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ABSTRACT 

 
This paper addresses the problem of using unstructured queries to 

search a structured database in voice search applications. By 

incorporating structural information in music metadata, the end-to-

end search error has been reduced by 15% on text queries and up to 

11% on spoken queries. Based on that, an HMM sequential 

rescoring model has reduced the error rate by 28% on text queries 

and up to 23% on spoken queries compared to the baseline system. 

Furthermore, a phonetic similarity model has been introduced to 

compensate speech recognition errors, which has improved the 

end-to-end search accuracy consistently across different levels of 

speech recognition accuracy. 

Index Terms— spoken language understanding; voice search; 

language model based information retrieval; HMMs; phonetic 

confusability, music metadata. 

 

1. INTRODUCTION 

Voice search [1] is a spoken language understanding (SLU) 

technology underlying many applications. It accepts users‘ queries 

in spoken language and searches for the relevant entries in a 

database. Directory assistance (DA) [2, 3] is a typical voice search 

application, where users can use spoken queries to search for 

business or residential phone listings.  

     Media data (music, movies, etc.) is pervasive now in people‘s 

everyday life. With the ever increasing capacity and reducing cost 

of storage, it is very common that uses have thousands of 

music/video entries in their mp3 players or media center PCs. 

Accessing a music/video title becomes more challenging.  Voice 

search technology can be applied in this scenario to provide a 

natural and efficient UI for users. In [4], a prototype in-car music 

search system is presented. In [5], an cognitive load sensitive 

spoken dialog interface for in-car tasks is reported. 

      Media (voice) search leverages the metadata associated with 

the media data. For example, each music entry in an mp3 player 

comes with the metadata about its title, artists‘ name, album name, 

composer/conduct, etc. Different from the DA applications, the 

SLU needs to search a structured database – the metadata contain 

records with multiple fields. A user‘s unstructured utterance may 

contain descriptions of one or multiple fields, which may not 

exactly match the entries in the structured database. For example, 

the query ―Boyz II men hard to say goodbye‖ corresponds to the 

following structured metadata: 

   Artists: Boyz II Men 

   Title: It‘s so hard to say goodbye to yesterday 

   Album: Legacy – the greatest hits collection 

   Genre: R&B/Soul 

   … 

Figure 1. An record in the structured music metadata. 

    

  A record in the structured metadata like the one in Figure 1 

corresponds to an entity.  An entity may contain fields. For 

example, The Artist field of the above example has the content 

―Boyz II Men.‖ An entity does not have to contain all fields. 

Removal of the Title field in Figure 1 would result in a new entity 

that represents an album instead of a specific song.  

  A currently deployed system [6] allows users to search music 

by specifying information about a single field with voice 

commands in the form of keywords followed by the exact content 

of the field of an intended entity. User studies have found that 

users often omit the keywords, and they may not know the exact 

content of a specific field. Table 1 compares the expected form of 

queries and the actual queries spoken by users. A more 

natural/flexible speech interface is thus desirable in this case. 

Expected form What users actually said 

Play song all rise All rise, I guess, from blues 

Play song Angel Sarah, in the arms of an angel 

Play album legally blonde Play legally blonde soundtrack 

Play artist Glenn Miller Glenn Miller, jazz. 

Table 1. The form of queries expected by a deployed system and 

the actual users’ queries. 

A natural interface for music search poses new challenges: 

1. Multi-field queries. Users often specify more than one field of 

an entity in a query. Figure 2 shows that more than half of the 

queries contain information about more than one field. The 

voice search engine needs to identify which field a word in a 

query is associated with. 

 
Figure 2. Distribution of queries containing 1,2, and 3 fields. 

2. Non-exact match of field contents: users‘ specification of a 

field may not match the content in the metadata exactly. Figure 

3 illustrates the percentage of field-wise mismatches between 

queries and metadata. A robust information retrieval (IR) 

approach is more suitable than simple pattern matching. 

3. Ambiguity: Multiple entities may share the same content for a 

field. Voice search for ―Yesterday‖ may be related to the song 

―Yesterday‖ by Beatles or by Leona Lewis, or ―Only 

yesterday‖ by Carpenters. The problem is complicated by 

challenge 2 – a word may be shared by different fields of 

different entities in the metadata. It is important to coordinate 

the information about multiple fields for disambiguation.  
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Figure 3. Percentage of query fields that do not exactly match the 

content of the corresponding field in the structured data. 

4. ASR errors: a recognition error can make an irrelevant entity 

surface to the top in the search results. 

      This paper addresses those challenges. Instead of using the 

traditional structure-agnostic approaches to information retrieval 

(IR), a field-sensitive model is proposed, and an HMM sequential 

model is applied subsequently to rescore the hypotheses obtained 

from the new model (Section 2). The ASR problem is addressed by 

extending the sequential model to take into account phonetic 

confusability (Section 3). The different models are evaluated in 

Section 4, and Section 5 concludes the paper. 

 

2. SEARCH FOR STRUCTURED DATA 

2.1. Language Model Based IR 

Language model (LM) based IR [7] uses a channel model to find 

an entity Ê  (document) from a document collection given a user‘s 

query Q :  
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In Eq. (1) every E  is assumed equally likely a priori. ( | )P Q E is 

modeled generatively with an entity-specific n-gram model that is 

smoothed with a global background model via linear interpolation:  
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LM-based IR is an alternative to other common approaches to IR, 

like the Tf-Idf weighted vector space model [8]. In a series of 

experiments on music metadata search, we have found that it had 

superior performance over other approaches. Therefore, we focus 

on LM-based structured data search in this paper. 

2.2. LM-Based IR for Structured Data 

The Baseline Systems 

We adopt two different baseline systems. The first (BM1) 

mimics the deployed system by treating each field as a separate 

entity. So the exemplar record in Figure 1 produces the following 

entities: ―Boyz II Men‖ for artist, ―It‘s so hard to say goodbye to 

yesterday‖ for song title, ―Legacy – the greatest hits collection‖ for 

album, and ―R&B/Soul‖ for genre, etc. This baseline system works 

well only when users specify information about a single field in the 

query, as expected by the deployed system. The second one (BM2) 

collapses the structural information and treats the words in each 

field indifferently. So the structured entity in Figure 1 can be 

represented as a bag of words: {Boyz, II, Men, It‘s, so, hard, to, 

say, goodbye, to, yesterday, R&B, Soul}. In doing so, a multi-field 

query can be handled. 

Interpolation of Field Retrievals 

     To leverage the structural (field) information in the music 

metadata, a refined model (FM) based on the interpolation of field 

specific retrieval models for ( | )P Q E is proposed:  
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      (3) 

Here ( | , )iP w F E is an entity-field specific language model, which 

is obtained via maximum likelihood estimation (MLE) and 

smoothed by interpolation with an entity specific model and a 

global model: 

( | , ) ( | , ) ( | ) ( )i f MLE i e MLE i c MLE iP w F E P w F E P w E P w    

   

(4) 

where  1.f e c      While the interpolation weights can be set 

using held-out data, we found that the search performance is not 

very sensitive to their values as long as long as none of the weights 

is set too close to 0.  

    An entity independent prior field distribution ( )P F is used to 

derive the entity-specific field distribution by redistributing the 

probabilistic mass of the fields absent from an entity to the existing 

fields:  
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Throughout the paper, the following prior distribution ( )P F  is 

used. It incorporates the knowledge about field popularities: 

Title Artist Album Composer Genre Track Year 

0.3 0.3 0.3 0.025 0.025 0.025 0.025 

 
Sequential Model for Rescoring 

The model in Eq. (3) takes into account the structural information 

in IR ranking. One advantage of the model is that the indexing 

technique for LM-based IR is applicable for speedy entity search. 

However, the model is not very accurate in the following aspects: 

1. The summation over fields in Eq. (3) does not depict the 

generative process correctly. Users do not pick a word by 

considering the contents of all fields. Instead, they think about 

a field first and then select words to specify its content. 

2. The independence assumption of fields at different time is not 

accurate. Adjacent words are more likely to express the content 

of the same field. The lack of constraints on field transition in 

Eq. (3) results in frequent field hopping. 

     An HMM sequential model (HMM) is introduced to overcome 

the problems. First the decision rule is modified to search for an 

entity that gives rise to the highest likelihood of a query Q under 

the Viterbi field alignment F (an alternative decision rule using 
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summation over all possible alignments is also studied in the 

experiments for comparison): 

    

ˆ arg max ( | ) arg max ( | ) ( )

   arg max ( | ) arg max max ( , | )
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Here ( , | )P Q F E is modeled by an HMM: 
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     The emission probabilities are modeled in the same way as in 

Eq. (4). The transition probability is assigned as follows to 

penalize frequent field hopping: 
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where ( | )P F E  is the same as in Eq. (5). 

The HMM sequential model requires Viterbi decoding, hence it 

increases the search time by a factor of 2n , where n  is the 

number of fields. To expedite voice search, the sequential model is 

used to rescore the n-best search results from the previous model in 

Eq. (3). 

3. SEARCH WITH SPOKEN QUERIES 

Another advantage of applying generative models for IR lies in the 

fact that it opens the door for modeling ASR errors according to 

phonetic confusability. This can be illustrated by an example – the 

query ―Mark Ranson and Amy Winehouse‖ is recognized as ―the 

rising band Amy Winehouse‖ mistakenly. As the result, the IR 

component returns a wrong entity. If the model has the knowledge 

that ―Ranson‖ and ―rising‖, ―and‖ and ―band‖ are phonetically 

similar, then the evidence for the correct entity that has both Mark 

Ranson and Amy Winehouse as the artists would be stronger. 

Formally, let R be the ASR output of a spoken query, then the 

sequential model with phonetic similarity measure (HMM/PS) can 

be expressed as 
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where
1 2 3 4 1.        Eq. (10) differs from Eq. (4) by the 

inclusion of ( | , )cP r F E , which is determined by the phonetic 

similarity between r and (part of) the content of F. More precisely, 

the phonetic transcription of a recognized word r is aligned to that 

of the content of a field F, and ( | , )cP r F E
 
is computed according 

to the operations in the alignment ( , )A F r  obtained via dynamic 

programming (DP). In addition to the traditional deletion, 

insertion, and substitution operations in DP, a skip operation (SK) 

is introduced. The probability of the operation is 1 if the operation 

occurs before the first (or after the last) operation involving a 

phone of  r, and 0 elsewhere. This is essential since r only has to be 

aligned to a consecutive portion of the content of F. Figure 4 

shows an exemplar alignment, where ―*‖ on the recognized word 

side represents a deletion, and ―*‖ on the field content side 

indicates an insertion. Note that the word boundary ―—‖ is also 

included to penalize the easy matching of short recognized words 

like ―I‖. A confusion matrix that contains the probability for each 

insertion, deletion and substitution operation ( )P o is estimated 

with a data-driven approach from an independent data set. Given 

the alignment ( , )A F r and the ( )P o  matrix, the phonetic similarity 

probability is computed as follows: 
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where ( )N F stands for the number of words in the content of F, 

r  stands for the length of phonetic transcription of  r. 

4. EXPERIEMNTS 

4.1. Experiment Setup 

The music search query data were collected from 29 subjects. Each 

subject was instructed to search for their favorite songs with 

natural speech. The spoken queries were transcribed and the search 

targets were subsequently labeled by the subjects themselves. 425 

queries were collected this way. 409 of them have legitimate 

corresponding entities in the metadata. The remaining are 

commands like ―Play next song,‖ which are handled by a 

command & control component instead of voice search. 250 of the 

data were collected from native English speakers. The metadata of 

the search targets, together with all other songs in the same albums, 

were added to a preexisting structured database of about 6,000 

entries, resulting in a final dataset of ~11,000 entities. The 

structured data consist of 75 fields. Among them, only seven fields 

are searched for by users, including song title (Title), artist name 

(Artist), composer or conductor (Composer), album title (Album), 

genre (Genre), track number (Track) and year (Year). Figure 5 

shows the distribution of fields being searched for by users. 

Among them Lyrics and Description are not the actual fields 

available in the metadata – the metadata-based search is not 

capable to handle those queries. 

 
Figure 5. Percentage of queries containing a specific field. 

4.2. Experimental Results on Text Queries 

We first conducted experiments on text queries to study the 

effectiveness of different models for the search of structured data. 

For the HMM sequential models, we applied them to rescore the 

20-best search results from the field-sensitive IR model (FM). 

Table 2 shows the n-best (n=1,5,20) search accuracy for the 
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different models. 

     It is clear that the baseline model BM1, which is based on the 

assumption that users always specify the information about a single 

field of a structured entity, is inadequate when natural speech is 

used. Its accuracy is much lower than the other models. 

Model 1 Best 5 Best 20 Best 

BM1 57.7% 81.5% 88.8% 
BM2 78.8% 89.1% 94.2% 
FM 82.0% 91.7% 95.1% 
HMM/FB 83.3% 91.9% 95.1%  
HMM/Viterbi 84.7% 92.2% 95.1% 

Table 2. N-Best accuracy of music search with text queries. 

     Compared to the more reasonable baseline accuracy of BM2, 

FM, the simple model that takes into account the structural 

information, has reduced the one-best search error by 15.1%, and 

the HMM rescoring model with Viterbi decision rule cut the one-

best search error rate by 27.8%. The improvement from the HMM 

rescoring model with decision rule based on all possible field 

alignments (HMM/FB) has yielded smaller improvements. This 

confirms our concern about the assumptions underlying the model 

FM, as discussed in section 2.2. 

4.3. Experimental Results on Speech Queries 

We have conducted experiments on spoken queries to investigate 

the robustness of the search algorithm to ASR errors, as well as the 

effectiveness of the phonetic similarity measure. The experiments 

were conducted with the subset of the data collected from native 

English speakers. To study the robustness under different word 

error rate conditions, different language models were used – some 

of them have cheating factors. Table 3 lists these language models. 

LM Description 

LM1 Trained from the transcriptions of all data. 

LM2 Trained from the transcriptions – carrier phrases 

LM3 Trained from a subset of metadata + usage patterns 

LM4 Trained from a subset of metedata 

LM5 Trained from metadata + usage patterns 

LM6 Trained from metadata 

Table 3. Language models in the experiments with speech inputs. 

      Here carrier phrases like ―I want to listen‖ or ―please play‖ 

were removed from transcriptions to train LM2. The subset for 

LM3 and LM4 training contains about 500 metadata entries that 

cover the entities intended by users. Common usage patterns like 

―Play Title by Artist‖ were introduced in LM3 and LM5 with 

unified language model [9]. 

      Table 4 shows the word error rates (WERs) and end-to-end 

search results with different language models and IR models: 

LM WER BM1 BM2 FM HMM HMM/PS 

-- 0% 65.0% 84.4% 86.0% 88.1% 88.5% 
LM1 5.4% 63.4% 81.1% 82.7% 84.4% 84.8% 
LM2 14.0% 63.4% 81.5% 83.5% 84.4% 85.6% 
LM3 30.0% 60.9% 79.4% 79.8% 81.9% 82.7% 
LM4 28.1% 61.3% 78.6% 79.8% 81.9% 82.7% 
LM5 25.3% 60.9% 76.1% 78.2% 79.4% 79.8% 
LM6 33.2% 57.6% 67.5% 70.0% 70.4% 71.6% 

Table 4. WER and 1-best search accuracy with spoken queries. 

The first row shows the performance on manual transcriptions. 

Several remarks can be made about the results in Table 4: 

1. The end-to-end search results are fairly robust to ASR errors. 

While the word accuracy has dropped by 33% from manual 

transcription to the ASR using LM6, the one-best search 

accuracy has deteriorated by around 19%.  

2. Compared to BM2, FM has consistently reduced search error 

by 2% to 11%, HMM sequential rescoring has reduced the 

error by 9% to 23%, and HMM rescoring with phonetic 

similarity measure has reduced the search error rate by 13% to 

26%. The HMM/PS model has reduced the error rate by 3% to 

8% compared to the sequential rescoring model without 

phonetic similarity measure. Although the improvements of 

HMM/PS are not statistically significant, they are consistent 

across different WER conditions. 

5. CONCLUSIONS 

The problem of retrieving structured data for voice search 

applications is investigated in this paper. We have shown that a 

voice search model restricting users from specifying information 

about multiple fields in structured data has performed very poorly 

when users speak naturally. The field sensitive model FM has 

significantly improved (15% error reduction on text queries, 

2%~11% on spoken queries) the retrieval accuracy over the 

baseline field-agnostic model BM2.The HMM sequential rescoring 

model has further reduced the search error (27.8% over BM2 on 

text queries and 13%~26% on spoken queries when phonetic 

similarity measure is introduced to the model.) Overall the end-to-

end search results are relatively robust to ASR errors. For future 

work, we would extend the work in [10] to train language models 

aiming at improving search accuracy. 
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