOPSTR’02.

30. D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM., 51(3), 2004.

15

