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Surface Extraction from Binary Volumes
with Higher-Order Smoothness

Victor Lempitsky

Abstract—A number of 3D shape reconstruction algorithms, in particular 3D image segmentation methods, produce their results
in the form of binary volumes, where a binary value indicates whether a voxel is associated with the interior or the exterior. For
visualization purpose, it is often desirable to convert a binary volume into a surface representation. Straightforward extraction of the
median isosurfaces for binary volumes using the marching cubes algorithm, however, produces jaggy, visually unrealistic meshes.
Therefore, similarly to some previous works, we suggest to precede the isosurface extraction by replacing the original binary volume
with a new continuous-valued embedding function, so that the zero-isosurface of the embedding function is smooth but at the same
time consistent with the original binary volume. In contrast to previous work, computing such an embedding function in our case permits
imposing a higher-order smoothness on the embedding function and involves solving a convex optimization problem. We demonstrate
that the resulting separating surfaces are smoother and of better visual quality than minimal area separating surfaces extracted by
previous approaches to the problem. We plan to make the code of our algorithm publicly available for researchers working on 3D image
segmentation as well as other 3D shape reconstruction applications.

Index Terms—Object Modeling, 3D Image Segmentation, Shape Reconstruction, Volume Visualization, Convex programming,
Quadratic programming methods.
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1 INTRODUCTION

The problem of surface extraction from binary volumes
arises in the post-processing step of several computer
vision applications. In particular, binary image segmen-
tation algorithms such as region growing [1], graph cuts
[2], or a simple thresholding proceed by labeling image
elements as belonging to either foreground or back-
ground. The output of such an algorithm is, therefore, a
binary-valued segmentation mask. For two-dimensional
problems, the segmentation mask can be visualized in
several ways, e.g. by superimposing it onto the original
image. Over the recent years, there is, however, an ever-
increasing demand for 3D image segmentation, where
a three-dimensional segmentation mask (a binary vol-
ume) needs to be visualized after the segmentation is
performed.

In many cases, the user expects the 3D image segmen-
tation result to be presented in the form of a separating
surface, i.e. a surface that separates the background and
the foreground segments of a binary volume. In many
applications such as the biomedical imaging, this surface
may correspond to the actual physical interface, e.g. the
boundary of an organ. The problem of extracting a sep-
arating surface from a binary volume also arises within
the post-processing step in several other applications
such as stereo- or silhouette-based multiview reconstruc-
tion [3], [4] or shape-from-range data [5], when the
underlying algorithms work with voxel representations
and make hard decisions about the voxel occupancy.

Given a binary volume, a separating surface can be
extracted as an isosurface corresponding to the median
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value (e.g. the zero-isosurface is taken, if the background
label is interpreted as −1 and the foreground label is
interpreted as 1). These isosurfaces can be efficiently ex-
tracted in a form of triangular meshes using the march-
ing cubes algorithm [6]. Such isosurfaces, however, ex-
hibit distracting aliasing artifacts (Figure 1a, Figure 2a).
These artifacts have a regular structure and therefore are
perceived as “signal” rather than “noise”, which leads to
their amplification by the human visual system.

The aliasing problem is caused by the fact that a binary
volume does not define the separating surface uniquely.
In fact, depending on the interpretation, a binary volume
is typically consistent with the entire family of separating
surfaces. Thus, in this work we interpret a binary volume
as a set of hard constraints imposed on the separating
surface. Under these constraints, the separating surface
must contain the centers of all foreground voxels inside
while having the centers of all background voxels out-
side; whether or not this interpretation has a “physical”
meaning depends on the particular algorithm used to
compute the binary volume. It can be demonstrated, for
example, that this interpretation has a sound geometric
justification for the graph cut (or more precisely GeoCut)
framework [7], which became very popular for segmen-
tation as well as other low-level vision tasks over the
last years.

In the paper, we discuss a new method for the ex-
traction of smooth separating surfaces based on the
constrained convex optimization of the higher-order
smoothness criterion. The results of the method for
several binary volumes suggest that it yields higher-
quality surfaces as compared to the previous approaches
that are discussed in the following section.
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(a) the binary volume
and its zero-isoline

(b) minimal-length
separating curve (c) our separating curve (d) embedding function

computed for (c)

Fig. 1. (better viewed in color) A 2D example highlighting the performance of different approaches. The input binary
volume is obtained by sampling a circle on a very coarse (12 × 12) grid, so that red nodes correspond to the interior
(+1) and blue nodes correspond to the exterior (-1). Both the zero-isoline (a) and the minimal length separating curve
(b) (as sought by [8]–[10]) suffer heavily from the aliasing artifacts, while our method computes a smooth separating
curve (c) with the shape close to being circular. (d) shows the embedding function computed with our method, for
which (c) is the zero-isoline.

2 RELATED WORK

The problem of extracting a separating surface can be re-
garded as the problem of picking one out of an infinitely-
large class of surfaces that meet the hard constraints
imposed by the binary volume. The zero-isosurface is
a choice that is suboptimal from the perceptual point
of view, as it lacks smoothness. Some of the initial
approaches [11] suggested to overcome the aliasing ar-
tifacts (jagginess and terracing) by a local Gaussian pre-
filtering of the binary volume. The problem with that
approach, however, is that the terracing/jagginess effects
often require very large kernel and strong filtration to be
diminished (let alone completely eliminated), whereas
such a filtration smooths out the fine details and, in
general, produces oversmoothed surfaces incompatible
with the original binary volumes.

To overcome this essential non-locality of the aliasing
effects, strategies based on the optimization of global
objectives were suggested. Towards this end, [8], [10]
evolves the extracted surface to minimize its area, subject
to the constraint that it has to remain compatible with
the original binary volumes during the evolution. Fol-
lowing up on this approach, [9] introduced the surface
extraction method, which solve essentially the same opti-
mization problem (constrained minimal area separating
surface) but in the implicit level-set framework [12]. The
smoothness is thus introduced prior to the isosurface
extraction by the modification of the underlying volume
function. In this way, the function values are no longer
restricted to be binary (1 or −1). Such an implicit smooth-
ing strategy has several advantages over the explicit
smoothing of the isosurface mesh including the ease of
handling of topology changes during smoothing as well
as the simplicity of imposing the hard constraints.

Choosing the surface with the smallest area [8]–[10]
typically leads to separating surfaces that are signifi-
cantly better perceptually than the zero-isosurface of the
original binary volume. Yet, the resulting surfaces still

suffer from visually noticeable aliasing, grid-induced ar-
tifacts (Figure 1b, Figure 2b). Furthermore, the shrinking
bias introduced by the minimal area objective leads to
artifacts on thin protrusions and sharp creases of the
object.

In this paper, we suggest a new simple criterion
that can be used to extract the separating surfaces
from binary volumes, yielding surfaces with higher-
order smoothness rather than the minimal area property.
Such criterion can be used within the implicit smoothing
framework, and, notably, has a nice property of leading
to convex optimization problems (as opposed to non-
convex problems in previous frameworks). Importantly,
we demonstrate that the higher-order smoothness im-
posed by the resulting algorithm allows to obtain sep-
arating surfaces with much fewer aliasing artifacts as
compared to the area minimization methods [8]–[10].

3 SURFACE EXTRACTION

Problem setting. Assume that a binary volume function
V : G → {−1,+1} is given, where G is the discrete grid
domain G = {1, 2, . . . , L} × {1, 2, . . . ,M} × {1, 2, . . . , N}.
Then, denote with vijk ∈ {−1,+1} the value of V on the
respective node of the grid.

As a result of the smoothing, we are going to obtain
a non-binary embedding function F : G → R, where
fijk ∈ R will again denote the value of F on the
node of the grid. The obtained function F must be
consistent with the binary volume V , so that the zero-
isosurface extracted from (the continuous interpolation
of) F contains all foreground nodes {i, j, k| vijk= + 1}
inside (or on the boundary) and all background nodes
{i, j, k| vijk= − 1} outside (or on the boundary). This
requirement is equivalent to the following set of hard
constraints imposed on F :

∀i, j, k vijk · fijk ≥ 0 . (1)
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We seek to obtain F meeting constraints (1) so that its
zero isosurface is smooth (in the sense that we discuss
below). An idea that we use in our method is to impose
smoothness on F directly, so that its isosurfaces also
possess a certain degree of smoothness.

Imposing smoothness. The idea of imposing the
smoothness directly on the embedding function is used
extensively in image segmentation. Thus, the level set
frameworks modify the embedding function locally, so
that the area of the zero isosurface is also minimized. The
TV-minimization framework [13] as well as the GeoCut
framework [7] minimize the integral of the absolute
value of variation of the embedding function. Again,
although the smoothness is imposed on the embedding
function rather than on its zero-isosurface1, the area of
the zero-isosurface is provably minimized in this case.

More recently, it has been argued (see e.g. [14]) that
one can impose smoothness by minimizing the square
(or other powers) of the variation of the embedding
function. Unlike the case of the absolute value of the
variation, minimizing such quantity for the embedding
function does not translate into minimizing some clearly
understood functional of the zero-isosurface. Yet, it has
been demonstrated to achieve the desired effect of im-
posing smoothness on this isosurface [14].

The methods discussed above (except level-sets) min-
imize some function of the first-order variation |∇F |
or related quantities. As a result, these methods are
biased towards the constant embedding functions, as
this is the only class of the embedding functions, which
are considered absolutely smooth under this definition
of smoothness. As the zero-isosurface of the constant
function is, in general, empty surface, this bias towards
constancy of the embedded function manifests itself as
the shrinking bias of the isosurface. The same shrinking
bias is inherent to the level set framework [12], that is
used in [9] to extract the separating surfaces from binary
volumes.

To avoid the shrinking bias and achieve the higher-
order smoothness, we suggest to regularize the higher-
order derivatives of the embedding function. Thus, in the
continuous limit, the following functional is minimized:∫ (

∂2F

∂x2

)2

+
(
∂2F

∂y2

)2

+
(
∂2F

∂z2

)2

dV → min . (2)

In the discrete setting, the finite-difference approxima-
tion is used:∑

ijk

[
(fi+1 jk + fi−1 jk − 2fijk)2 +

(fi j+1 k + fi j−1 k − 2fijk)2+ (3)
(fij k+1 + fij k−1 − 2fijk)2

]
→ min .

As in the case of some other functionals, it is hard to
associate the minimization of the functional (2) defined

1. The term “0.5-isosurface” would be more consistent with the
notation of papers concerned with these frameworks. We still use
“zero-isosurface” here to be consistent with the rest of our paper.

on F with the minimization of some functional defined
on the zero-isosurface of F . One can, however, analyze
which kind of isosurfaces can be observed for the global
minima of (2). Thus, the functional (2) clearly biases the
embedding function towards a low-degree polynomial,
so that the globally minimal embedding functions are the
polynomial of degree at most three. In fact, by adding
the squares of the mixed derivatives into (2) one could
restrict the globally optimal embedding functions to be
linear. In either case, however, it may be noticed that
the class of globally optimal (i.e. “absolutely smooth”)
embedding functions is much reacher than just constant
functions, and that the class of their isosurfaces include
all planar surfaces (as well as some quadric surfaces in
the case when mixed derivatives are not included).

Adding a margin. We now seek to obtain an embed-
ding function that is smooth in the sense of (2) and
meets the conditions (1). While the regularization (2)
on its own does not bias the embedding function to
be constant, one may notice however, that combining
it with the hard constraints (1) would lead back to the
unique and trivial optimal solution F ≡ 0. This can
be avoided if the hard constraints (1) are made more
stringent, ensuring some margin separating the resulting
embedding function from the zero solution:

∀i, j, k vijk · fijk ≥ mijk . (4)

Here, mijk are non-negative values, which are strictly
positive for some i, j, k, ensuring that the embeding
function deviates from zero somewhere. There exist dif-
ferent reasonable choices of margin values that lead to
perceptually plausible and similar separating surfaces.
Thus, if we denote with B the set of boundary nodes in
V , i.e. nodes adjacent (in 26-connectivity) to the nodes
of the different values in V , the simple choice for mijk

would be:

mijk =

{
0, if (i, j, k) ∈ B,
1, otherwise.

(5)

A marginally better results in our experiments were pro-
duced by the margin equal to the (unsigned) Euclidean
distance to the set B:

mijk = dist
(
(i, j, k), B

)
=

min
(α,β,γ)∈B

√
(i− α)2 + (j − β)2 + (k − γ)2 . (6)

Extracting the surface. To extract the separating surface
from the binary volume, our method simply solves the
following convex quadratic optimization problem:

SOLV E (3) s. t. (4). (7)

The separating surface is then extracted as the zero-
isosurface of the optimal embedding function using the
marching cubes algorithm [6]. Alternatively, the recov-
ered embedding function can be rendered directly using
the volume rendering techniques such as [15].

As we are interested in the values of F near
its zero isosurface, we can restrict our computations
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(a) Zero-isosurfaces of binary volumes (b) Minimal area separating surfaces (c) Our separating surfaces

Fig. 2. For a set of synthetic and real-data binary volumes, our method extracts separating surfaces with less aliasing
artifacts, as compared to the minimal area approach or the straightforward application of the marching cubes. See the
text for the description of the binary volumes.
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to the nodes within the narrow band defined as
{(i, j, k)| dist

(
(i, j, k), B

)
< C}, where C is the constant

defining the width of the band which can be set to
a small value (e.g. 3) without visually affecting the
resulting isosurface (as compared to the computations
on the full grid).

The convex quadratic program (7) can be solved using
any general purpose sparse second-order optimizer (e.g.
the one available in Matlab), which converge to the F
function having smooth zero-isosurface within few (e.g.
10) iterations. A simple, first-order (gradient descent)
optimization also works well, although it requires more
iterations. The distance function required to construct
the band and to compute the margin values can be
efficiently computed even for large volumes using e.g.
the algorithm [16].

4 RESULTS

The suggested algorithm has been evaluated on sev-
eral synthetic and real binary volumes. In Figure 2a,
we present the zero-isosurfaces of the input volumes,
while the minimal area separating surfaces computed
using the method [9] are shown in Figure 2b. Finally,
the separating surfaces extracted with our method are
presented in Figure 2c (the margin as defined by (6) was
used). It can be observed that while the minimial area
approach yields the surfaces that look much better than
the original zero-isosurfaces, they still suffer from alias-
ing (terracing) artifacts. These artifacts are removed and
smoother, more naturally-looking surfaces are obtained
with our method.

The top two rows in Figure 2 correspond to binary
volumes obtained by rasterizing a ball and a cube on
low-resolution (64 × 64 × 64) grids (the cube axes were
rotated relative to the grid axes). The third row corre-
spond to the binary segmentation result of an MRI hip
joint dataset (128× 128× 119) obtained using the graph
cut method [2]. The fourth row correspond to the binary
volume (100 × 100 × 79) obtained from the set of range
scans using the method [17]. While for the illustration
purposes the volumes in Figure 2 have low resolution,
our method scales to much larger volumes due to its
banded nature.

For example, Figure 3 shows the closeups of the
surface extracted from the 256×256×288 binary volume.
It also demonstrates the main failure mode for our
method, which are thin objects (protrusions). Although,
our method (Figure 3b) still does marginally better than
the minimal area surface approach (in Figure 3a), it can
be seen that very thin objects cannot be processed with
the method described above in a satisfactory way. The
problem occurs because the functional (3) drives the
value of the embedding function towards zero, while
the margin value (6) does not prevent that, as it is equal
to zero for the voxels belonging to thin parts.

One easy way to improve the performance of the
method on thin objects is first to identify the thin parts

(a) – Minimal area separating surface

(b) – Our separating surface

(c) – Our separating surface, modified margin

Fig. 3. Close-ups of the surfaces extracted from the high-
resolution binary volumes with different methods. Both
the minimal area approach and our approach struggle
to obtain visually consistent surfaces for very thin objects
such as vessels. The performance of our method in these
regions may be improved by automatically increasing the
margin values locally; in other parts, the surface remains
unchanged.

to be preserved and then to increase the margin values
for these voxels. The thin parts can be identified us-
ing simple morphological operations. Thus, we perform
morphological opening of the binary volume by eroding
it in a 6-connected neighborhood, and subsequently
dilating it in a 26-connected neighborhood. We then
consider all voxels that are inside the object in the orig-
inal volume but not inside the opening as protrusions
that require further processing and raise their margin
values mijk (which the rule (6) always set to zero in
these parts) to ε = 0.25. As shown in (Figure 3c), this
improves the performance of the method in protrusion
areas considerably (although, admittedly, the aliasing
artifacts can be observed there). Importantly, the surface
remains virtually unchanged in other parts.

5 DISCUSSION
We have presented a simple algorithm allowing to ex-
tract smooth isosurfaces from binary volumes, which
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is a common post-processing task within a range of
shape reconstruction applications, in particular 3D image
segmentation. Unlike previous methods, that generally
aim at minimizing the area of the separating surface, our
approach minimizes a higher-order smoothness criterion
imposed on the embedding function. Such minimization
can be achieved via convex quadratic programming and
yields smooth isosurfaces with fewer aliasing artifacts.
It remains an interesting question whether similar kind
of higher-order smoothness can be used for other tasks,
e.g. whether it can be applied to image segmentation
directly.

While we have focused on the surface extraction from
the binary volumes, it is highly likely that our method
will be useful for the segmentation results produced by
the methods working with continuous representations
[12]–[14], [19], [20] as the criteria within these methods
are not designed to extract isosurfaces that are smooth at
subvoxel levels. E.g., the level-set frameworks [12] typi-
cally optimize minimal area-related objectives and there-
fore isosurfaces extracted from the resulting continuous-
valued volumes will be very similar to the minimal
area separating surfaces computed with the level set
method [9]. Therefore, we believe that our method may
be as useful for the extraction of the surfaces from the
segmentation results of these methods as it is for the
segmentation methods with binary outputs.

It can be argued, at the same time, that for such tasks
as multiview reconstruction or shape-from-points the
input data may be reused at the surface extraction stage
to achieve the subvoxel accuracy (since unlike image
segmentation, the initial data for these problems are not
sampled on a grid and typically have higher effective
resolution). Still, our method may be useful for the ap-
proaches solving these problems within the increasingly
popular graph-cut [17], [21] and TV-minimization [22]
frameworks as a fast, “ready-to-use” solution for the
surface extraction.

We plan to make the Matlab code of our approach
available for researchers by the time of the publication.
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