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Abstract. Synthesis is the process of automatically generating a correct
running system from its specification. In this paper, we suggest a trans-
lation of a Live Sequence Chart specification into a two-player game for
the purpose of synthesis. We use this representation for synthesizing a
reactive system, and introduce a novel algorithm for composing two such
systems for two subsets of a specification. Even though this algorithm
may fail to compose the systems, or to prove the joint specification to be
inconsistent, we present some promising results for which the composi-
tion algorithm does succeed and saves significant running time. We also
discuss options for extending the algorithm into a sound and complete
one.

1 Introduction

Automatic synthesis of systems directly from their specification has been a dream
for many researchers. In the dream, a specifier is faced with an expressive yet
intuitive specification language, in which she specifies the requirements from her
system. All the rest will then happen automatically – by clicking a button, the
specification will automatically be checked for consistency, and if found consis-
tent, a system that is correct-by-construction will be generated, i.e., a system
that is guaranteed to satisfy the specification. On the way towards realizing
this dream, one must first choose a specification language that is both expres-
sive and intuitive, and then build strong and fast algorithms for synthesizing
systems from this language. Synthesis raises major challenges in terms of the in-
herent complexity of the problem and the required methodological development
approach. Compositional synthesis, in which two synthesized systems may easily
be composed into one large system, may help in addressing these challenges. By
synthesizing small parts of the specification separately, and composing the inter-
mediate results, one may save significant running time. Moreover, specifications
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are usually constructed by a team and evolve over time, by introducing more re-
quirements and modifying existing ones. A compositional approach to synthesis
supports such evolution by reusing results for existing parts of the specification,
rather than having to synthesize a complete system whenever the specification
is modified. Another common way of tackling the high complexity of synthesis
is by introducing semi-automatic algorithms. Such algorithms require some in-
teraction with the user, but may perform much better by exploiting the user’s
understanding of the system. In a compositional synthesis algorithm this can be
done by leaving the choice of the parts that should be separately synthesized to
the user.

Live Sequence Charts (LSCs) [8] have been introduced as a highly expressive
extension of Message Sequence Charts [18]. LSCs are multi-modal charts that
distinguish between behaviors that may happen (existential, cold) and those
that must happen (universal, hot). LSCs are highly expressive, and different
translations of LSCs into temporal logic have been suggested (see, e.g., [9,21]).
On the other side, being visual in nature, we believe the language is highly
intuitive. Thus, LSCs were suggested as an expressive and intuitive specification
language to use for synthesis in [13]. Despite research efforts on synthesizing
systems from LSCs, e.g., [15,5], practical application to real-world systems has
not yet been achieved.

In this paper, we propose a representation of LSC specifications as two-player
game structures, in which a winning strategy for the system is equivalent to a re-
active system satisfying the requirements. This representation is then synthesized
into a reactive system using an approach similar to that proposed in [28,29]. We
further propose a method for composing two synthesized systems. This method
consists of an algorithm that is sound but not complete, and an algorithm that
is complete but not sound. Therefore, it might fail to compose systems, or to
prove their specifications to be inconsistent. However, we do provide several test
cases for which it does succeed in creating a system for the entire specification,
or prove the entire specification to be inconsistent, in running time significantly
faster than that of non-compositional synthesis. We also briefly describe an ex-
tension of the approach that is sound and complete. This extension may be
problematic in terms of running time and implementation, therefore it is given
in this paper mainly for completeness of the approach, rather than as a full
replacement for synthesis of composite specifications.

This work focuses on a subset of LSCs that includes only messages, and as-
sumes that main charts include only messages controlled by the system. We also
assume that no LSC has multiple copies simultaneously open during runtime.
Finally, all messages in the specification are assumed to be synchronous, i.e., the
event of sending a message and receiving it are simultaneous.

We implemented the approach introduced here as part of the new Scenario-
Based Tool [33] developed at Microsoft Research Cambridge, using TLV [31] for
the symbolic computations.

Some details of implementation, proofs, and notations are omitted from this
version of the paper due to lack of space. See [23] for more details.
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Fig. 1. An example LSC

2 Preliminaries

2.1 Live Sequence Charts

Live sequence charts (LSCs) [8] are an extension of message sequence charts
(MSCs) [18]. LSCs, like MSCs, contain vertical lines, termed lifelines, which de-
note objects, and events, involving one or more lifelines. The most basic construct
of the language are messages : a message is denoted by an arrow between two
lifelines (or from a lifeline to itself), representing the event of the source object
sending a message to the target object. A typical LSC consists of a prechart (de-
noted by a blue dashed hexagon), and a main chart (denoted by a solid frame).
The intended semantics is that whenever the prechart is satisfied in a run of the
system, eventually the main chart must also be satisfied. The synthesis method
presented here focuses on messages, and does not currently support any of the
more advanced constructs of the language, such as conditions, loops, etc.

Any object taking part in the specification is either controlled by the system,
or by the environment. A message is said to be a system (environment) message,
i.e., controlled by the system (environment), if it is sent from an object controlled
by the system (environment).

An example of an LSC appears in Fig. 1. The LSC refers to three objects,
Env representing the environment, and Worm and Pi.p representing two system
objects. The LSC states that whenever Worm sends the message L3 to itself, and
then Env sends Tick to Worm (in this order), then Pi.p should send itself the
messages SetFatePrimary, SetFateSecondary and SetFateTertiary (in this
order), and Worm should send itself the message Forb1. Note that in the main
chart there is no explicit order between the Pi.p messages and that of the Worm.
Also note that if one of the main chart messages occurs before the prechart ends
(e.g., after L3 is sent, but before Tick), then the prechart is cold-violated and
gracefully closed. This is considered legal behavior. If, however, the prechart
completes, then the main chart messages must be sent in the correct order.
Otherwise, this is considered a violation of the specification.

An operational semantics and an execution technique termed play-out was
defined for the LSC language in [16]. Play-out remembers at each point in time
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for each LSC the current cut (intuitively, a marker of what has already happened,
and what not). It also maintains the set of active LSCs (those for which the
prechart has been satisfied, but not the main chart). The set of all LSCs and their
cuts is termed a configuration. At each step, the play-out mechanism chooses
one message that is enabled in some active LSC (i.e., appears right after the
current cut), and not violating in any others (a message is violating if it appears
in an active chart but is not enabled), and executes it. Stronger mechanisms,
termed smart play-out and planned play-out are introduced in [14,17]. These
are initiated following each environment step, and look for a sequence of system
events to perform in response (termed superstep), in order to drive the system
to a stable state (one in which no LSC is active). However, looking only one
superstep, or a finite number of supersteps, ahead, is not sufficient either. An
example for this is given in [12]. This leads to the synthesis problem, i.e., given
an LSC specification, finding a reactive system that adheres to the specification,
or proving one does not exist.

2.2 Game Structures and Strategies

We view the synthesis problem as a two-player game between the system and
environment, as formulated in a game structure. We modify the game structure
and strategy definitions from [29] to reflect games in which the system is the first
player. Intuitively, a game structure is a tuple G : 〈V, X, Y, Θ, ρs, ρe, ϕ〉, where V
represents the set of state variables, X is the set of system-controlled variables,
and Y is the set of environment-controlled variables. Θ is the initial condition.
ρs and ρe represent the transition relations of the system and environment, resp.
The transition relation of the system depends only on the current state, whereas
that of the environment may depend also on the system’s transition. Finally, ϕ
is the winning condition, of the form ϕ = ��q, where q is a state formula.

A strategy is a partial function mapping a series of states to a set of possible
system actions. A run is compliant with a strategy if each step taken by the
system is one allowed by the strategy. A strategy is winning for the system if
any run, in which the environment takes only legal steps (i.e., ones allowed by the
game definition), and is compliant with the strategy, is winning for the system,
i.e., satisfies ϕ. Finally, a game structure is realizable if there exists a strategy
that is winning for the system from any initial state (one satisfying Θ).

3 The Synthesis Problem

The synthesis problem is defined as follows. Given an LSC specification, de-
termine whether there exists a reactive system that satisfies the specification,
and generate one if so. Such a system will be called a synthesized system. This
synthesized system must fulfill two requirements: infinitely often it must listen
for environment events, and, it must never violate the specification. Note that
violation here refers both to explicit violations of the requirements (safety), and
to cases in which a step that must happen never does (liveness).
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Two major distinct views can be taken when considering synthesis from LSCs.
According to the first view, inspired by [16], the synthesized system is a direct
execution engine for the specification, that never violates it. According to the
second view, adopted in this work, the system need not execute the specification
directly – it may take any action, as long as the two requirements above hold.
We will refer to the problem addressed in this paper as synthesis, and to the
other interpretation as non-violating execution.

In practice, the difference between the two translates to the choice of steps
from a given state. In synthesis, the system may perform any step it deems
necessary, while in non-violating execution, a message may be sent only if it is
enabled in some active main chart, as defined in the operational semantics [16].

Our interpretation of the synthesis problem treats the specification as more
under-specified – the specifier states things that may and must happen in the sys-
tem, but anything unconstrained may also happen. In non-violating execution,
an event may happen only if explicitly specified so. Note that in non-violating
execution, a specification may be unrealizable, but become realizable by adding
another LSC (or set of LSCs). In synthesis, however, specifications are mono-
tonic. If a specification is unrealizable, then so is every extension thereof, and
vice versa, a synthesized system for a specification may also serve as a synthe-
sized system for any subset of it. This monotonicity gives rise to the issue of
composition – given synthesized systems for two specifications, find a system for
the unified specification.

Non-violating execution may seem more appropriate for finalized specifica-
tions. However, for intermediate stages the specification is usually more under-
specified, and the specifier does not want to restrict execution to those steps
explicitly appearing in it. Therefore, for such specifications, synthesis is more ap-
propriate. Moreover, synthesis of intermediate specifications may aid the specifier
in identifying under-specified parts in the specification, and extending it accord-
ingly. For the final specification, the choice between non-violating execution and
synthesis depends on the amount of detail the specifier has introduced, and the
level of under-specification in it. Even for the final specification the specifier may
choose to leave certain parts under-specified and decide to use synthesis.

4 The Representation

4.1 The LSC Game Structure

As mentioned above, this work focuses on a subset of LSCs that includes only
messages, and assumes that main charts include only system messages. We also
assume that no LSC has multiple copies simultaneously open during runtime.
Finally, all messages in the specification are assumed to be synchronous, i.e., the
event of sending a message and receiving it are simultaneous.

Given an LSC specification, we construct a game structure G. Intuitively,
the system controls a single variable, ms, that represents the message sent by a
system object in this step. The environment controls a variable me representing
the message sent by an environment object in this step, and a set of variables
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L that represent the current LSC configuration. In every turn, the system sends
a single message or chooses not to (by using the special symbol ⊥ for m′

s). The
environment may choose an environment message to send only if the system did
not send one of its own (i.e., if m′

s is ⊥). The environment may also choose
not to send any message (by using its own ⊥ symbol for m′

e). The domain of
me includes one additional special symbol, ∞ (may also be used only when
m′

s is ⊥). By using this symbol, the environment may force the game to stay
forever in the current state. This forces the system to pass control back to the
environment only at the end of a superstep, and is crucial for the correctness of
the composition. Updating the configuration is deterministic, given m′

s and m′
e,

and follows the semantics defined in [16] directly.
We adopt the superstep approach from [14]. Following a single environment

step, the system may perform as many steps as it wishes (finitely many) in order
to reach a state in which all LSCs are not active. Only then will the environment
be allowed to play again.

More formally, given an LSC specification, we construct a game structure
G : 〈V, X, Y, Θ, ρs, ρe, ϕ〉 as follows:

– The set of variables V = {ms, me} ∪ L, as follows:
• ms represents the system message sent in this step. Its domain is the

set of all messages sent by system objects in the specification, plus the
symbol ⊥, representing a no-op.

• me represents the environment message sent in this step. Its domain is
the set of all messages sent by environment objects in the specification,
plus the symbols ⊥ and ∞, both representing no-ops.

• L contains the following:
∗ For each lifeline i, a variable loci representing the location of the cut

on lifeline i. Each location variable ranges over 0, . . . , lmax, where
lmax is the last location of lifeline i.

∗ For each LSC l, boolean variables activel and hotV iolatedl represent-
ing whether the LSC is active, and whether it was ever hot violated,
respectively. We also introduce another boolean variable prevl for
each LSC l, that represents the fact that in the previous timestep
activel and hotV iolatedl were both false.

– X = {ms} is the only system variable.
– Y = V \ X = {me} ∪ L are the environment variables.
– The system transition relation is defined such that

ρs(ms, me, L, m′
s) = 1 ⇐⇒ [(ms = ⊥ ∧ me = ∞ → m′

s = ⊥)]
– The environment transition relation is defined such that

ρe(ms, me, L, m′
s, m

′
e, L

′) = 1 ⇐⇒ [(m′
s �= ⊥ → m′

e = ⊥)∧ the L′ variables
represent the state of the specification after sending m′

s and m′
e from state

L]. We omit from this version of the paper the details of updating the L
variables, as they are somewhat similar to those of [14], and are a direct
translation of the operational semantics defined in [16].

– The winning condition is ϕ = ��(ms = ⊥ ∧ prevl1 ∧ · · · ∧ prevlk), where
l1, . . . , lk are the LSCs in the specification. This represents the requirements
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from the synthesized system, i.e., infinitely often the system must listen to
environment events (this happens when ms = ⊥), and it must never violate
the specification (represented by the requirements on the prev variables in
ϕ, similarly to the requirement for ending a superstep in [14]). We denote
by q the state formula in ϕ.

– The initial condition is Θ = [(ms = me = ⊥)∧ values for L that represent
all LSCs being closed].

For a variable u, we denote by ū a valuation of u, and similarly for sets of
variables.

4.2 Monotonicity

Given a realizable LSC game structure, the game structure corresponding to any
subset of the LSCs is also realizable. Moreover, the restriction of a winning state
in the composite structure to the subset one is a winning state in it. Intuitively,
given a winning strategy for the composite specification, the same strategy can
be used for the subset one. Since the strategy is winning for the composite
specification, it satisfies the safety and liveness requirements of all LSCs in the
entire specification, therefore it satisfies them for the LSCs in the subset one,
and is a winning strategy for the subset specification.

Similarly, any extension of an unrealizable LSC game structure (by adding
more LSCs) is also unrealizable.

5 The Synthesis Algorithm

We adapt the algorithm from [29] for games in which the system (controller)
plays first in each turn. For lack of space, the details of this modification are
omitted from this version of the paper. The result of the algorithm is a transition
system S = 〈V, ρ, Θ〉.
Definition 1. Given a transition system S = 〈V, ρ, Θ〉, the strategy induced by
S is defined as: f(s0, s1, . . . , st) = {m′

s|∃m′
e, L

′ : (st, m
′
s, m

′
e, L

′) |= ρ}, i.e., the
strategy allows any system message that appears in transitions from st.
Since the induced strategy considers only the current state (state-strategy), we
will use the short notation of f(V ).

6 Strategy Composition

Consider LSC game structures for two subset specifications G1, G2. The variables
ms and me are the only ones appearing in both. For now, assume the sets of
messages appearing in the two specifications are equal, thus the domains of ms

and me are also equal. The case where some messages appear only in one of the
specifications is discussed in Section 6.3. Clearly, ρ1

s = ρ2
s since they depend only

on ms, me and m′
s. ρe is the conjunction of ρ1

e and ρ2
e (each restricted to the

variables relevant to it). q, the state formula in ϕ, is the conjunction of q1 and
q2. Finally, the initial condition is Θ = Θ1∧Θ2. Define G = 〈V, X, Y, ρs, ρe, ϕ, Θ〉
to be the LSC game structure for the composite specification.
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6.1 The Composition Algorithm

We present an algorithm for the composition of transition systems that induce
strategies. The algorithm has two main steps. It first computes the synchronous
parallel composition of the transition systems, and then removes bad states from
the result. A state is considered bad if it is a dead end, or will necessarily lead
to one.

Given a transition system S inducing a strategy for the LSC game structure
G, the following assertions, Rlvt(V, m′

s) and Self(V, m′
s), represent whether the

message m′
s is relevant from a given state, and whether it leaves the LSC con-

figuration unchanged from it, resp.

(s, m̄′
s) |= Rlvt ⇔ ∃m̄′

e, L̄
′ : (s, m̄′

s, m̄
′
e, L̄

′) |= ρ

(s, m̄′
s) |= Self ⇔ m̄′

s �= ⊥ ∧ [∀m̄′
e, L̄

′ : (s, m̄′
s, m̄

′
e, L̄

′) |= ρ → (s[L] = L̄′)]

Where s[L] stands for the restriction of s to the variables of L.
Using these assertions, we define the operator bad predecessor, denoted �p,

as follows (where the notation ||q|| stands for the set of states satisfying q):

|| � p|| = {s|∀m̄′
s[(s, m̄

′
s) |= Rlvt] →

[(s, m̄′
s) |= Self ∨ ∃m̄′

e, L̄
′((s, m̄′

s, m̄
′
e, L̄

′) |= ρ ∧ (m̄′
s, m̄

′
e, L̄

′) ∈ ||p||)]}
Thus, a state satisfies �p if any system message relevant from it is either a self

message (i.e., it leaves the configuration unchanged), or opens an opportunity
for the environment to get to a state satisfying p. By applying �p iteratively
until a fixpoint is reached, we mark all bad states. By initially setting the set of
bad states to ∅, dead-end states are marked as bad in the first iteration, and in
following iterations, all states necessarily leading to them. We therefore define
the set Bad as: Bad = μB.�B, i.e., the minimal fixpoint of the bad predecessor
predicate.

One can improve the performance of the fixpoint computation by first com-
puting the set of reachable states in the transition system, and considering only
those in the fixpoint iterations. Since the size of synthesized systems is typi-
cally significantly smaller than that of the whole specification model, the set of
reachable states in them may be computed relatively easily.

The pseudo-code of an algorithm for the composition of synthesized systems
is given in Fig. 2. The algorithm gets as input two transition systems, and if
successful returns a new transition system. It computes the synchronous parallel
composition of the two input systems, and removes bad states from it. If an
initial state is found to be bad, then the algorithm terminates with no returned
system. Otherwise, it constructs a transition relation that makes sure no bad
states are ever reached. In the following sections we explore how this algorithm
is either sound or complete, depending on the inputs.

6.2 Sound Composition

For the sound composition, we use the algorithm from Fig. 2 with synthesized
systems as input. Intuitively, the algorithm tries to weave the two strategies in
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1: procedure Compose(System S1, System S2)
2: S := S1|||S2

3: bad← calc bad(S, reachable(S))
4: if ∃s0 |= Θ, s0 ∈ bad then return “Failed”
5: else ρ(s,m′

s, m
′
e, L

′)←
6: [ρ(s, m′

s, m
′
e, L

′)∧(∀m̃′
e, L̃

′ : ρ(s,m′
s, m̃

′
e, L̃

′)→ (s,m′
s, m̃

′
e, L̃

′) �∈ bad)]
7: Return S
8: end if
9: end procedure

Fig. 2. Pseudo-code for the composition algorithm

a way that does not violate either. If the strategies “agree” on the steps to be
taken and their order, then the algorithm will succeed. Otherwise, the algorithm
will fail. Note that the input strategies are not necessarily maximal, therefore
the fact that the algorithm did not succeed in weaving them together does not
mean there are no other winning strategies that can be successfully composed.

When the algorithm is given synthesized systems as input, it is sound, i.e., if it
finds a system, then it is a synthesized system for the composite specification that
induces a system-winning strategy. The formal proof of this claim is omitted from
this version of the paper. Intuitively, we observe that if ms = ⊥ in a given state
(i.e., the system decides to let the environment play), then the environment may
use the ∞ symbol to force the system to stay in this state forever. Therefore,
if ms = ⊥ in a system-winning state, then this state necessarily satisfies q.
The soundness proof relies on this observation, along with the fact that the
only variables shared between the subset systems are ms and me. The proof
considers the system found by the algorithm, and the strategy induced by it. It
shows that any run compliant with it is necessarily compliant with the strategies
for the subset specifications, and therefore winning in them. Then, following the
observation above, it is also winning for the composite specification.

6.3 Augmented Strategies

Often when one considers composition of two specifications, there are messages
that appear in one specification and not in the other. The synthesis algorithm as
presented here will not allow steps not appearing explicitly in the specification.
For composition, however, each part should be allowed to advance as much as it
wishes, while using messages appearing only in it.

In this section, we show how a synthesized system may be augmented to allow
steps that appear only in another (given) specification. Although the augmented
system might not be a winning one anymore (it may now choose infinitely many
steps from the other system without advancing), the composition algorithm is
still sound when given these augmented systems as input.
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Definition 2. Given an LSC game structure, G, we define the set of system
messages irrelevant to G to be the set of values for m′

s s.t. in any state, sending
them changes nothing in the configuration, as follows:

irrel(G) = {m̄′
s|∀s, m̄′

e, L̄
′ : (s, m̄′

s, m̄
′
e, L̄

′) |= ρe → (L̄ = L̄′)} \ {⊥}
Given two synthesized systems, S1, S2, for game structures G1, G2 resp., we
create augmented systems S̃1, S̃2, by augmenting their transition relations with
transitions in which the LSC configuration does not change, the system sends
a message relevant only to the other system, and the environment sends no
message, as follows (for i, j ∈ {1, 2}, i �= j):

ρ̃i(s, s′) = ρi(s, s′)∨ (s[Li] = s′[Li]∧ s′[me] = ⊥∧ s′[ms] ∈ irrel(Gi) \ irrel(Gj))

The algorithm, given augmented synthesized systems, is still sound, i.e., if it
finds a system then it is a synthesized system for the composite specification that
induces a winning strategy. The proof of the soundness is similar with augmented
strategies, with the addition that steps resulting from augmenting one transition
relation do not change the state of that system, and are always “real” steps in
the other system, therefore there are finitely many such consecutive steps.

The strategy synthesized by the synthesis algorithm of [29] is one that allows
only steps that strictly get it closer to a stable state (one that satisfies q).
Following a stable state, any step leading to a winning state is allowed, and then
again only steps that strictly get it closer to a stable state. One may further
augment the system by allowing any step leading to a winning state from states
that are not stable, but for which no “real” step has been taken since a stable
state (but only ones resulting from augmenting the strategy).

6.4 Complete Composition

For the complete part, we use the same algorithm from Fig. 2 on inputs that
represent an over-approximation of the maximal winning strategies. These will
be termed optimistic strategies. We show that if the algorithm is given optimistic
strategies as input, then it returns an optimistic strategy. Therefore, if no system
is returned, then the composite specification is unrealizable.

Definition 3. Given an LSC game structure, G, a strategy is optimistic if ∀s,
and m̄′

s: if (∀m̄′
e, L̄

′[(s, m̄′
s, m̄

′
e, L̄

′) |= ρe] → (m̄′
s, m̄

′
e, L̄

′) ∈ win(G)), then m̄′
s ∈

f(s). i.e., an optimistic strategy allows any system step that will necessarily lead
to a winning state. A system inducing an optimistic strategy will be termed an
optimistic system.

In other words, an optimistic strategy must allow any transition to a state from
which the system can win, and is therefore an over-approximation of the maximal
winning strategy.

One can construct the minimal optimistic strategy by allowing any system
step from a winning state after which any environment step reaches another
winning state. Such a strategy will never violate any safety constraint (since it
will not lead to a non-winning state), but it might violate liveness constraints.
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If the composition algorithm from Fig. 2 is given optimistic systems as input,
then it returns an optimistic system for the composite specification. Intuitively,
the proof relies on the fact that a restriction of a winning state to a subset game
structure is a winning state in it, therefore the synchronous parallel composition
step induces an optimistic strategy. It then shows that no winning state is ever
added to Bad, therefore no transitions between winning states are removed.

As a corollary, the algorithm is complete, i.e., if it finds no system, then the
composite specification is unrealizable.

Note that even though the computed strategy is not the minimal optimistic
strategy, it also will never violate a safety requirement, assuming the two input
strategies never do so. This ensures that if we start from minimal optimistic
strategies, and keep composing them (and the results of composing them), we
will get a system that never causes a violation to any LSC. The reason the
algorithm is not sound is that the resulting system, by being optimistic, does
not guarantee to pass control back to the environment infinitely often. It might
enter an infinite loop of system events, even though neither violates any chart.

6.5 Towards a Sound and Complete Algorithm

The composition algorithms described here are not meant to completely replace
the full synthesis algorithm, but rather as fast alternatives that for some cases
may work, and for others might fail. In such cases, there may be a need for
applying full synthesis on the composite specification.

We now briefly describe possible extensions for these algorithms that together
form a sound and complete algorithm. These are described in very general guide-
lines, and further implementation details are left as future work. The main reason
for this is that the resulting algorithm may be too slow to be of any practical
usage. Moreover, one part of the extension (the sound part) must be applied at
the bottom-most level, i.e., when synthesizing a system. If one performs several
composition steps, and now realizes he needs to further extend the system, he
needs to start from the beginning, strengthen the synthesized systems and com-
pose them together again. For the other part (the complete part), there does not
seem to be a symbolic implementation.

The sound part of the algorithm can be extended as follows. The synthesis
algorithm, as described above, finds strategies that at each step strictly move
towards a stable state (one that satisfies q). By introducing an extra variable,
counter, one can allow a given number of steps to move away from stable states
(in each superstep). The intended usage is as follows: one sets counter to some
low value, synthesizes his basic systems, and composes them. If some composition
step fails, the basic systems can be resynthesized with larger initial counter,
thus improving the chances for the compositions to succeed (yet extending its
complexity and running time). If the composite system is realizable, then there
exists a large enough initial counter for which the compositions will succeed.

The complete part can be extended by strengthening the computation of bad
states. Currently, states are marked bad if they may lead only to themselves or
to other bad states. However, the strategy might allow infinite loops of system
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(a) Running time (log-scale) as a
function of the number of disjoint
copies of a 6-LSC specification.

(b) Running time (log-scale) as a
function of the number of LSCs, for
inconsistent chain specifications.

Fig. 3. Running times for two parameterized examples

moves. Since the strategy does not violate any LSC (assuming initially mini-
mal optimistic strategies were used), if such loops were avoided altogether, the
resulting system would have been a winning one. Thus, by identifying such loops
of increasing size, one improves his composed optimistic strategy, and if the sys-
tem is unrealizable, eventually it will be proven as such.

An algorithm that alternatingly increases the counter and the loop size will
be sound and complete. Details of these extensions are left as future work.

7 Results

We implemented our approach as part of the new Scenario-Based Tool [33] de-
veloped at Microsoft Research Cambridge, using TLV [31] for the symbolic com-
putations. We now describe some experimental results from these tools.

The first example is a simple specification consisting of 6 LSCs, that refer
to two objects. Following an initial environment message, the system must send
the messages m1, m2, m2 in this order before passing control back to the envi-
ronment. This specification was replicated, using disjoint sets of messages, with
the number of replicas parameterized, and ranging from 1 to 10. Each copy was
synthesized separately and the results were composed. Figure 3(a) compares the
running time (log-scale) as a function of the number of copies, for: (a) the com-
positional approach, when only winning systems are composed, (b) the composi-
tional approach, when both winning and optimistic systems are composed, and
(c) non-compositional synthesis of the entire specification. The compositional ap-
proach, when only winning strategies are composed, is clearly significantly faster,
but if a composition step would have generated an inconsistent specification, it
could not have been proved without optimistic strategies.

Another example is adopted from [12], where it is shown that synthesis is strictly
stronger than smart play-out. We modify the example to form a series of inconsis-
tent specifications of growing lengths, where specification i requires considering i
supersteps ahead in order to prove its inconsistency. Figure 3(b) shows the running
time (log-scale) as a function of the specification size, for compositional synthesis
(in which each LSC is synthesized separately and composed into the system) as
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opposed to full synthesis of the specification. Clearly, the compositional approach
saves significant running time. It is worth mentioning that inconsistency is proven
when the composition is performed in a specific order. Different choices of the or-
der did not manage to prove inconsistency.

Two more test cases were generated, both inspired by a biological model
describing the process of vulval precursor cell fate determination in the develop-
ment of the C. elegans nematode [20]. In one, (a simplification of) the different
developmental steps were each synthesized separately, and the results were com-
posed. This specification consists of 22 LSCs. Without composition, the synthe-
sis of the entire system did not finish within 5 days, whereas the compositional
approach obtains a running system in less than 3 minutes. The second specifica-
tion focuses on the last developmental stage, and demonstrates the incremental
nature of the specification process, while using compositional synthesis. This
system was composed in 9.85 seconds, while the full non-compositional synthe-
sis did not finish within 3 days. The latter example also acts as an example
in which smart play-out may choose a superstep that is correct, but may lead
to violations in future supersteps. The synthesized system, on the other hand,
avoids such violations.

8 Related Work

In recent years there have been considerable research efforts on synthesizing exe-
cutable systems from scenario-based requirements [26]. In many of these papers
the requirements are given using a variant of classical Message Sequence Charts
while the synthesized system is state-based. The main distinguishing feature of
our work is that we consider synthesis from Live Sequence Charts, which are
more expressive than most of the classical MSC variants.

One should realize that constructing a program from a specification is a long-
known general and fundamental problem, dating back to work by Church [7] and
tackled by [6,32]. There has also been much research on synthesis from a specifi-
cation given in temporal logic, starting with closed systems, that do not interact
with the environment [27,10], and later [30,1,36] dealing with the synthesis of
open systems from Linear Temporal Logic specifications. The problems of realiz-
ability checking and synthesis from LTL are shown to be 2EXPTIME-complete.
Despite this high complexity, progress has been made in the development and
application of synthesis algorithms, by proposing new algorithms [25], using
heuristic approaches [11], considering subsets of temporal logic [2,28], smart im-
plementation and application [19,3,34]. A compositional method for synthesis is
presented in [24] building upon basic results first described in [25].

Synthesis from LSCs was first studied in [13], and is tackled there by defining
consistency, showing that an entire LSC specification is consistent if and only if it
is satisfiable by a state-based object system, and then synthesizing a satisfying
system. The work in [13] considers a core LSC subset consisting of messages
only, similar to this paper, but does not implement the algorithms or study the
practical questions related to implementation. A game theoretic approach to
synthesis from LSCs involving a reduction to parity games is described in [4],
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the authors summarize the experimental results as negative, partially due to a
poor prototype implementation. Synthesis from LSCs using a reduction to CSP
is described in [35]. In [22] synthesis from LSC is tackled somewhat similarly to
this paper, however compositional synthesis is not considered at all.
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