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Abstract

Symbolic complexity bounds help programmers understand the
performance characteristics of their implementations. Existing
work provides techniques for statically determining bounds of pro-
cedures with simple control-flow. However, procedures with nested
loops or multiple paths through a single loop are challenging.

In this paper we describe two techniques, control-flow refine-
ment and progress invariants, that together enable estimation of
precise bounds for procedures with nested and multi-path loops.
Control-flow refinement transforms a multi-path loop into a seman-
tically equivalent code fragment with simpler loops by making the
structure of path interleaving explicit. We show that this enables
non-disjunctive invariant generation tools to find a bound on many
procedures for which previous techniques were unable to prove
termination. Progress invariants characterize relationships between
consecutive states that can arise at a program location. We further
present an algorithm that uses progress invariants to compute pre-
cise bounds for nested loops. The utility of these two techniques
goes beyond our application to symbolic bound analysis. In partic-
ular, we discuss applications of control-flow refinement to proving
safety properties that otherwise require disjunctive invariants.

We have applied our methodology to over 670,000 lines of code
of a significant Microsoft product and were able to find symbolic
bounds for 90% of the loops. We are not aware of any other
published results that report experiences running a bound analysis
on a real code-base.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement techniques; Reliability, availability, and ser-
viceability; D.2.4 [Software Engineering]: Software/Program Ver-
ification; D.4.5 [Operating Systems]: Reliability—Verification;
D.4.8 [Operating Systems]: Performance—Modeling and pre-
diction; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Verification, Performance, Reliability

Keywords Bound analysis, Termination, Control-flow refinement,
Progress invariants, Program verification, Formal verification
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1. Introduction

Software engineers lack the tools they need to build robust, efficient
software. They are therefore forced to rely on existing techniques
such as testing and performance profiling which are limited, leaving
many usage scenarios uncovered. In particular, as processor clock
speeds begin to plateau, there is an increasing need to focus on
software performance.

This paper addresses the problem of statically generating sym-
bolic complexity bounds for procedures in a program, given a cost
model for atomic program statements. Automated methods of gen-
erating symbolic complexity bounds offer a significant advance in
aiding the performance aspects of the software life cycle. Though
programmers are often cognizant of the intended complexity of an
algorithm, concrete implementations can differ. Moreover, sym-
bolic bounds can highlight the impact of changes and illuminate
performance of unfamiliar APIs.

The most challenging aspect of computing complexity bounds
is calculating a bound on the number of iterations of a given loop.
Two kinds of techniques have been proposed for automatically
bounding loop iterations: pattern matching [18] and counter in-
strumentation [17, 12, 15]. Unfortunately, these techniques have
limitations: (i) They compute bounds for simple loops that have
a single path (a straight-line sequence of statements) or a set of
paths with similar effect, but not multi-path loops that have multi-
ple paths with different effects and non-trivial interleaving patterns.
(ii) They compute conservative bounds in presence of nested loops
since they simply compose bounds for individual loops based on
structural decomposition of the program. In this paper, we present
techniques that address these limitations.

The first technical contribution of our work is a novel technique
called control-flow refinement, which is a semantics- and bound-
preserving transformation on procedures. Specifically, a loop that
consists of multiple paths (arising from conditionals) is trans-
formed into a code fragment with one or more loops in which the
interleaving of paths is syntactically explicit. We describe an algo-
rithm (Section 4) that explores all path interleavings in a recursive
fashion using an underlying invariant generation tool. The proce-
dure with transformed loop enables a more precise analysis (e.g.
with the same invariant generation tool) than would have been pos-
sible with the original loop. The additional program points created
by refinement allow the invariant generator to store more informa-
tion about the procedure. Different invariants at related program
points in the refined loop correspond to a disjunctive invariant at
the original location in the original loop. We detail the application
of the control-flow refinement technique for symbolic bound anal-
ysis (Section 4.3). The technique enables bound computation for
loops for which no other technique can even establish termination
(Section 2.1).



(a) Original Procedure (b) Change of notation (c) Expanded Loop (d) Final Refined Loop

cyclic(int id, maxId):
assume(0 ≤ id < maxId);
int tmp := id+1;
while(tmp 6=id && nondet)

if (tmp ≤ maxId)
tmp := tmp + 1;

else
tmp := 0;

cyclic(int id, maxId):
assume(0≤id<maxId);
int tmp := id+1;
Repeat(Choose({ρ1,ρ2}));

cyclicref(int id, maxId):
1 assume(0≤id<maxId);
2 int tmp := id+1;
3 Choose({
4 skip,

5 Repeat+(ρ1),

6 Repeat+(ρ2),

7 Repeat+(ρ1);ρ2;Repeat(Choose({ρ1,ρ2})),

8 Repeat+(ρ2);ρ1;Repeat(Choose({ρ1,ρ2}))
9 });

cyclicpruned(int id, maxId):
10 assume(0 ≤ id < maxId);
11 int tmp := id+1;
12 Choose({
13 skip,

14 Repeat+(ρ1);ρ2;Repeat(ρ1),

15 Repeat+(ρ1)
16 });

ρ1 , assume(tmp6=id ∧ tmp≤maxId); tmp:=tmp+1; ρ2 , assume(tmp6=id ∧ tmp>maxId); tmp:=0;

Figure 1: (a) illustrates an iteration pattern seen in product code. (b),(c), and (d) show control-flow refinement of the multi-path loop in (a).

The second technical contribution of our work is the notion of
progress invariants that describe relationships between any two
consecutive states that can arise at a given program location. We
present an algorithm for computing such relationships using a stan-
dard invariant generator (Section 5). The algorithm runs the invari-
ant generation tool over a procedure appropriately modified and
instrumented with extra variables that copy the program state at ap-
propriate locations. We observe that progress invariants are more
precise than the related notion of transition invariants [24] or vari-
ance analyses [5] (recently described in literature for proving ter-
mination), which describe relationships between a state at a pro-
gram location and any other previous state at that location. Tran-
sition invariants can be generated from progress invariants but not
vice-versa. (See discussion in Section 9). We believe the notion of
progress invariants to have applications beyond bound analysis.

A further contribution is that we show (in Section 6) how to use
progress invariants to compute a precise bound for nested loops.
This technique applies to procedures that may have been control-
flow refined. The key idea is to use progress invariants to illuminate
relationships between any two consecutive states of an inner loop
per iteration of some dominating outer loop (as opposed to the
immediately dominating outer loop). This information is then used
to compute the amortized complexity of an inner loop. Such an
amortized complexity yields a more precise bound when nested
loops share same iterators, which occurs often in practice.

In summary, we make the following contributions:

1. We introduce control-flow refinement, a novel program trans-
formation that allows standard invariant generators to reason
about loops with structured interleaving between paths in the
loop body. This transformation has applications beyond bound
analysis, and briefly discuss one such application on proving
non-trivial safety properties of procedures that otherwise re-
quire specialized analyses [13, 19, 14, 10, 17] (Section 8).

2. We define progress invariants, which describe relationships be-
tween a state at a program location and the previous state at
the same location, and show how to compute them. Progress in-
variants have applications beyond bound analysis. For example
they can be applied to the problem of fair termination (proving
procedure termination under fairness constraints).

3. We define an algorithm for computing precise bounds of nested
loops using progress invariants (Section 6).

4. To the best of our knowledge, we present the first experimental
results for bound analysis on the source of a significant Mi-
crosoft product (Section 7). We have built a full interproce-
dural bound analysis for C++, using C# and F# on top of the
Phoenix [1] compiler. Our results show that 90% of non-trivial
procedures can be bounded with our technique (Section 7.2).

2. Overview

In this section we illustrate the challenges offered by multi-path
loops and nested loops in computing precise bounds for procedures.
We also briefly describe our two key techniques that address these
challenges; these techniques are described in more detail in the
subsequent sections. The examples are adapted from the source of
a large Microsoft product. For clarity, we have distilled their core
control flow and renamed some variables.

2.1 Multi-Path Loops

Consider the example in Figure 1(a), which is adapted from the
product code. This procedure is a form of “cyclic” iteration: ini-
tially tmp is equal to id+1, tmp is incremented until it reaches
maxId+1 (along the tmp ≤ maxId branch), tmp is then reset to
0 (along the else branch), and finally tmp is incremented until it
reaches id. We would like to automatically conclude that the total
number of iterations for this loop is bounded above by maxId+1.

None of the bound analysis techniques that we know of can
automatically compute a bound for such a loop. This is because
path-sensitive disjunctive invariants are required to establish a
bound. Recent work [15] proposes elaborate counter instrumen-
tation strategies to reduce dependence on disjunctive invariants, yet
would fail to compute a bound because the invariants required are
path-sensitive. In fact, we do not know of any technique that can
even prove termination of this procedure. Recent techniques [6, 5]
based on disjunctively well-founded ranking functions [24] fail
for this example because there does not exist a disjunctively well-
founded linear ranking function.

The mildly complex control flow in the loop foils all known
approaches. A detailed analysis of the failure of these approaches
on this example would illustrate that these approaches tend to con-
sider all possible interleavings between the two paths through the
loop. However, the two paths are interleaved in a more structured
manner. Let us represent the control-flow using a regular expres-
sion, letting ρ1 and ρ2 denote the increment and reset branches,
respectively. Then, the path interleavings in the example loop can
be more precisely described by the refinement (ρ∗
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the original control-flow (ρ1|ρ2)

∗. While (ρ1|ρ2)
∗ suggests that

paths ρ1 and ρ2 can interleave in an arbitrary manner, the refine-
ment (ρ∗

1ρ2ρ
∗

1)|(ρ
∗

1) explicitly indicates that path ρ2 executes at
most once. Next, we briefly describe how such a refinement can be
carried out automatically, and how it enables bound computation.

Control-flow Refinement The first key idea of this paper is a
technique called control-flow refinement. Rather than abstracting
the control-flow, which blurs interleavings, we instead refine the
control-flow by making interleavings more explicit. Subsequently,
an invariant generation tool may determine that some paths are
infeasible, often resulting in a procedure that is easier to analyze.



Figure 1(b) shows the original program re-written using our no-
tation (formally described in Section 3) that uses assume state-
ments to replace all conditionals with non-deterministic choice.
Repeat repeatedly executes its argument a non-deterministic (0
or more) number of times, as long as the corresponding assume
statements are satisfied. Repeat+is identical to Repeat except
that it executes its argument at least once. Choose selects non-
deterministically among its arguments (i.e. among those that satisfy
the corresponding assume statements).

Figure 1(c) illustrates the key ingredient of the control-flow
refinement: a semantics and bound preserving expansion of a multi-
path loop, wherein Repeat(Choose({ρ1, ρ2})) is replaced by a
choice between one of the following:

• Loop does not execute: “skip”
• Only ρ1 executes, at least once: “Repeat+(ρ1)”
• Only ρ2 executes, at least once: “Repeat+(ρ2)”
• ρ1 executes first, at least once, followed by the execution of ρ2,

and finally a non-deterministic interleaving of ρ1 and ρ2:
“Repeat+(ρ1);ρ2;Repeat(Choose({ρ1,ρ2}))”

• ρ2 executes first, at least once, followed by the execution of ρ1,
and finally a non-deterministic interleaving of ρ1 and ρ2:
“Repeat+(ρ2);ρ1;Repeat(Choose({ρ1,ρ2}))”.

A general form of this expansion for loops with more than two
paths is described in Property 4.1.

Figure 1(d) shows the refined version of the program obtained
from the expanded program in Figure 1(c) after simplification with
the help of an invariant generation tool that can establish the fol-
lowing invariants: (i) The multi-path loop at Line 7 has the invariant
tmp ≤ id < maxId; hence only path ρ1 is feasible inside the multi-
path loop at Line 7. (ii) Line 3 has the invariant tmp ≤ maxId;
hence path ρ2 is infeasible at the start of Lines 8, and 6. These in-
variants are easily computed by several standard (conjunctive, path-
insensitive) linear relational analyses [22, 7].

The simplification used to obtain Figure 1(d) from Figure 1(c)
may not always be possible after one expansion, but may require
repeated expansion of multi-path loops. This raises the issue of ter-
mination of the expansion step, addressed in detail in Section 4.2.

We can easily bound the number of iterations of each loop
in Figure 1(d) using our technique of progress invariants (de-
scribed next). In particular, our technique can establish that the
two Repeat+(ρ1) loops at Line 14 run for at most maxId− id and
id iterations respectively, combined with the single execution of
ρ2 to yield a total of at most maxId + 1 iterations. Meanwhile, the
Repeat+(ρ1) loop on Line 15 runs for at most maxId − id itera-
tions. Thus, we can conclude a bound of maxId+ 1 on the number
of iterations of the loop in the original program in Figure 1(a).

2.2 Nested Loops

Consider the procedure in Figure 2, which is an example of nested
loops with related iterator variables, seen commonly in product
code. Such loops often arise when an inner loop is used to “skip
ahead” through progress bounded by an outer loop.

It is not difficult to see that the values of the loop iterator
variables i, j, and k increase in each iteration of the corresponding
loop, and hence the complexity of the above loop is O(n×m×N).
However, this is an overly conservative bound. Observe that the
total number of iterations of the innermost loop L3 is bounded by
N (as opposed to n × m × N ) since the value of the iterator k at
the entry to loop L3 is greater than or equal to the value of k when
loop L3 was last executed. Hence, the total combined iterations of
all the three loops is bounded above by n + (m × n) + N .

We do not know of any existing bound analysis technique that
can compute a precise bound for the above procedure. Recent
work [15] proposes elaborate counter instrumentation strategies to

Consider the following triple-nested loop.
NestedLoop(int n, int m, int N):
1 assume(0 ≤ n ∧ 0 ≤ m ∧ 0 ≤ N);
2 i := 0;
3 L1: while (i < n && nondet)
4 j := 0;
5 L2: while (j < m && nondet)
6 j := j + 1;
7 k := i;
8 L3: while (k < N && nondet)
9 k := k + 1;

10 i := k;
11 i := i + 1;

Figure 2: An example of nested loops with related iterator variables.

compute a counter-optimal bound; it generates a bound of (n +
N) × (1 + m), which is not the most precise bound, but still bet-

ter than the conservative cubic bound1. Recent termination tech-
niques [6, 5] based on disjunctively well-founded ranking func-
tions [24] would come up with the termination argument that “ei-
ther i increases or j increases or k increases at each cut-point, and
all three of them are bounded.” Such an argument would again im-
ply a conservative cubic bound.

Our technique can compute the precise bound of n+(m×n)+
N for the total number of all loop iterations. We illustrate here the
challenging aspect of proving that the total number of iterations
of the innermost loop are bounded above by N . Note that the
procedure in Figure 2 is already control-flow refined (there are no
multi-path loops) so that doesn’t help here. Our bound computation
technique uses the notion of progress invariants described below.

Progress Invariants The second key idea of this paper is the no-
tion of progress invariants that characterize the sequence of states
that arise at a given program location in between any two visits
to another program location. Progress invariants are essential to
our bound computation algorithm (described in Section 6), which
finds more a precise bound than previous techniques based on sim-
ple structure decomposition. Our progress invariants (parameter-
ized over an abstract domain D) are:

• INITD(P, π1, π2) denotes the property of the initial state of
procedure P that can arise during the first visit to location π2

after any visit to location π1.
• NEXTD(P, π1, π2) denotes the relationship between a state

(over program variables ~x) at a given program location π2 and
the previous state (over fresh variables ~xold) at that location,
without an intervening visit to location π1.

We present algorithms in Section 5 to compute the progress in-
variants INITD and NEXTD given a standard invariant generation
tool. For NestedLoop (Figure 2), standard relational linear analy-
ses [22, 7] can generate the following progress invariants:

NEXTD(NestedLoop, π0, π3) : (k ≥ kold + 1) ∧ k < N

INITD(NestedLoop, π0, π3) : k ≥ 0

where π0 is the entry point of procedure NestedLoop, and π3 is
the program point just inside loop L3.

Our bound analysis engine (presented in Section 6) can con-
clude from the above invariants that the number of times location 9
is visited (after the last visit to location 1) is bounded above by N .

1 Counter instrumentation [15] computes a bound of (n + N) × (1 + m)
because of its greedy heuristic to use up the smallest number of counters.
It ends up using the same counter to count the total number of iterations of
the loops L1 and L3, which gets bounded by n + N . This results in the
number of iterations of loop L2 to get bounded by m × (n + N).



3. Notation

We now turn to a formal model of our techniques. In this section,
we introduce some notation which we will use in the subsequent
sections when we present path refinement and our precise method
of calculating procedure bounds.

3.1 Program Model

For simplicity of presentation, we assume that each procedure P is
described as a statement s using the following structural language:

s ::= s1; s2 | Repeat(s) | Choose({s1, . . , st})

| x := e | assume(cond) | skip

where x is a variable from the set of all variables ~x, e is some
expression, and cond is some boolean expression. The expression
e can contain procedure calls2.

The above model has the following intuitive semantics. Since
there are non-deterministic conditionals, its semantics can be char-
acterized by showing its operational semantics on a set of states.
The following function JsKσ illustrates how a statement s trans-
forms a set σ of concrete states.

JskipKσ = σ

Js1; s2Kσ = Js2K(Js1Kσ)

JChoose({s1, . . , st})Kσ = Js1Kσ ∪ . . ∪ JstKσ

JRepeat(s)Kσ = σ ∪ Js; Repeat(s)Kσ

Jx := eKσ = {δ[x 7→ δ(e)] | δ ∈ σ}

Jassume(cond)Kσ = {δ | δ ∈ σ, δ(cond) = true}

where δ(e) and δ(cond) respectively denote the value of expres-
sion e or cond in state δ. We often use the notation Repeat+(s)
to denote “s; Repeat(s).” Standard deterministic control flow in
branches and loops can be modeled in our notation as follows.

if(c)s1 else s2  Choose({(assume(c); s1), (assume(¬c); s2)})

while(c)s1  Repeat(assume(c); s1); assume(¬c);

3.2 Abstract Domain

Our framework is parameterized by a standard abstract domain D,
with an abstract element denoted E. However operations in the ab-
stract domain only occur behind the curtains of the invariant gen-
erator INVARIANTD . The only abstract element which appears ex-
plicitly in our algorithms is the minimal element ⊥D . Our tech-
niques are inter-operable with a variety of existing tools, so we will
use some APIs throughout the paper. We assume an invariant gen-
erator INVARIANTD(P, π, SD(~x)) → SR

D(~x, ~x′) which takes a
procedure P , a program point π, an abstract state SD over program
variables ~x, and returns an invariant SR

D which holds at π. This
invariant generator can be for any abstract domain D.

4. Control-flow Refinement

In this section, we present a technique called control-flow refine-
ment, which is a semantics-preserving and bound-preserving trans-
formation of loops within a procedure. Specifically, a loop consist-
ing of multiple paths (resulting from a conditional) is refined into
one or more loops in which the interleaving of paths is syntactically
explicit. Subsequently, an invariant generation tool may determine
that some paths are infeasible, often resulting in an overall proce-
dure that is easier to analyze.

Our algorithm is described in Section 4.2. It uses an operation
called FLATTEN that we introduce next.

2 Procedure calls may have side effects, but for simplicity we define the
semantics of Jx := eKσ assuming the absence of side effects.

REFINE(P:Procedure, sloop:Repeat statement)
1 let sloop be Repeat(s) occurring at location π in P.
2 E := INVARIANTD(P, π, true);
3 s := FLATTEN(s);
4 Q := Push(E, Empty Stack);
5 (sresult, Z) := R(s, Q);
6 return P with sloop replaced by sresult;

R(s:Flattened stmt, Q:stack of abstract elements)
1 let s be of the form Choose({ρ1, . . , ρt}).
2 E := Top(Q);
3 for i = 1 to t

4 si := (Repeat+(ρi); Choose({ρ1, . . , ρi−1, ρi+1, ρt}));
5 πex := exit point of si;
6 E′ := INVARIANTD(si, πex, E);
7 if (E′ = ⊥D) si := ⊥;
8 else if (∃Et ∈ Q s.t.E′ = Et) Zi := {E′};
9 else (s′, Zi) := R(s, Push(Q, E′)); si := si; s

′;
10 Sif := {skip}; Swh := ∅;
11 for i = 1 to t

12 Sif := Sif ∪ {Repeat+(ρi)};
13 if (si = ⊥) continue;
14 if (∃Et ∈ Zi s.t.Et = E) Swh := Swh ∪ {si};
15 else Sif := Sif ∪ {si};
16 Z := Z ∪ Zi − {E};
17 return (Choose(Sif ∪ Repeat(Choose(Swh))), Z);

Figure 3: The algorithm REFINE for refining the control-flow of a

loop Repeat(s) in initial state E by invoking REFINE(s, E).

4.1 Flattening of a statement

Definition 4.1 (Flatten). Given a statement s, we define FLATTEN(s)
to be a statement of the form Choose({ρ1, . . , ρt}) such that for
any set of states σ, we have:

JsKσ = JChoose({ρ1, . . , ρt})Kσ

where each ρi is a straight line sequence of atomic x := e or
assume statements or Repeat loops (and, importantly, no Choose

statements). We refer to such ρi as a path.

The flatten operation can be implemented as:

FLATTEN(s) = Choose(F(s))

where the function F(s) maps a statement s into a set of straight-
line sequences as follows:

F(s1; s2) = {ρ1; ρ2 | ρ1 ∈ F(s1), ρ2 ∈ F(s2)}

F(Choose({s1, . . , st})) = F(s1) ∪ . . ∪ F(st)

F(s) = {s} for all other s

Example 1. Consider the following code fragment.

s
def
= if c then s1 else s11; s2; if c

′
then s3;

Flattening of the above code fragment yields, in our notation:
Choose({ assume(c); s1; s2; assume(c′); s3,

assume(¬c); s11; s2; assume(c′); s3,
assume(c); s1; s2; assume(¬c′),
assume(¬c); s11; s2; assume(¬c′) })

4.2 Refinement of a loop

The REFINE algorithm in Figure 3 performs control-flow refine-
ment of a multi-path loop sloop in the initial state E, and returns a
procedure that is semantically equivalent in the input state E (The-
orem 4.1). The key idea is to use the following property that de-
scribes how a flattened, multi-path loop can be unfolded into 2t+1
different cases depending on which loop path iterates first, and
whether any other path iterates afterwards. This is the generaliza-
tion of the two-path loop discussed in Section 2.1.



Property 4.1. Let s and si (for 1 ≤ i ≤ t) be as follows.

s
def
= Choose({ρ1, . . , ρt})

si
def
= Repeat+(ρi); Choose({ρ1, . . , ρi−1, ρi+1, . . , ρt}); Repeat(s)

s′i
def
= Repeat+(ρi);

Then, for any set of states σ, we have:

JRepeat(s)Kσ = JChoose({skip, s1, . . , st, s
′

1, . . , s
′

t})Kσ

Of these 2t + 1 cases, there are t cases (corresponding to
s1, . . , st) that have multi-path loops, which are then further refined
recursively. To ensure termination, we use an underlying invariant
generator INVARIANTD to compute the state before each newly
created multi-path loop. We then either stop the recursive explo-
ration (if INVARIANTD can establish unreachability), put a back-
edge (if INVARIANTD finds a state already seen), or use widening
heuristics (in case INVARIANTD generates invariants over an infi-
nite domain). Note that although our algorithm is exponential in
the number of paths through the body of the loop, we use a strict
slicing technique to keep the constants small. Our slicing technique
(described in Section 7.1) reduces the number of paths by collaps-
ing branches that do not impact the iterations of the loop into a
single path.

The REFINE algorithm invokes a recursive algorithm R on the
flattened body s of the input loop, along with a stack containing
the element E, which is the only input configuration seen before
any loop. R consumes a flattened loop body s and a stack Q of
abstract elements. Q represent the input abstract states immediately
before the while loop Repeat(s) seen during the earlier (but yet
unfinished) recursive calls to R. R returns a pair (s′′, Z) where s′′

is a statement and Z is a set of input abstract states that were re-
visited by the recursive algorithm during the refinement and used
to terminate exploration at the promise of arranging a nested loop
at appropriate places.

The first loop in R (Lines 3-9) recursively refines the t cases
(s1, . . , st) from Property 4.1 that have multi-path loops, one by
one. R refines si by choosing between one of the following 3
possibilities depending on the element E′ computed before the
multi-path loop in si:

• Stop exploration (Line 7) if E′ = ⊥D , denoting unreachability.
• Create a nested loop (Line 8) if E′ belongs to stack Q (i.e. it is

an input state that has been seen before). Further exploration is
stopped and E′ is returned to denote the place where the nested
loop needs to be created.

• Pursue more exploration (Line 9) otherwise, recursively.

If the abstract domain D is a finite domain, then the first loop
in R terminates because the algorithm is never recursively invoked
with the same input state E twice. Otherwise additional measures
are required to ensure termination. A trivial way to ensure termi-
nation this would be to override the equality check in Line 8 with
return true if the size of stack Qi becomes equal to some prese-
lected constant. A better way to accomplish this is with a widening
algorithm associated with the domain D, wherein the contents of
the stack Qi are treated as that of the corresponding widening se-
quence for purpose of checking equality.

The second loop in R (Lines 11-16) puts together the result of
refining the t recursive cases along with the other t + 1 cases. Swh

collects all the cases to be put together inside a loop at the current
level of exploration (thereby meeting the promise of arranging a
nested loop), while Sif collects all other cases.

The following theorem states that control-flow refinement is
semantics- and bound-preserving.

Original Refined

Figure 1(a) with
maxId renamed by n.

Figure 1(d)
Bound: n

Example 2.

assume(n>0 ∧ m>0);
v1:= n; v2:= 0;
while (v1>0 && nondet)

if (v2<m)
v2++; v1--;

else
v2:=0;

assume(n > 0 ∧ m > 0);
v1:= n; v2:= 0;
Choose({ skip,

Repeat(Repeat+(ρ1);ρ2),

Repeat+(ρ1)
});
assume(v1≤ 0);

whereρ2 , assume(v1>0); v2:=0;

ρ1 , assume(v1>0∧v2<m);v2++;v1--;

Bound: n
m

+ n

Example 3.

assume (0<m<n);
i := 0; j := 0;
while (i<n && nondet)

if (j<m) j++;
else j := 0; i++;

assume(0<m<n);
i := n;
Choose({ skip,

Repeat(Repeat+(ρ1); ρ2),

Repeat+(ρ1)
})

whereρ1 , assume(i<n∧j<m);j++;

ρ2 , assume(i<n∧j≥m);j:=0;i++;

Bound: n× m
Example 4.
assume (0<m<n);
i := n;
while (i>0 && nondet)

if (i<m) i--;
else i := i-m;

assume(0<m<n);
i := n;
Choose({ skip,

Repeat+(ρ2); Repeat(ρ1),

Repeat+(ρ2)
})

whereρ1 , assume(i>0∧i<m);i--;

ρ2 , assume(i>0∧i≥m);i:=i-m;

Bound: n
m

+ m

Example 5.
assume(0 < m < n);
i := m;
while (0 < i < n)

if (dir=fwd) i++;
else i--;

assume(0 < i < n);
Choose({ skip,

Repeat+(ρ1),

Repeat+(ρ2),
})

whereρ1 , assume(dir=fwd);i++;

ρ2 , assume(dir6=fwd);i--;

Bound: max(m, n− m)

Figure 4: Some non-trivial iterator patterns from product code
that all have a similar multi-loop structure with 2 paths, but very
different path-interleavings, and as a result, different bounds.

Theorem 4.1. (Control-flow Refinement) For any loop sloop inside
a procedure P , and any set of initial states σ

JREFINE(P, sloop)Kσ = JP Kσ

Also, REFINE(P, sloop) and P have the same complexity bound.

4.3 Case Studies

The table in Figure 4 shows several non-trivial iterator patterns
found in product code that share very similar syntactic structure:
a single multi-path loop with 2 paths (iterating over variables that
range over 0 to n or m). However, the process of control-flow
refinement results in significantly different looping structures, be-
cause of the different ways in which the 2 paths interleave (which
is made explicit by our control-flow refinement technique). In par-
ticular, we obtain nested loops for 2nd and 3rd example, sequential
loops for 1st and 4th example, and a choice of loops for the 5th
example. This leads to significantly different bounds.



5. Progress Invariants

As discussed in Section 2, existing techniques for computing
complexity bounds are often imprecise. In this section, we in-
troduce a special form of invariants, we call progress invariants:
the INITD(P, π1, π2) and NEXTD(P, π1, π2) relations, which are
associated with two program locations π1 and π2 inside a proce-
dure P . While progress invariants may have other applications, we
use them in this paper to be able to reason about the progress of
one particular loop with respect to another loop. As a result, our
bound computation algorithm (discussed in the next section) can
be precise.

We will refer back to Figure 2 throughout this section. NestedLoop
is triple-nested and the innermost loop (effectively) increments the
same counter as the outermost loop. As discussed in Section 2,
previous techniques would compute an overly conservative bound
of m × n × N rather than n + (m × n) + N .

We start by describing a simple transformation on a proce-
dure called SPLIT that is useful for computing INITD and NEXTD .
SPLIT(P, π) takes a procedure P and a program location π (inside
P) as inputs and returns (P ′, π′, π′′), where P ′ is the new pro-
cedure obtained from P by splitting program location π into two
locations π′ and π′′ such that the predecessors of π are connected
to π′ and the successors of π are connected to π′′, and there is no
connection between π′ and π′′. The SPLIT transformation is a fun-
damental building block that is used to compute the two progress
invariant relations we describe in the remainder of the section.

5.1 The NEXTD(P, π1, π2) Relation

We define NEXTD(P, π1, π2) to be a relation over variables ~x
(those that are live at location π2) and their counterparts ~xold

that describes the relationship between any two consecutive states
that arise at π2 without an intervening visit to location π1. More
formally, let σ1, σ2, . . . , denote any sequence of program states
that arise at location π2 after any visit to location π1, but before

any other visit (to π1). Let σi,i+1 denote the state over ~x ∪ ~x′

such that for any variable x ∈ ~x′, σi,i+1(xold) = σi(x) and
σi,i+1(x) = σi+1(x). Then, for all i, σi,i+1 satisfies the relation
NEXTD(P, π1, π2). We can compute NEXTD as follows using an
invariant generator INVARIANTD .

NEXTD(P, π1, π2):
1 E1 := INVARIANTD(P, π2, true);
2 (P1, π

′

1, π
′′

1 ) := SPLIT(P, π1);
3 (P2, π

′

2, π
′′

2 ) := SPLIT(P1, π2);
4 Let P3 be P2 with entry point changed to π′′

2

and instrumented with ~xold := ~x at π′′

2 ;
5 E2 := INVARIANTD(P3, π

′

2, E1);
6 return E2;

This algorithm begins by using an invariant generation proce-
dure to generate an abstract element as a loop invariant for π2

(Line 1). We then perform two transformations on the flow graph:
the region of interest (all paths from π2 to π2 which do not pass
through π1) is isolated by eliminating the path from π1 to π2

(Lines 2 and 4), and π2 is instrumented with ~xold := ~x (Lines 3
and 4). Finally, we compute a new invariant at π′

2 (Line 5) seeded
with the original loop invariant.

We now return to the example in Figure 2. As we will describe
in the next section, it is useful to obtain a NEXTD invariant for
each nested loop L with respect to its dominating loops L′. Let π1

be the program point just inside loop L1; similar for π2 and π3. Let
π0 be the entry point of procedure NestedLoop. For this example,
an invariant generator may find (among other things):

NEXTD(NL, π0, π1) : i ≥ iold + 1 ∧ i < n
NEXTD(NL, π1, π2) : j = jold + 1 ∧ j < m
NEXTD(NL, π0, π3) : k ≥ kold + 1 ∧ k < N

We later explain (Section 6) how to use these invariants to obtain
a bound. However, for now note that these expressions describe
the progress of variables with respect to outer loop iterations. For
example, we see that at π3, k is always greater than or equal to
kold + 1, and the loop invariant is that k < N . From this, along
with initial conditions on k, we will later (Section 6) conclude that
the total number of loop iterations of L3 is bounded by N .

5.2 The INITD(P, π1, π2) Relation

We define INITD(P, π1, π2) to be a relation over variables ~x
(those that are live at location π2) that describes the state that
can arise during the first visit to π2 after the last visit to location
π1. We can compute INITD as follows using an invariant generator
INVARIANTD .

INITD(P, π1, π2):
1 E1 := INVARIANTD(P, π1, true);
2 (P1, π

′

1, π
′′

1 ) := SPLIT(P, π1);
3 (P2, π

′

2, π
′′

2 ) := SPLIT(P1, π2);
4 Let P3 be P2 with entry point changed to π′′

1 .
5 E2 := INVARIANTD(P3, π

′

2, E1);
6 return E2;

This algorithm is similar to the algorithm used to compute
NEXTD , but has important differences. First, the initial abstract ele-
ment E1 holds at π1 (Line 1). Second, the transformation preserves
the path from π1 to π2 (Line 4) and false holds on all edges out of
π′′

2 . Finally, we are not interested in computing invariants over rela-
tionships over the value of variables between two successive states
(hence there is no instrumentation step). The algorithm therefore
computes invariants which hold the first time π2 is reached coming
from π1, rather than loop invariants over π2.

We again return to Figure 2, where a standard invariant genera-
tion tool may find (among other things):

INITD(NL, π0, π1) : i = 0
INITD(NL, π1, π2) : j = 0
INITD(NL, π0, π3) : k ≥ 0

The purpose of INITD is to study properties of the first element
represented in the sequence NEXTD (invoked with the same argu-
ments). We later explain (Section 6) how to use these invariants to
obtain a bound.

6. Bound Computation

In this section, we describe how progress invariants (introduced in
Section 5) can be used to compute precise bounds. This technique
can be applied to any procedure, but we apply it to procedures
for which we first perform control-flow refinement (introduced in
Section 4) to reason about path interleavings.

We introduce some useful notation. For any loop L in procedure
P , we define T (L) to be the upper bound on the total number of
iterations of L in procedure P . For any loops L, L′ such that L is
nested inside L′, we define I(L, L′) to be the upper bound on the
total number of iterations of L for each iteration of L′.

6.1 Bounding Loop Iterations

Fundamental to computing complexity bounds is the task of calcu-
lating the number of iterations of a loop. We denote this procedure
BOUNDFINDER

3. It consumes an abstraction of the initial state of
the loop (given in some abstract domain D) as well as an abstrac-
tion of the relation between any two successive states in a loop.
These abstractions are given by the progress invariants INITD and
NEXTD described in Section 5. The output is both

3 This name follows the spirit of RankFinder [23], which accomplishes a
similar task of finding a ranking function for a transition invariant.



B(s) = (1, ∅) (1)

where s ∈ {skip, x:=e, assume(c)}

B(s1; s2) = (c1 + c2, Z1 ∪ Z2) (2)

where (c1, Z1) = B(s1) and (c2, Z2) = B(s2)

B(Choose({s1, . . , st})) = (Max{c1, . . , ct}, Z1 ∪ . . ∪ Zt) (3)

= where (ci, Zi) = B(si)

B(L : Repeat(s′)) = (0, Z ∪ (c, L)) (4)

where c = c
′ +

X

(c′′,L′′)∈Z′,Parent(L′′)=L

(c′′ × I(L′′
, L))

and Z = {(c′′, L′′) where (c′′, L′′) ∈ Z
′
, Parent(L′′) 6= L}

and (c′, Z′) = B(s′)

BOUND(s) = c +
X

(c′,L′)∈Z

c
′ × T (L′)

where (c, Z) = B(s)

Figure 5: Calculating the precise bound BOUND(s) on a statement s.

I(L, L′)= BOUNDFINDERD(INITD(P, π′, π), NEXTD(P, π′, π), V )
T (L)= BOUNDFINDERD(INITD(P, πen, π), NEXTD(P, πen, π), V )

where π is the first location inside loop L, π′ is the first location
inside loop L′, πen is the entry point of procedure P , and V is the
set of all input variables.

Continuing with the example in Figure 2, from the progress
invariants given in Section 5, BOUNDFINDER would bound the
total number of loop iterations as: T (L3) = N and T (L1) = n.
Moreover, BOUNDFINDER would conclude that the number of
iterations of loop L2 per iteration of L1 is: I(L2, L1) = m. These
quantities allow us to compute an overall bound of n+(m×n)+N
using the equations given in the next section.

BOUNDFINDER can be implemented in a variety of ways. One
potential way to implement BOUNDFINDER is with counter instru-
mentation by using ideas from previous work [12, 15]. Alterna-
tively it can be implemented via unification against a database of
known loop iteration lemmas. We implemented the latter technique,
as we expected it would be more efficient and comprehensive for
the experiments discussed in Section 7.

6.2 Intraprocedural Bound Computation

In order to compute a precise bound BOUND(s) on a statement
s, we define B(s) recursively as shown in Figure 5. For any loop
L, we use Parent(L) to denote the outermost dominating loop
L′ such that I(L, L′) 6= ∞, if any such loop L′ exists and if
T (L) = ∞. Otherwise Parent(L) = undefined.

B recurs over the annotated syntax of the statement s. It is
aided by I(L, L′) and T (L) computed as described in the previous
section. B returns a pair (c, Z), where c denotes the bound of s
excluding the contribution of any loop Li such that (ci, Li) ∈ Z.
Furthermore, for any loop Li, there is at most one entry of the form
(ci, Li) in Z, and ci denotes the bound of the body of loop Li.

The base cases are skip, assignment, and assume statements
(Eqn. 1) where the bound is one and there are no loops excluded.
Sequential composition (Eqn. 2) is merely the sum of the bounds
and combines loop exclusions; non-deterministic choice is similar
(Eqn. 3). When the B reaches a loop L (Eqn. 4), bound calculation
is more subtle. The bound in this case is not given directly because
the context of the loop is unknown. Instead, the bound is deferred
by accumulating a pair (c, L) where c is the bound of the body
of the loop, which will be multiplied in a future recursive call by
outer loops where the context is known. However, we must process
the bound of other inner loops L′′ that have been deferred to be
processed in the current context of L. Ultimately, we reach the base
case, where BOUND(s) can now be obtained directly (right-hand
side of Figure 5).

Theorem 6.1. (Bound Computation via Progress Invariants) The
complexity of a procedure, assuming a unit cost model for all
atomic statements and procedure calls, is bounded by BOUND(P ).

6.3 Examples

Example 6. Consider the following procedure P with two disjoint
parallel inner loops L1 and L2 nested inside an outer loop L.

i:=j:=k:=0; while(i++<n) { if (nondet) while(j++<m);
else while(k++<m); }

Given that T (L1) = T (L2) = m and T (L) = n, we obtain
BOUND(P) = n+2m. (Note n+m is not a correct answer, while
n × m is correct but conservative.) This example demonstrates a
subtle aspect of B. The elements of a pair of cost and deferred loop
(c, Z) (arising from recursive invocations on sub-structures of s)
must be tallied differently. Where Z is tallied identically under se-
quential composition (Eqn. 2) and non-deterministic choice (Eqn.
3), c is instead aggregated as summation and max, respectively.

Previous Examples. We return to the example in Figure 2, where
we concluded (in Section 6.1) that T (L3) = N , T (L1) = n, and
I(L2, L1) = m. Using the above definitions of BOUND and B it is
easy to show that BOUND(NestedLoop) = n + (m × n) + N .

Let us also consider the original example in Figure 1, listed in
Figure 1(a), and then refined in Figure 1(d). Let L14a and L14b

be the first and second loops on Line 14, and let L15 be the
loop on Line 15. There are no nested loops, but using INITD and
NEXTD , BOUNDFINDER would find that T (L14a) = T (L15a) =
maxId − id and that T (L14b) = id. It is now easy to check that
BOUND(cyclic) = maxId + 1.

6.4 Interprocedural Extension

The bound computation described in the above section assigns a
unit cost to all atomic statements including procedure calls. How-
ever, in order to obtain an interprocedural computation complexity,
we can compute the cost for a procedure call x := P (y) using the
following standard process [15, 3]. We replace the formal inputs of
procedure P by actuals y in the bound expression BOUND(P ), and
then translate this to a bound only in terms of the inputs of the en-
closing procedure by using the invariants at the procedure call site
that relate y with the procedure inputs. This process works only for
non-recursive procedures that need to be analyzed in a top-down
order of the call-graph.



Figure 6: Success rates for non-trivial procedure bounds.

7. Evaluation

7.1 Implementation

We implemented a static interprocedural analysis for computing
symbolic complexity bounds of C and C++ procedures, based on
the Phoenix [1] compiler framework. Our tool includes support
for standard C++ control-flow structures (e.g. if, switch, for,
while, do-while).

An important heuristic is our slicing technique. We slice each
loop by preserving only statements that control the loop iteration
behavior – this is done by computing a backward slice starting with
the conditionals that exit the loop. Slicing is an important optimiza-
tion that helps generate small loop skeletons that usually do not in-
cur a blowup when flattening is applied to the loop body. We imple-
mented procedure slicing, and flattening in C#. Bound computation
(including control-flow refinement and progress invariants) is then
accomplished in F#. This library consists of modules for manipu-
lating relational flow graphs and an abstract interpreter, which uses
the Z3 [2] theorem prover.

Implementation of BOUNDFINDER. We implemented the search
for bound expressions in a style similar to unification. We have im-
plemented several lemma “patterns” for each of the iteration classes
described below, and search for a pattern which matches the output
of progress invariants NEXTD and INITD

4.

• Arithmetic Iteration. Many loops use simple arithmetic addition
for iteration, consisting of an initial value for the iterator, a
maximum (or minimum) loop condition, and an increment (or
decrement) step in the body of the loop.

• Bit-wise Iteration. Some loop bodies either consist of a left/right
shift or an inclusive OR operation with a decreasing operand.

• Data Structure Iteration. We implemented patterns for itera-
tions over linked list fields (e.g. x = x->next), encapsulated
iterators (e.g. x = GetNext(l)), and destructive iteration (e.g.
x = RemoveHead(l)).

Loop iterators beyond these categories are discussed in our limita-
tions (Section 7.3) and an area for future work.

7.2 Experiments

We evaluated our technique by running several experiments over
the source code of a large Microsoft product. All experiments
below were run on a Hewlett-Packard XW4600, with a Dual Core
3 GHz processor. The hardware included 4 GB of RAM and 250
GB of hard disk space. Our software stack consisted of Windows
Vista, the Phoenix April 2008 SDK, F# version 1.9.4.19, and Z3 [2]

4 Note that BOUNDFINDER can also be implemented using counter instru-
mentation [15], though we found unification to be more efficient.

Figure 7: Performance of our tool.

(a) Lines of Code

Module L.O.C.

Module1 110,469
Module2 132,803
Module3 80,348
Module4 221,120
Module5 126,028
Total: 670,768

(b) Individual Loop Bounds

Module Loops Bounded Success

Module1 1574 1513 0.96
Module2 1749 1570 0.90
Module3 1165 1035 0.89
Module4 535 491 0.92
Module5 2511 2410 0.96
Total: 7534 7019 0.93

Figure 8: (a) Lines of Code and (b) effectiveness of computing loop
bounds for a variety of modules from the product source code. For
legal reason, the module name is suppressed.

Non- Isolated Proc. Inter-procedural
Module Proc. Triv. Count Rate Count Rate

Module1 7192 1746 1639 0.94 1578 0.90
Module2 10816 1956 1674 0.86 1527 0.78
Module3 6280 1181 973 0.82 897 0.76
Module4 4871 744 629 0.85 578 0.78
Module5 9363 2862 2714 0.95 2601 0.91
Total: 38522 8489 7629 0.90 7181 0.84

Figure 9: Effectiveness of computing procedure bounds for a vari-
ety of modules from the product source code. The chart considers
two cases: (1) procedures individually (“Isolated Proc.”), without
regard to procedure call sites and (2) effectiveness after including
an interprocedural analysis.

version 1.3.5. Our analysis was run over a variety of modules from
a large Microsoft product; the line count of each module is given in
Figure 8(a).

Loop Bounds. For our first experiment, we quantify the util-
ity of our technique for bounding multi-path loops, by measuring
how frequently BOUNDFINDER is able to find a bound for indi-
vidual loops. We ran our analysis on several modules and counted
the number of loops L for which our technique could compute a
bound. Successful bound computation for a loop L means being
able to compute T (L) if L is an outermost loop, or I(L, L′) where
L′ is the loop that immediately dominates L. The results are sum-
marized in Figure 8(b). Each module consists of many source files,
themselves each consisting of several procedures with loops. Out
of the total number of loops in the second column, our technique
found a bound for the amount in the third column, yielding the suc-
cess rate in the final column. Across all modules, our technique
found a bound for 93% of the loops.

Isolated Procedures. Procedures are more difficult to bound,
because they may contain multiple (possibly nested) loops, all
of which must be bounded. Our next experiment tests BOUND,
which calculates a cumulative bound across arbitrary procedure



structures. To study this problem, we measured our tool’s ability to
compute a bound for individual procedures, without regard to call
sites to other procedures. Many procedures are trivial (contain no
loops), so our analysis focuses on the non-trivial procedures. The
results of our experiment for several of the largest modules is given
in Figure 9 (and pictorially in Figure 6) labeled “Isolated Proc.”

Inter-procedural Analysis. We then evaluated the effective-
ness of our inter-procedural technique, which properly accounts
the cost of call sites (see Section 6.4). While this is a more accurate
measure of a procedure’s cost, it decreased our success rate to 84%.
This is because of a “cascade effect”: if we fail to compute a bound
for procedure A, then any other procedure B that involves a call
site to A will also be unbounded. The results of this experiment are
also given in Figures 9 and 6, labeled “Inter-procedural.”

Limitation. One experimental limitation is that, due to the size
of the source, we were unable to comprehensively check the pre-
cision of the complexity bounds. However, we manually inspected
many of the bounds and confirmed that they were, indeed, precise.

Performance. For each non-trivial procedure we also mea-
sured the time it took to find a bound for the flattened version of
the procedure. This includes control-path refinement via REFINE,
progress invariant generation via INITD and NEXTD (which use
INVARIANTD), finding loop bounds via BOUNDFINDER, and fi-
nally calculating the total bound via BOUND. Across all modules,
the performance is given in Figure 7. This graph illustrates the time
it takes to find a bound for a single procedure (in seconds). A per-
fectly efficient tool would calculate bounds for 100% of procedures
instantly. When our technique is successful, over 90% of proce-
dures are bounded within 640ms. For failed attempts, only 70% of
procedures are bounded with 640ms. This suggests a possible im-
provement in the performance of our tool by aborting the search for
a bound after, say, 640ms.

Figure 7 also illustrates the efficacy of our slicing heuristic.
Most non-trivial functions have at most 8 paths after slicing; thus
our algorithm typically completes in a fraction of a second. In less
than 10 cases (among the 670,000 lines of code we evaluated) the
number of paths was large enough for the analysis to time-out.

7.3 Limitations

There are some loops (roughly 7%) for which our tool is unable to
find a bound. As with any large code base, the modules vary in cod-
ing styles and paradigms, yet we were surprised by how widely ap-
plicable our technique was. We categorized the unsuccessful loops
(somewhat automatically) into the following challenges, postponed
to future work:

• Concurrency. Many procedures contained concurrent algo-
rithms, such as spin-locks or work queues, in which case the
the number of loop iterations depends on other threads.

• I/O. Some modules contained procedures which interacted with
the filesystem. In these rare cases, the bound again depends on
the size (or availability) of non-deterministic input.

• Recursion. We currently do not address the issue of computing
bounds for recursive procedures (though we believe that ideas
presented in this paper can potentially be used to compute
bounds for recursive procedures).

• Procedure Calls. Usually, procedure calls inside a loop do not
affect the value of loop iterators. But when they do, we can
either inline the appropriately sliced version of the procedure,
or use an interprocedural invariant generation tool. We currently
do not implement any such strategy.

• Exponential Paths. Slicing drastically reduces the number of
paths in a flattened loop body; however, in rare cases, flattening
generates an intractable, exponential number of paths.

8. Other Application: Safety Properties

The control-flow refinement technique presented in Section 4 is
more fundamental than the sole application of bound analysis. In
particular, it can be used to prove safety properties that otherwise
require disjunctive invariants or a path-sensitive analysis. For this
purpose, we simply use a given simple (path-insensitive) invariant
generation tool I to first refine the control-flow of the procedure,
and then analyze the refined procedure using I .

We need a small extension of our control-flow refinement algo-
rithm described in Figure 3 for it to be powerful enough to establish
non-trivial safety properties at the end of the loop. We explicitly
add any post-dominating assume statement at the end of the multi-
path loop to all top-level choices in the expansion of the loop. This
is done to enable a path-insensitive invariant generation tool to fil-
ter out paths that leave the loop prematurely. This extension is not
required for bound analysis because the focus there was to reason
about what happens inside the loop, and not outside the loop.

Figure 10 presents a list of some examples, each of which has
been used as a flagship example to motivate a new technique for
proving non-trivial safety assertions. Proving validity of the asser-
tions in all these examples requires disjunctive loop invariants.

Figure 10 also shows the resulting (semantically equivalent)
procedure after control-flow refinement is applied using either the
octagonal [22] or polyhedra [26] analysis as the invariant genera-
tion tool. The safety assertions in all these procedures can now be
validated by running either the octagonal or the polyhedra analysis
on the control-refined procedure. (Note that running these analyses
on the original procedure would fail to validate any of these as-
sertions with the exception that octagonal domain can validate the
assertion in the last procedure.) For the first example, the (induc-
tive) loop invariants d = t ≤ 3 and d = s ≤ 2 for the loops
Repeat(ρ1) and Repeat(ρ2) respectively imply the assertion. The
dotted portion denotes irrelevant code that does not contain any as-
sertions.

For the second example, the loop invariant x = y ∧ x ≤ 50
for the first loop Repeat+(ρ1) helps establish x = y = 51 at the
end of the loop; and then the loop invariant x + y = 102 ∧ x ≥
52 ∧ y ≥ 0 for the second loop Repeat(ρ2) helps establish the
desired assertion after the loop. For the third example, the loop
invariant x ≤ 50 ∧ y = 50 for the first loop helps establish
x = y = 50 at the end of the first loop Repeat+(ρ1), and the
loop invariant x = y ∧ x ≤ 100 for the second loop Repeat+(ρ2)
helps establish y = 100 at the end of the second loop. For the
fourth example, the assertion is trivially established.

For the last example, the invariant x ≤ y gets established after
the inner loop on ρ2, which then propagates itself as the loop
invariant for the outer loop too.

9. Related Work

Control Flow Refinement Control-flow refinement is related to
other approaches that have been proposed for doing a more pre-
cise program analysis given an underlying invariant generation
tool. This includes widening strategies (such as “look-ahead widen-
ing” [10] and “upto widening” [17]) or disjunctive extensions of
domains [13, 25, 11, 14]. The primary goal of these techniques
is to compute precise invariants at different program points in the
original program, while we instead focus on creating a precise ex-
pansion of the program into one with simpler loops. Our tech-
nique is useful for bound computation, a process that is more ef-
fective for simple loops, as opposed to complex loops annotated
with precise invariants. Other work [25] does a CFG elaboration,
but only as a means to perform efficient computation over some
refinement of the powerset extension. In particular k bounded elab-



Original Example After Path Refinement

Halbwachs et al. 1997,
P. 14, F. 7.

t:=0; d:=0; s:=0;
while (*)

if (sec)
s:=0;
if (t++ = 4) break;

if (met)
if (s++ = 3) break;
assert(d++ 6= 10);

t:=0, d:=0, s:=0;
Choose({

asm(sec&&met);Repeat(ρ1),
asm(¬sec&&met);Repeat(ρ2),
asm(sec&&¬met); ....
asm(¬sec&&¬met); ....

});...

where

ρ1 , s:=0;asm(t++ 6= 4);

asm(s++6=3);assert(d++6=10);

ρ2 , asm(s++6=3);assert(d++6=10);

Gopan and Reps 2006,
P. 3, F. 1.

x:=0, y:=0;
while (*)

if (x ≤ 50) y++;
else y--;
if (y<0) break;
x++;

assert(x=102)

x:=0; y:=0;

Repeat+(ρ1); ρ2; Repeat(ρ2);
if (x ≤ 50) y++;
else y--;
assume (y < 0);
assert(x=102);

where

ρ1 , asm(x≤50);y++;asm(y≥0);x++;

ρ2 , asm(x>50);y--;asm(y≥0);

x++;
Gulwani and Jojic 2007.

P. 7, F. 3.

x:=0; y:=50;
while (x<100)

if (x<50) x++;
else x++; y++;

assert(y=100);

x:=0; y:=50;

Repeat+(ρ1); ρ2; Repeat+(ρ2);
asm(x ≥ 100);
assert(y=100);

where

ρ1 , asm(x<100&&x<50); x++;

ρ2 , asm(x<100&&x≥50);x++;y++;

Gulavani et al. 2006. P. 5, F. 3.
Henzinger et al. 2002. P. 2, F. 1.

lock := 0;
assume (x 6= y);
while (x 6= y)

lock := 1; x := y;
if (*)

lock := 0; y++;
assert(lock = 1);

lock := 0; assume (x 6= y);
Choose({

Repeat+(ρ2);ρ1,

Repeat+(ρ1)
});
asm(x = y);
assert(lock = 1);

where

ρ1 , asm(x 6= y); lock := 1; x := y;

ρ2 , asm(x 6= y); lock := 1; x := y;

lock := 0; y++;

Figure 10: Prominent disjunctive invariant challenges from recent
literature. Our technique finds suitable disjunctive invariants for
each example. For brevity, assume(c) is denoted asm(c).

oration, wherein a program location is duplicated at most k times.
In contrast, the expansion decision in our algorithm is independent
of a different exploration branch. More significantly, our expansion
granularity focuses on interleavings between different paths, as op-
posed to what happens in different iterations of the same path.

Part of our algorithm is based on pruning infeasible paths.
Balakrishnan et al. [4] present a technique for finding infeasible
paths with backward and forward analyses. Infeasible paths are
removed from the transition system (“static language refinement”).
The fundamental distinction of our work is that we prune infeasible
unwound paths, rather than simple, statically occurring paths.

With respect to proving safety properties (as discussed in Sec-
tion 8), our technique is more precise but less efficient than widen-
ing approaches (since CFG expansion allows our technique to ef-
fectively compute disjunctive invariants). Our technique is orthog-
onal to techniques based on disjunctive extensions (each of which
is unique w.r.t. the number of disjuncts, and their merging).

Progress Invariants Our notion of progress invariants is related
to transition invariants [24, 6, 21] or variance analyses [5] (re-
cently described in literature for proving termination), which de-
scribe relationships between a state at a program location and any
other (as opposed to immediately) previous state at that location.
Hence, theoretically, progress invariants are more precise in the
sense that transition invariants can be generated from progress in-
variants but not vice-versa.

While both transition invariants and progress invariants are used
to measure how a program state evolves by studying relations over
pairs of states (as opposed to just a single state), it is interesting to
observe the differences in the methodologies involved. Transition
invariants have been used for proving termination by computing
disjunctive transition invariants and then showing that each disjunct
is well-founded. In contrast, progress invariants are used for com-
puting a bound after refining the program, which obviates the need
for disjunctive invariants. We believe that the separation of con-
cerns of dealing with non-regular (disjunctive) program behavior
and relations on pairs of states enables our approach to go beyond
proving termination (i.e. computing a precise bound). For example,
it is trivial to prove the nested loop in Section 2.2 terminating, but
computing a precise bound requires a more sophisticated machin-
ery, such as our notion of progress invariants. On the other hand,
our technique can compute bounds for programs for which exist-
ing termination techniques fail to even prove termination (e.g. the
cyclic iteration example in Figure 1).

Symbolic Bound Computation Recent work by Gulwani et
al. [15] describes elaborate counter instrumentation strategies for
computing a bound on loop iterations using a linear arithmetic in-
variant generation tool. However, the strategy is not effective for
multi-path loops, which seem to occur frequently in practice. For
example, the strategy cannot compute a bound for any of the multi-
path loops (except the 3rd example) in Figure 4. For nested loops,
the strategy is not as precise as the ideas presented here (see fur-
ther discussion in Section 2.2). Moreover, counter instrumentation
works well only for arithmetic programs. To overcome this re-
striction, Gulwani et al. also introduced the notion of user-defined
quantitative functions for data-structures (such as length of list,
height of tree) and their updates to express and enable computation
of bounds for loops that iterate over data-structures. But the strat-
egy is still limited to computing polynomial bounds as opposed
to, say, logarithmic (e.g. binary search) or square-root bounds. In
contrast, since we do not use counter instrumentation, we need
not arithmetize a program using quantitative functions; neither are
we restricted to computing polynomial bounds. However, we do
require that the underlying invariant generation tool support an
additional interface of generating bounds from progress invariants.

Gulavani and Gulwani [12] have described the design of a rich
numerical domain to generate non-linear disjunctive invariants,
and they have applied it to generating bounds for timing analysis.
However, it requires the user to describe important expressions
(over which linear relationships are to be tracked) as well as the set
of variables that should occur within a max operator for each loop.
Furthermore, the technique only applies to arithmetic programs.

There is a large body of work on estimating worst case execu-
tion time (WCET) in the embedded and real-time systems commu-
nity [27]. The WCET research is largely orthogonal, focused on
distinguishing between the complexity of different code-paths and
low-level modeling of architectural features such as caches, branch
prediction, instruction pipelines. For establishing loop bounds,
WCET techniques either require user annotation, or use simple
techniques based on pattern matching [18] or some numerical anal-
ysis (e.g., relational linear analysis to compute linear bounds on the
delay or timer variables of the system [17], interval analysis based



approach [16], and symbolic computation of integer points in a
polyhedra [20]). These WCET techniques cannot compute precise
bounds for the examples considered in this paper.

Goldsmith et al. [9] compute symbolic bounds by curve-fitting
timing data obtained from profiling. Their technique has the advan-
tage of measuring real amortized complexity; however the results
are not sound for all inputs. Crary Weirich [8] presents a type sys-
tem for certifying (as opposed to inferring) resource consumption,
including time.

10. Conclusion and Future Work

We have introduced novel techniques for automatically determin-
ing symbolic complexity bounds of procedures. We first showed
how control-flow refinement enables standard invariant generators
to reason about mildly complex control-flow, which would other-
wise require impractical disjunctive invariants. For example, we
have proven symbolic complexity bounds for procedures which no
previous technique can even prove termination. We then introduced
progress invariants and showed how to use them to compute precise
procedure bounds. Finally, our experience with a large Microsoft
product illustrates the effectiveness of our techniques: our tool was
able to find bounds for 90% of procedures that involve loops.

We believe that a productive direction for future work would
be to study broader applications for control-flow refinement and
progress invariants. As discussed in Section 8 there seem to be
applications in proving safety as well as liveness properties.
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