
On the Complexity of Differentially Private Data Release

Efficient Algorithms and Hardness Results

Cynthia Dwork
∗

Microsoft Research SVC
Moni Naor

†

Weizmann Institute
Omer Reingold

‡

Weizmann Institute

Guy N. Rothblum
§

MIT
Salil Vadhan

¶

Harvard University

ABSTRACT
We consider private data analysis in the setting in which
a trusted and trustworthy curator, having obtained a large
data set containing private information, releases to the pub-
lic a “sanitization” of the data set that simultaneously pro-
tects the privacy of the individual contributors of data and
offers utility to the data analyst. The sanitization may be in
the form of an arbitrary data structure, accompanied by a
computational procedure for determining approximate an-
swers to queries on the original data set, or it may be a
“synthetic data set” consisting of data items drawn from the
same universe as items in the original data set; queries are
carried out as if the synthetic data set were the actual input.
In either case the process is non-interactive; once the sani-
tization has been released the original data and the curator
play no further role.

For the task of sanitizing with a synthetic dataset output,

∗E-mail: dwork@microsoft.com.†Incumbent of the Judith Kleeman Professorial Chair, De-
partment of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel. E-
mail: moni.naor@weizmann.ac.il. Research supported in
part by a grant from the Israel Science Foundation.
‡Department of Computer Science and Applied Mathemat-
ics, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail: omer.reingold@weizmann.ac.il. Work done in
part while visiting Microsoft Research Silicon Valley. Re-
search supported by grant 1300/05 from the Israel Science
Foundation.§CSAIL, MIT. E-mail: rothblum@csail.mit.edu. Most
work done while at Microsoft Research, also supported by
NSF Grants CCF-0635297, NSF-0729011, CNS-0430336.
¶School of Engineering and Applied Sciences and Center for
Research on Computation and Society, Harvard University.
E-mail: salil@eecs.harvard.edu. Work begun while vis-
iting Microsoft Research Silicon Valley. Also supported by
NSF grant CNS-0831289.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

we map the boundary between computational feasibility and
infeasibility with respect to a variety of utility measures. For
the (potentially easier) task of sanitizing with unrestricted
output format, we show a tight qualitative and quantitative
connection between hardness of sanitizing and the existence
of traitor tracing schemes.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and problem complexity—General

General Terms
Algorithms, Security, Theory

1. INTRODUCTION
We consider private data analysis in the setting in which

a trusted and trustworthy curator, having obtained a large
data set containing private information, releases to the pub-
lic a “sanitization” of the data set that simultaneously pro-
tects the privacy of the individual contributors of data and
offers utility to the data analyst. The literature refers to
this as the non-interactive model, since once the curator has
released the sanitization there is no further use for either the
original data or the curator.

There has been a series of negative results concerning pri-
vacy, roughly saying that there is a class of queries with the
property that it is blatantly non-private (allowing almost full
reconstruction) if “too many” queries receive “overly accu-
rate” responses [5, 7, 9]. These results have been interpreted
to mean that one cannot answer a linear, in the database
size, number of queries with small noise while preserving
privacy. This view motivates an interactive approach to pri-
vate data analysis where the number of queries is limited
to be small — sublinear in the size n of the dataset. In-
tuitively, in the interactive approach only the questions ac-
tually asked receive responses, while in the non-interactive
approach, if there is no way to anticipate what will be of
interest to the analyst, all questions must receive relatively
accurate responses, which, by the aforementioned results,
leads to blatant non-privacy.

Against this backdrop, Blum, Ligett and Roth revisited
the non-interactive case from a learning theory perspective
[1] and contradicted the above interpretation about the ne-
cessity of limiting the number of queries to be sublinear.
Let X be a universe of data items and C be a “concept” class
consisting of efficiently computable functions c : X → {0, 1}.

Given a database D ∈ Xn, Blum et al. employ the exponen-
tial mechanism of McSherry and Talwar [17] to (inefficiently)
obtain a synthetic database that remarkably maintains ap-
proximately correct fractional counts for all concepts in C
simultaneously, while ensuring a very strong privacy guar-
antee. That is, letting y denote the synthetic database pro-
duced, with high probability over the choices made by the
curator, for every concept c ∈ C, the fraction of elements in
y that satisfy c is approximately the same as the fraction of
elements in D that satisfy c.1

While the Blum et al. result is striking in its generality
and its privacy/utility tradeoff, a direct implementation of
the mechanism takes time superpolynomial in |X| and |C|,
even though objects being manipulated are of bit-length only
poly(n, log |X|, log |C|). In this paper, we investigate the
computational feasibility of non-interactive privacy mech-
anisms, delineating the boundary between efficient and in-
efficient sanitization.

Synthetic Databases. Very roughly, we show that if ei-
ther the universe X of data items or the concept class C is
of size superpolynomial in a computation parameter κ, then
there exists a distribution on databases and a concept class C
for which there is no efficient (in κ) mechanism for privately
generating synthetic databases. It follows that there is no
general efficient implementation of the exponential mecha-
nism. In contrast, if both the concept class and the data
universe are of size polynomial in κ, then not only is there
an efficient mechanism, but the size of the input database

can be surprisingly small, namely O(2
√

log |C| log |X|), that

is |C| may be as large as nO(log n).

Non-synthetic case. What about the seemingly easier
problem of efficiently and privately generating a data struc-
ture that for each c ∈ C, yields an approximation to the
fraction of items in the database that satisfy c? Here we
show a tight connection between hardness of sanitization
and the existence of traitor tracing schemes in cryptogra-
phy [4]. Thus we have here a dichotomy: the good news of
one area (tracing traitors) is the bad news of the other (pri-
vacy preserving data release). This is somewhat similar to,
but actually sharper than, the dichotomy between the exis-
tence pseudo-random functions and (hardness of) learning
general functions[20].

2. PRELIMINARIES AND DEFINITIONS
Let [n] be the set {1, 2, . . . n}. For x, y ∈ {0, 1}n we use

x ◦ y to denote the concatenation of x and y (a string in
{0, 1}2n). For a (discrete) distribution D over a set X we
denote by x ∼ D the experiment of selecting x ∈ X by the
distribution D. A function f(n) is negligible if it is smaller
than any (inverse) polynomial. We let X denote the universe
of data items (database rows), C denote the concept class,
and D denote a distribution on databases. The (random-
ized) non-interactive privacy mechanism is denoted A (we
sometimes refer to A as a sanitizer); typically A will operate
on an input database D ∈ Xn. For a given database D, the
sanitizer A computes an output A(D) that can later be used
to reconstruct information about D. When A has synthetic

1This does not contradict the negative results because of the
size of the error in the case of attacks using a polynomial
number of queries, or the size of the input database in the
case of attacks using an exponential number of queries.

database output, the output of A(D) is itself a synthetic
database y ∈ Xm. Neighboring databases are databases of
symmetric difference 1.

2.1 Privacy Preserving Sanitizers

Definition 2.1 (Differential Privacy [6]). A ran-
domized function A is (ε, δ)-differentially private if for any
pair (D, D′) of neighboring databases and for all sets S of
possible outputs of A: Pr[A(D) ∈ S] ≤ eε·Pr[A(D′) ∈ S]+δ.
If A is (ε, 0)-differentially private (i.e. δ = 0), then we say
it is ε-differentially private.

The sensitivity of a function f is the maximum, over all
paris of neighboring databases D and D′, in the difference of
f ’s values |f(D) − f(D′)|. The Laplace distribution Lap(t)

has density function h(y) ∝ e−y/t, has mean 0 and standard
deviation

√
2t. We usually refer to the Laplace distribution

over integers. Dwork et al. [6] showed that if a function f
has global sensitivity s then the function f(D) + Lap(s/ε)
is ε-differentially private.

The true answer to a query c ∈ C on a database D is
the number (or fraction) of elements in D that satisfy the
predicate c. For c ∈ C we say that A(D) is α-accurate for
c if the difference between the fractional count that A(D)
gives for c and the fractional count D gives for c (sometimes
denoted c(D)) is at most α. We say that A(D) is (α, γ)-
accurate for a concept class C if A(D) is α-accurate for a
1 − γ fraction of the concepts in C (if γ = 0 we sometimes
refer to α-accuracy of A(D) for a class). Our notion of a
sanitizer A’s utility w.r.t. a concept class is below.

Definition 2.2 ((α, β, γ)-Utility). Let C be a concept
class and X a data universe. A sanitizer A has (α, β, γ)-
utility for n-item databases w.r.t. C and X if for any n-item
database D: PrA’s coins [A(D) is (α, γ)-accurate] ≤ β

We are mostly interested in coming up with sanitizers with
γ = 0, however both as an intermediate result and as an
exploration of the limitation of hardness we will consider
the general case.

2.2 Hardness of Sanitizing
In this section we define what it means for a distribution

on databases to be computationally hard to sanitize. Intu-
itively, for a hardness result to be convincing, we would like
to say that it is hard to meet even a weak notion of pri-
vacy (let alone a notion as strong as differential privacy). In
fact, we will say that sanitizing is hard if it is hard even to
avoid leaking input items in their entirety: i.e. some item’s
privacy is always blatantly violated (such leakage is a very
significant breach of privacy). Note that if leaking a few
input items is allowed then sanitizing (with synthetic out-
put) becomes easy: just output a randomly chosen subset of
the input items; with high probably this subset will preserve
utility even with respect to large sets of counting queries.

A distribution of databases is hard to sanitize (with re-
spect to some concept class) if for any efficient alleged san-
itizer, with high probability over a database drawn from
the distribution, one of the database items can be extracted
from the alleged sanitizer’s output. To avoid triviality, we
will also require that when this leaked item is excluded from
the input database (and, say, replaced by a random differ-
ent item), the probability that it can be extracted from the

output is very small. This means that any efficient (alleged)
sanitizer indeed compromises the privacy of input items in
a strong sense. All of our negative results imply such strong
privacy breaches. A formal definition follows.

Definition 2.3. ((µ, α, β, γ, C) Hard to Sanitize Database
Distribution) Let C be a concept class ensemble, X a data
universe ensemble, and µ, α, β, γ ∈ [0, 1]. Let n be a database
size and D an ensemble of distributions, where Dn is over
collections of n + 1 items from Xn, we often denote by
(D, D′

i) ∼ D the experiment of choosing a database of n
elements, and an additional element D′

i from the distribu-
tion D. We think of D as specifying a distribution on n-item
databases (and their neighbors) that is hard to sanitize.

An algorithm is said to be “efficient” if its running time is
poly(n, log(|Cn|), log(|Xn|)).2 We say that D is (µ, α, β, γ, C)-
hard-to-sanitize if the following holds:

There exists an efficient algorithm T such that for any al-
leged efficient sanitizer A the following two conditions hold:

1. With probability 1−µ over choosing a database D from
D and over A’s and T ’s coins, if A(D) maintains α-
utility for a 1 − γ fraction of concepts, then T can
recover one of D’s items from A(D): the probability
(over (D, D′

i) ∼ D, and over A’s and T ’s coins) that
(A(D) maintains (α, γ)-utility) and (D ∩ T (A(D)) =
∅)] is at most µ.

2. For every efficient algorithm A, and for every i ∈ [n],
if we draw (D, D′

i) from D, and replace Di with D′
i to

form D′, T cannot extract Di from A(D′) except with
small probability:

Pr
(D,D′i)∼D,A’s, T ’s coins

[Di ∈ T (A(D′))] ≤ µ

We often drop C when it is clear from the context, and
refer to distributions that are (µ, α, β, γ)-hard to sanitize. In
most of our examples µ will be a negligible function, we use
(α, β, γ)-hard to sanitize as shorthand for (neg(), α, β, γ)-
hard to sanitize (C will be clear from the context).

We conclude this section by observing that in particular, if
a distribution is hard to sanitize as in 2.3, then it is also hard
to sanitize while achieving even weak differential privacy. In
other words hard to sanitize implies hard to sanitize with
differential privacy (the other implication is not true).

Claim 2.1. If a database distribution D is hard to san-
itize with respect to (µ, α, β, γ, C), where µ ≤ min(β, (1 −
8β)/(8n1+a)) for some a > 0, then no efficient sanitizer
that achieves (α, β, γ)-utility with respect to C on databases
drawn from D can achieve (a log(n), (1− 8β)/2n1+a) differ-
ential privacy.

3. HARDNESS: SYNTHETIC DB OUTPUT
We use cryptography to obtain our negative results. As-

sume the existence of an existentially unforgeable signature
scheme in which, given a set of signatures under a given key,
it is infeasible to generate a new signature, either of one

2More generally, we could also speak of hardness w.r.t. t-
time sanitizers. For simplicity, we deal only with hard-
ness w.r.t. poly(n, log(|Cn|), log(|Xn|))-time sanitizers ex-
cept when we note otherwise.

of the messages in the set or of any other message (known
as strong unforgeability or super-secure, see Section 6.5.2
in [11]). The class C for which it is hard to come up with
privacy-preserving synthetic data contains one concept for
each verification key vk. The data universe X consists of the
set of all possible (message, signature) pairs. Assume mes-
sages and signatures have length polynomial in κ. A data
item (m, σ) belongs to the concept c if Verify(vk, m, σ) = 1,
i.e., if σ is a valid signature for m according to verification
key vk. Each database in D will be a set of valid (mes-
sage, signature) pairs, where all signatures are under the
same signing key. Let D ∈R D be a database, and let s be
the signing key used, with corresponding verification key vk.
Assuming that the sanitizer has produced y, it must be the
case that almost all rows of y are valid signatures under vk
(because the fractional count of D for the concept vk is 1).
By the strong unforgeability of the signature scheme all of
these must come from the input database D, contradicting
(any reasonable notion of) privacy.

In the example, both C (the set of verification keys) and
X (the set of (message, signature) pairs) are large. In The-
orems 3.1 and 3.2 we show that we can obtain hardness
results even if either of these is large while the other has
size polynomial in κ. In other words, there is no general
method for efficient generation of privacy-preserving syn-
thetic data, assuming the existence of one-way functions if
|C| of |X| is exp(κ). We note that, under stronger assump-
tions about one-way functions (e.g. sub-exponential time
hardness), hardness results hold for much smaller C, X.

Theorem 3.1. Let f : {0, 1}κ → {0, 1}κ be a one-way
function. There exists a concept class C of size poly(κ),
a data universe X of size exp(poly(κ)), and a distribution
on databases of size poly(κ) that is (µ = neg(κ), α, β, γ, C)-
hard-to-sanitize, for any 4γ + 2α ≤ 1/4 and any noticeable
1− β.

To come up with the hard to sanitize DB we start with
the construction based on signatures outlined above. This
time we have only a single concept that verifies the validity
of signatures: the verification algorithm without the verifi-
cation key hard-wired in. The verification key will now be
included as part of the data items. We construct hard to
sanitize databases by choosing a single verification key and
generating multiple valid signed messages. Now, as in the
case above, no sanitizer can output private synthetic data
that uses the same verification key as the input database.
However, since the verification key is no longer hardwired
into the (single) concept, the sanitizer may just generate
synthetic data with valid signatures under a different key of
its choosing. To prevent the adversary from doing so, we add
more concepts, so that preserving utility for these concepts
forces the sanitizer not to change the verification key used
in the input database. This can be done by adding concepts
that output the bits of the encoding of the verification key,
where the encoding is under a high-distance error correcting
code.

Theorem 3.2. Let f : {0, 1}κ → {0, 1}κ be a one-way
function. For every a > 0, and for every integer n =
poly(κ), there exists a concept class C of size exp(poly(κ)),
a data universe X of size O(n2+2a), and a distribution on
databases of size n that is (µ, α, β, 0, C)- hard-to-sanitize
(i.e. hard to sanitize for worst-case concepts) for α ≤ 1/3,
β ≤ 1/10 and µ = 1/40n1+a.

In this construction we will use pseudo-random functions
[12]: a family of efficiently computable functions, such that
a random function from the family is indistinguishable (via
black-box access) from truly random functions. We will look
at a family of functions with polynomial-size domain and
range. The data items are input-output pairs and there is
a concept for every function in the pseudo-random family
that accepts an input-output pair iff it is consistent with
the function. We generate a hard-to-sanitize database D by
choosing a random function fs in the family, n random in-
puts, computing the n outputs of fs on those inputs, and
putting the input-output pairs in the database. The intu-
ition is that to maintain utility on the concept corresponding
to fs, most of the items in the output of a sanitizer with syn-
thetic data should be input-output pairs consistent with fs.
But fs is a pseudorandom function, and so, for inputs to fs

that were not in the initial database, the sanitizer’s proba-
bility of “guessing” fs’s output is polynomially small. Thus
(with high probability) many of the items that were in the
input database must also be in the sanitizer’s output.

4. POSITIVE RESULTS

4.1 Arbitrary Outputs to Synthetic Data
We begin by observing that a sanitizer with arbitrary out-

put can be transformed into one with a synthetic datasets
output. The main cost of the transformation is an additional
running time and error overhead.

Theorem 4.1. Let X be a data universe, C a concept
class and a A an (ε, δ)-differentially private sanitizer with
utility (α, β, 0) and arbitrary output.

Then there exists a sanitizer A′ that is (ε, δ)-differentially
private and has utility (4α, 2β, 0). The new sanitizer A′ out-

puts a synthetic database of size Õ(log(|C|)·log(1/β)/α2), its
runtime is polynomial in A’s and in (|X|, |C|, 1/α, log(1/β))

Proof. The idea is to run the sanitizer A and then use it
to get (differentially private) counts on all the concepts in C.
We will then use linear programming to come up with a low-
weight fractional database that approximates these counts.
We transform this fractional database into a standard syn-
thetic database by rounding the fractional counts.

The new sanitizer A′ begins by running A on its input
database D, and then for each concept c ∈ C it uses A’s
output to compute a fractional count on that concept. The
input database D is never accessed again and so A′ is (ε, δ)-
differentially private. Let v be the resulting vector of counts,
i.e. vc is the fractional count that A’s output gives on con-
cept c. With probability 1 − β, all of v’s entries are α-
accurate. We now want to extract a “fractional” database
y that approximates these counts. This will be done us-
ing linear programming. For every i ∈ X we introduce a
variable ai ≥ 0 that will “count” the (fractional) number of
occurrences of i in the fractional database y. We represent
the count of concept c in y as the sum of the count of items
that satisfy c. We want all of these counts to be within an
α-accuracy of the respective counts in vc, writing this as a
linear inequality we get:

(vc − α) ·
∑
i∈X

ai ≤
∑

i∈X s.t. c(i)=1

ai ≤ (vc + α) ·
∑
i∈X

ai

When the counts are all within an α-accuracy of the counts

in vc, it is also the case that (with probability 1 − β) they
are all within a 2α-accuracy of the correct counts.

We write a linear program with two such constraint for
each concept (a total of 2|C| constraints). A′ tries to find a
fractional solution to this linear program. To see that such a
solution exists, observe that the database D itself is α-close
to the vector of counts v, and so there exists a solution to
the linear program (in fact even an integer solution), and
hence A′ will find some fractional solution.

We conclude that A′ can generate a fractional database
with (2α, β, 0)-utility, but we really want a synthetic (inte-
ger) database. To transform the fractional database into an
integer one, we first scale the fractional database so that its
total weight is 1, i.e.

∑
i∈X ai = 1. Now round down each

fractional point to closest multiple of α/|X|, this changes
each fractional count by at most a α/|X| additive factor,
and so the rounded counts have (3α, β, 0) utility. Now we
can treat the rounded fractional database (which has total
weight 1), as an integer synthetic database of (polynomial)
size at most |X|/α. If this size is too large, we can reduce it

by randomly sampling m = Õ(log(|C|) · log(1/β)/α2) items.
With probability 1−β the resulting database maintains 4α-
utility on all of the concepts. Taking a union bound (over
the probability of A failing and the probability of the ran-
dom sub-sampling failing) we get (4α, 2β, 0)-utility.

4.2 On-Average Utility
In this section we show how to transform a sanitizer with

synthetic data that gives worst-case utility for any small set
of concepts from a class C into a sanitizer that gives average-
case utility for the entire class C. This transformation works
for any concept class C and data universe X as long as the
output of the sanitizer is not too large.

Theorem 4.2. Let C be a concept class that can be ef-
ficiently sampled and X a data universe, and let A be an
(ε, δ)-differentially private sanitizer that, given a subclass
C′ ⊆ C of up to s concepts, achieves (α, β, 0)-utility for all
the concepts in C′. Furthermore, A’s output is a synthetic
data set of total size m bits.

Then there is an (ε, δ)-differentially private sanitizer A′

that achieves (α, 2β, (m + log(1/β))/s) utility for the class
C. The running time of A′ is polynomial in A’s, and it also
outputs a synthetic data set of total size m bits.

Proof. The sanitizer A′ works by choosing at random
a set C′ of s concepts from C and running A on its input
database D with the concepts in C′, outputting a small m-
bit sanitization A(D). This sanitization is A′’s output and
so it is clearly (ε, δ)-differentially private.

For utility, we claim that with probability 1− β over the
selection of the concept set C′ there does not exist an m-
bit output sanitization y and a collection Cy of concepts of
size |C|/s · (m + 2 log(1/β)) such that y is α-accurate for
all of the concepts in C′, but bad for all the concepts in
Cy. Once we prove this, we know that with high probability
over C′, whenever A(D) is accurate for all of the concepts in
C′, it is also accurate for all but |C|/s · (m + 2 log(1/β)) of
the concepts in C. Taking a union bound, A′’s total failure
probability is at most 2β.

Examine a potential m-bit output y of A, and say that y is
“bad” if it gives counts that are not α-accurate for a concept
set Cy of total size |C| · (log(1/β) + m)/s (within C). For
such a bad y, what is the probability (over C′) that y gives

accurate counts for every concept in C′? This is exactly the
probability that none of the concepts in C′ are in Cy, or

(1− |Cy|/|C|)|C
′| ≤ (1− (log(1/β) + m)/s)s

≤ e−(log(1/β)+m) ≤ β · 2−m

Now, taking a union bound, the probability there exists an
m-bit output y accurate on the concepts in C′ but inaccurate
on a set of size |C| · (log(1/β) + m)/s is at most β.

Remark 4.1. If, instead of producing a synthetic data
set, the sanitizer A used in Theorem 4.2 produced an ar-
bitrary data structure accurately covering C′, we would not
know how to argue that it also gives information about C\C′.
This is all we need, but we do not in general know how to
interpret an arbitrary data structure for C′ on concepts not
in C′. In contrast, an item from the data universe always
either does or does not satisfy an arbitrary concept in C.

Note that if the sanitizer produces a synthetic database,
then we can ensure the condition in Theorem 4.2 on the
smallness of the output by subsampling, at a small cost
in utility: for any sanitizer A with synthetic output and
(α, β, γ)-utility, we can randomly sub-sample Õ(log(1/β) ·
log(|C|)/α2) items. This gives us an m-bit output, where

the value of m is m = Õ(log(|X|) · log(1/β) · log(|C|)/α2).
With probability 1 − β the counts of the small subsampled
synthetic database are α-close to those of A’s output, and are
thus 2α-accurate for all of the concepts A was accurate on.
Thus we get a sanitizer with small output and (2α, 2β, γ)-
utility and small output (there is no loss in privacy).

Average-Case Utility for small X. When X is not too
large, by Theorem 4.1 we can transform any sanitizer A on
small concept classes into one that outputs small synthetic
databases. This means that if we permit sanitizers to run
in time poly(|X|), any worst-case sanitizer for small sets
of concepts (with or without synthetic data) can be trans-
formed into an average-case sanitizer for larger sets of con-
cepts. Even for an exponential-size concept class C, we can
choose a polynomial size collection of random concepts C′,
efficiently sanitize w.r.t. C′ (with a small synthetic data out-
put) and get utility for all but a small polynomial fraction
of the concepts in the exponential class C.
4.3 Main Positive Result

In this section we construct an efficient sanitizer that has
small error even when the concept class C is large:

Theorem 4.3. Let C be a concept class and X a data
universe. Fix any desired ε > 0 and a security parameter
κ s.t. exp(κ) > |C|. There is an (ε, exp(−κ))-differentially
private sanitizer A with utility:

(Õ(
κ5 ·

√
log |X| · 2

√
log(|C|)

ε · √n
), exp(−κ))

A’s runtime is poly(n, |C|, |X|, κ).

Construction Overview. The construction is recursive:
we start out wanting to construct a sanitizer for a large con-
cept class C of size |C|. We reduce this to the goal of con-
structing a sanitizer for any subset C′ ⊆ C of size |C|/f where
f is some factor by which we shrink the concept class. The

reduction is stated as Lemma 4.4 below, and the intuition
follows the proof of Theorem 4.2. Say we have a sanitizer
for sets of |C|/f concepts with small synthetic output: we
sample a set of |C|/f concepts uniformly from C and run
this sanitizer on them. With overwhelming probability, the
resulting synthetic database y gives accurate counts for all
but a small set of concepts in C. We release (in a privacy-
preserving manner) the “names” of the concepts for which
y does not give accurate counts, and we also release these
concepts’ counts in the input database D (adding noise to
make sure these counts also preserve privacy). Releasing
these “names” in a privacy-preserving manner is one of the
main technical obstacles, as for each of the |C| concepts in
the class we want to release (in a privacy-preserving manner)
whether y gives accurate counts. This is a lot of informa-
tion to release, essentially we are answering a query for each
c ∈ C, and the challenge is to answer all of these queries
while maintaining privacy, see the details below.

The sanitizer for sets of |C|/f concepts used in the above
reduction is constructed recursively via the same construc-
tion. The output size for the sanitizer constructed above is
large (and it is not synthetic data), but we can reduce it to
be a small synthetic output using Theorem 4.1. We do this
recursively d times until in the end we only need to construct
a sanitizer on sets of |C|/fd concepts. In each of these recur-
sive steps we pay additive losses in the privacy parameters
and in β and a constant multiplicative factor in the α accu-
racy parameter (a factor of 4 comes from using Theorem 4.1
to generate synthetic data, in the actual construction there
will be additional losses in accuracy). The recursion termi-
nates once the concept class size is small enough to allow us
to sanitize using a very simple sanitizer.

To get a better (but still rough) idea of the parameters,
especially the dependence of the error on |C|, observe that
at the“bottom”of the recursion we have roughly |C|/fd con-
cepts remaining, where we need |C|/fd > n to guarantee that
a synthetic dataset that fits these concepts at the base of the
recursion is (1/

√
n)-fractionally accurate for the other con-

cepts in the next recursion level up. We sanitize for these re-
maining concepts using the techniques of [5, 8] by outputting
noisy counts for all the concepts (using binomial noise). This

adds (non-fractional) error roughly proportional to
√
|C|/fd

(at least
√

n). In each of the recursive steps we are also
adding noise at least

√
f to sets of counts of size roughly

f (actually more noise is being added). Finally, in each
of the d levels of the recursion the error is blown up by a
factor of 4 when we transform the output into a synthetic
dataset. In total we get that the global (non-normalized) er-

ror is greater than roughly 4d · (
√
|C|/fd +

√
f) (but not too

much greater). To optimize this we choose f = 2
√

log(|C|)

and d =
√

log(|C|), and get that the dependence of the er-

ror on |C| is roughly 2O(
√

log(|C|)), or |C|o(1). We proceed to
prove this result, starting with a Lemma that will be used
to recurse in the construction.

Lemma 4.4. Let C be a concept class and X a data uni-
verse. Let Asmall be an (εsmall, δsmall)-differentially pri-
vate sanitizer that, given any concept set Csmall ⊆ C of
size ssmall, achieves (αsmall, βsmall)-utility on the concepts
in Csmall. Say Asmall has synthetic output of size m bits.

Choose a desired ε and security parameter κ such that
exp(κ) > |C| and (βsmall +exp(−κ)) ≤ min(1/2, ε/8). There
exists a sanitizer A for the entire class C. This sanitizer A is

(εsmall + ε, δsmall + βsmall + exp(−κ))-differentially private,
it has utility:

(αsmall +
8κ4 · √m

ε · n ·
√

|C|
ssmall

, βsmall + exp(−κ))

The running time of the new sanitizer is poly(n, |C|, log |X|, κ)
plus a single call to Asmall.

Proof Sketch. We choose a random subset Csmall of
ssmall concepts in C and run the sanitizer Asmall on this
set with parameters εsmall, δsmall, α, β (we need an input
database of size nsmall). Let y be the m-bit output of Asmall.

As in Theorem 4.2, with overwhelming probability 1 −
exp(−κ) over the choice of Csmall, the set Cbad of concepts
that y is not α-accurate on is of size smaller than

sbad = |C| · (κ + m)/ssmall

The sanitizer A outputs this (differentially private) y in the
clear. There remains, however, the set Cbad of concepts for
which y is not accurate. We would like to output which
of the concepts are in Cbad and then separately release a
differentially private sanitization that has good utility on
this (much smaller) set of concepts. The problem is that
the set of concepts that are in Cbad depends on the input
database D, and so we must be careful to release it in a
differentially private manner.

For each concept c ∈ C we want to release a bit vc that
indicates whether y approximates it well: vc = 0 indicates
that y approximates the concept fairly well and vc = 1 indi-
cates that it does not. Our goal is to release a differentially
private indicator vector v with all the indicator bits for all
the functions.

Indicator Vector. To release the indicator bit vector v,
we compute for each concept c, the “distance” of the input
database D from the output y:

dc,y(D) = |c(D)− c(y)|
We add binomial noise to these distance counts to ensure
privacy (see [5, 8]). The noise is added to ensure that for
any collection of at most sbad concepts, their noisy distance
counts are (ε/2, exp(−κ))-differentially private. The noise
is binomial, generated by adding 4sbad · κ4/ε2 random bits
and normalizing by dividing by n. With all but exp(−κ)
probability, the noise is thus bounded to be at most:

α′ = 2κ3 · √sbad/(ε · n)

For a concept c ∈ C, let uc be its noisy distance count. While
these noisy distance counts are (ε/2, exp(−κ))-private for
small (up to sbad size) collections of concepts, the accumu-
lated noisy distance counts for all |C| of the concepts may
not be private at all.

Now, for every concept c ∈ C, we want to release its indi-
cator bit. This is done by rounding the noisy count uc:

vc =
{

0 if uc ≤ α + 2α′

1 if uc > α + 2α′

The intuition is that if the difference between c’s counts
on D and y is smaller than α + 2α′, then 0 becomes the
likely indicator bit, whereas if the difference is larger than
α+2α′, then 1 becomes more likely. Now, because the noisy
distance counts {uc} are α′ accurate for all c’s, the indicator
bits vc indeed provide an excellent indication of whether the
output y accurately approximates the concept c’s count on

the database D. In fact, they even an excellent indication
of whether y accurately approximates the concept c on any
neighboring database D′.

Claim 4.5. For any output y, for all concepts c, with all
but exp(−κ) probability: (i) if the difference between D and
y’s counts on c is at most α + 2/n then vc is 1. (ii) if the
difference between D and y’s counts on c is at least α+4α′−
2/n then vc is 0.

The above claim shows that for concepts c that y either
“fits” very well (about α-close to their counts in D), or for
those that y fits very poorly (about α + 4α′-far), their in-
dicator bit vc is with overwhelming probability either 0 or
1. Moreover, this is even true for the given y even when
we compute the vc bits using a neighboring database D′ of
D! This fact will be useful for analyzing privacy, as essen-
tially the only indicator bits we need to “worry about”when
moving from D to D′ are the ones whose distance counts
(between D and y) are between α and α + 4α′. In particu-
lar, we only “worry” about concepts for which y is not very
accurate w.r.t. D. By the smallness of sbad these concepts
are relatively few.

The sanitizer A releases the vector v indicating which con-
cepts y is accurate for. Finally, for each of the concepts c
for which vc = 1, it computes c’s count in the input D, adds
binomial noise a la [5, 8], and releases the noisy count (noise
is generated by adding 4sbad · κ4/ε2 random bits).

In summary, A’s output includes the synthetic database
y, the vector v indicating which concepts y “fits” well, and
a collection of noisy counts for all the concepts that y does
not fit. Details are omitted for lack of space.

Utility. The probability that there exists a concept c for
which y is not α + 4α′-accurate but vc = 0 is at most
exp(−κ) (Claim 4.5). Thus with overwhelming probabil-
ity, for the concepts for which vc = 0, the output y in-
deed gives a α+4α′-accurate count. For the concepts where
vc = 1 we output a noisy count using binomial noise as
above. This guarantees (α+α′, exp(−κ))-accuracy for all of
these concepts as well. In total, we get (α + α′, exp(−κ))-
utility. Recall that sbad = |C| · (κ + m)/ssmall, and so we
get that the sanitizer’s accuracy is: (α + (8κ4 · √m/(ε · n)) ·√
|C|/ssmall, exp(−κ)).

We use binomial noise to sanitize the small concept class
C′ remaining at the basis of our recursive construction. We
call this “base sanitizer” A0. To prove Theorem 4.3 we take

α0 = 1/
√

n, and set d =
√

log(|C|)/2 and f = 22
√

log(|C|).
This yields a sanitizer for concept classes of size |C| whose
error α = αd satisfies:

α = O(
κ5 · log n · log |C| ·

√
log |X| · 2

√
log(|C|)

ε · √n
).

4.4 Sanitizing Dense Datasets
We show how to sanitize in time roughly polynomial in |X|

(and only logarithmic in |C|) with error roughly
√
|X|/n.

Theorem 4.6. Let X be a data universe an C a concept
class. Take κ to be a security parameter. There exists an
ε-differentially private sanitizer A with utility:

(
√
|X| · log(|X|) · κ2 · log(|C|)/(ε · n), exp(−κ))

A runs in time poly(|X|, n, log(|C|), log(κ), log(1/ε)).

The sanitizer A, for each data item i ∈ X, computes how
many times i appears in the input database D and adds
to this count noise according to the Laplace distribution
Lap(2/ε). The sanitization is the vector u of all these counts.

We can think of a type x (an element) in the universe X
as a binary vector, with xj = 1 if cj(x) = 1, and xj = 0
otherwise. For each type x we can define the corresponding
negative type −x consisting only of 0’s and −1’s. The sani-
tizer outputs a collection of counts, one per type x ∈ X. We
can create a “pseudo-synthetic” database with the types in
±X.

5. THE TRAITOR TRACING CONNECTION
In this section we show that hardness of sanitizing and

traitor tracing are essentially equivalent.

Traitor Tracing. Traitor tracing schemes enable a pub-
lisher to trace a pirate decryption box to a secret key (of
a treacherous user) that was used to create the box. For
example, consider a content provider who wishes to broad-
cast his content to a group of subscribers. To do this, he
gives each of the subscribers a decryption box that uses a
secret key. Unfortunately, a subscriber might now build and
distribute a pirate decoder. Traitor tracing schemes ensure
that if such a pirate decoding box is found, the content dis-
tributer can run a tracing algorithm to recover at least one
private key used to create the box. Tracing schemes were
introduced by Chor, Fiat and Naor [4] and there are many
constructions with various choices of the parameters (see [2]
for recent references).

A (private-key) traitor-tracing scheme consists of algo-
rithms Setup, Encrypt , Decrypt and Trace. The Setup al-
gorithm generates a key bk for the broadcaster and N sub-
scriber keys k1, . . . , kN . The Encrypt algorithm encrypts
a given bit using the broadcaster’s key bk. The Decrypt
algorithm decrypts a given encryption using any of the sub-
scriber keys. The tracing algorithm gets the key bk and or-
acle access to a (pirate) decryption box3 and outputs a key
ki (of some user i ∈ {1, . . . , N}) that was used to create the
pirate box.4 An important parameter of a traitor-tracing
scheme is its collusion-resistance: a scheme is t-resilient if
tracing is guaranteed to work as long as no more than t
keys are used to create the pirate decoder. When t = N ,
i.e. tracing works even if all the subscribers join forces to
try and create a pirate decoder, the scheme is said to be
fully resilient. The other parameters that we will be espe-
cially interested in are the scheme’s ciphertext and private
key lengths. A fuller definition follows.

Definition 5.1. (t-resilient Traitor-Tracing Scheme). A
scheme (Setup,Encrypt ,Decrypt ,Trace) is a t-resilient traitor
tracing scheme if (i) the ciphertexts it generates are seman-
tically secure (see [13]), and (ii) no PPT adversary A can
“win” in the following game with non-negligible probability
(over the coins of Setup, A,Trace):

The adversary A receives the number of users N and a
security parameter κ and (adaptively) requests the keys of up
to t users {i1, . . . , it}. The adversary then outputs a pirate

3We assume that the box is stateless; this is without loss of
generality by the work of Kiayias and Yung [16].
4Here we assume the trace algorithm output the key of a
user, rather than just the user’s name. The two definitions
are equivalent as all keys can be included in the tracing key.

decoder Dec. The Trace algorithm is run with the tracing
key and black-box access to Dec, it outputs the key of a user
i ∈ [N] error symbol ⊥. We say that an adversary A “wins”
if it is both the case that Dec has a non-negligible advantage
in decrypting ciphertexts and the output of Trace is not in
the set of keys of users {i1, . . . , it}.

A one-time t-resilient traitor-tracing scheme is one where
semantic security is only guaranteed to hold against adver-
saries that are given only a single ciphertext (as opposed to
being given access to a sequence of encryptions or an en-
cryption oracle).

5.1 Traitor Tracing Implies Hard Sanitizing
In this section we show, in Theorem 5.1, that traitor trac-

ing schemes can be used to construct hard-to-sanitize distri-
butions. The result is later used, together with the traitor-
tracing scheme of [3], to separate efficient and inefficient
sanitization.

Theorem 5.1. (Traitor Tracing Implies Hard Sanitizing).
If there exists a fully resilient (i.e. n-resilient) traitor-tracing
scheme with private-key size ksize = ksize(n, κ) and cipher-
text size csize = csize(n, κ), then there exists a concept
class ensemble C, where Cn has size 2csize , and a data uni-
verse ensemble X, where Xn has size 2ksize , and a database
distribution ensemble D, such that for any noticeable func-
tion f(n) = 1/poly(κ) the ensemble D is (µ = neg(n), α =
1/2− f(n), β = 1− f(n), γ = 0, C)-hard-to-sanitize.

Separating Efficient and Inefficient Sanitization. Us-
ing this theorem, together with a traitor-tracing scheme
of Boneh, Sahai and Waters [3], we obtain a hardness-of-
sanitizing result. BSW construct a fully resilient (for any
coalition size) traitor-tracing scheme with private keys of
size O(κ) and ciphertexts of length O(

√
n · κ), where κ is a

security parameter. The security of the scheme relies on sev-
eral hardness assumptions over bilinear groups of composite
order.5

Plugging this construction into Theorem 5.1, we obtain
for any n and security parameter κ, a data universe X of

size |X| = 2κ, a concept class of size |C| = 2
√

n·κ, and a
(f(n), 1/2 − f(n), 1 − f(n), 0)-hard-to-sanitize distribution
D over databases of n items from X. Compare this with the
(exponential-time) sanitizer of BLR: their sanitizer is guar-
anteed to give differential privacy as long as the database
size satisfies n = Θ(log(|C|) · log(|B|)) which is Θ(

√
n · κ2)

(here we take α, β, ε to be constant). Taking the security
parameter to be a small polynomial in n, we conclude that
the task of sanitizing databases drawn from the distribu-
tion D is information-theoretically possible (for unbounded
sanitizers), but computationally intractable:

Corollary 5.2. (Separating efficient and unbounded san-
itizers, informal). Under the appropriate hardness assump-
tions on bilinear groups of composite order, there exists a
data universe, a concept class and a database distribution
where sanitization is possible in exponential time, but im-
possible in polynomial time.
5Specifically, they need to assume the Decision 3-Party
Diffie-Hellman Assumption, the Subgroup Decision Assump-
tion, and the Bilinear Subgroup Decision Assumption. See
[3] for a precise statement of these assumptions and the re-
sults.

Proof Idea for Theorem 5.1. Take a traitor tracing
scheme (Setup,Encrypt ,Decrypt ,Trace) as above. We con-
struct a hard to sanitize concept class and database distri-
bution.

The data universe. Consider the data universe of possibly
keys X = {0, 1}ksize(n+1,κ).

The concept class. C will contain a concept for every
possible ciphertext. I.e. for every m ∈ {0, 1}csize(n+1,κ). The
concept cm on input a key-string k outputs the decryption
of m using the key k (if the messages are longer than one
bit, output the least significant bit).

Hard-to-sanitize distribution. The distribution D on
databases uses Setup to generate n + 1 decryption keys for
the users, n of these keys are used (at random) to generate
the n entries of the database D. The n + 1-th key is the
extra item D′

i.

Intuition. The intuition is that for a concept correspond-
ing to a valid encryption of a 0 or 1 message, all the keys
in the database decrypt it correctly and output 0 or 1 re-
spectively. So we can view any sanitizer that maintains
(1/2− f(n), f(n), 0) utility as an adversary that with prob-
ability f(n) outputs an object that decrypts encryptions of
0 or 1 correctly. We can use the traitor-tracing Trace algo-
rithm on such a sanitizer to trace one of the keys in the input
of the sanitizer. More formally, we prove the two claims be-
low:

Claim 5.3. For any alleged PPT sanitizer A with (α =
1/2 − f(n), β = f(n), γ = 0)-utility, where f(n) is notice-
able, the probability (over (D, D′

i) ∼ D and A’s coins) that
(A maintains α-utility) and (D ∩ Trace(A(D)) = ∅) is at
most neg(κ).

Claim 5.4. For any PPT A and any i ∈ [n]:

Pr
(D,D′i)∼D, E’s coins

[
Di ∈ Trace(A(D′))

]
= neg(κ)

We conclude that the database distributionD is (neg(κ), 1/2−
f(n), f(n), 0, C)-hard-to-sanitize.

5.2 Hard Sanitizing Implies Traitor Tracing
In this section we show that hard-to-sanitize database dis-

tributions can be used to construct traitor-tracing schemes.
Note that we require that it is hard to sanitize even with
a small (but noticeable) γ, i.e. it is hard to sanitize while
maintaining utility for all but a small fraction of the con-
cepts. It is interesting to ask whether the same holds even
for smaller γ or even γ = 0.

Theorem 5.5. (Hard Sanitizing Implies Traitor Tracing).
Let C be an ensemble of concept classes, X an ensemble
of data universes, and D a distribution that for every no-
ticeable function f(n) = 1/poly(n) is (µ = neg(n), α =
O(1/log(n)), β = 1−f(n), γ = O(1/log(n)), C)-hard-to-sanitize.
Then there exists an n/polylog(n)-resilient one-time traitor
tracing scheme, with private keys of size log(|X|)·polylog(n)
and cipher-text length log(|C|) · polylog(n). The scheme is
secure against time poly(n, log(|C|), log(|X|)) adversaries.

Proof. (Intuition). For a hard-to-sanitize distribution,
we are guaranteed that for any sanitizer with good utility

we can “trace” one of the items in its input. Given a hard-
to-sanitize database distribution and concept class, the idea
will be to use a randomly drawn n-item database as a “mas-
ter key”, where the secret used to decrypt messages is the
counts of random concepts on this database. To give users
private keys, we can randomly partition the database into
n/polylog(n) sets of polylog(n) items each, each such set
will be a “key”. These sets are large enough that with over-
whelming probability their counts on a random collection of
say polylog(n) concepts are all close to the counts of the orig-
inal database. We will to design an encryption scheme where
decryption is equivalent to computing approximate counts
on random concepts. Once we do this, the intuition is that a
decryption box can be used to compute approximate counts,
viewing this box as a sanitization of the database we con-
clude (because sanitizing is hard) that the decryption box
can be “traced” to the keys (database items) that were used
to create it.

In order to ensure that all keys decrypt the same way we
add noise and round the counts in a way that ensures that as
long as two sets of counts are close they will (with very high
probability) be rounded to exactly the same rounded counts
(in a different setting, a similar idea was used by Saks and
Zhou [18]). Now we can extract a hardcore bit of the noisy
rounded counts and use it to encrypt a message, and all of
the users will be able to decrypt a ciphertext (except with
some low error probability).

Using the above scheme, any decryption box can be used
to compute approximate counts for a large random collection
of concepts with noticeable probability. We use a uniform
direct-product theorem of [14] to show that this, in turn,
means that a decryption box can be used to build a proce-
dure that with noticeable probability computes approximate
counts correctly for all but a small fraction of the concepts.
We can treat such a procedure as an alleged sanitizer, and
from the hardness of sanitizing the database distribution
we can use the algorithm T (from the hardness of sanitiz-
ing guarantee) to “trace” a database item in the procedure’s
input. The user whose key contains that item must have
colluded to build the decryption box. A full description and
proof follow.

The Scheme. We now describe the Setup, Encrypt and
Decrypt algorithms of the traitor tracing scheme. We first
analyze these algorithms and then present the Trace algo-
rithm and complete the proof of the theorem. Throughout
this section “efficient” algorithms are those that run in time
poly(n, log(|C|), log(|X|)).
The Setup Algorithm Choose an n-item database D from
the distribution D. Take s = polylog(n) to be a size for
subsets of items from D. The algorithm forms n/s keys
by dividing at random the n items in D into n/s disjoint
subsets, each of s items. The i-th player’s key is just the i-
th subset, and so keys are indeed of size log(|X|)·polylog(n).
The broadcast key is simply the collection of all secret keys.

The Encrypt Algorithm receives a message bit b to en-
crypt and a private key which is just a set of s items.6

It chooses uniformly and at random ` = polylog(n) con-
cepts c1, . . . , c` ∈ C. For each of these concepts, it com-

6In traitor tracing schemes encryption is usually done using
a broadcast key. We construct a scheme where any private
key can be used for encryption.

putes the fraction of items in the key that satisfy this con-
cept, and then chooses a uniformly random noise value t ∈
{−50/log(n),−49/log(n), . . . , 50/log(n)} and adds t to all
the fractional counts. The Encrypt algorithm then rounds
all the (noisy) fractional counts down to the nearest multi-
ple of 100/log(n). Let the resulting vector of rounded noisy
fractional counts be v = (v1, . . . , v`).

The Encrypt algorithm extracts a hard-core bit of v and
XORs this hard-core bit with the message bit b in order to
encrypt it. To do this, it chooses a random bit vector r s.t.
|r| = |v| and outputs the encryption:

Enckey(b) = (c1, . . . , c`, t, r, 〈v, r〉 ⊕ b)

The Decrypt Algorithm gets as input a private key and
a ciphertext (c1, . . . , c`, t, r, cipher). It proceeds similarly to
the Encrypt algorithm and computes, using the items from
its given private key and (c1, . . . , c`, t) from the ciphertext, a
vector of rounded noisy fractional counts v′. It then outputs
the decrypted message as: cipher ⊕ 〈v′, r〉.

Claim 5.6. For any message b, with probability 9/10 over
Setup’s and Encrypt’s coins, for any pair of private keys
ki, kj we get that Decrypt(kj ,Encrypt(ki, b)) = b.

We now present a helpful claim that will be used to ar-
gue both semantic security and traitor tracing (with good
parameters). We will need to transform an algorithm that
computes correct approximate counts simultaneously on ` =
polylog(n) randomly chosen concepts (c1, . . . , c`) with non-
negligible probability, into a procedure that with noticeable
probability over some initial coin tosses correctly computes
approximate counts on all but a small fraction of the con-
cepts. This is essentially a hardness amplification question,
and we use the recent results of [14], which we restate here
for the case of amplifying the hardness of computing ap-
proximate counts (usually hardness amplification is used to
amplify the hardness of precisely computing a function).

Claim 5.7 ([14] restated). Let M be an efficient pro-
cedure that with noticeable probability 1/q(n), given ` =
polylog(n) random concepts (c1, . . . , cl), achieves α-utility
on all of the concepts. Then M can be used to construct an
efficient procedure M ′ such that with probability Ω(1/q(n))
(over some initial coin tosses), the procedure M ′ achieves
3 · α-utility for all but a 1/ log(n)-fraction of the concepts.

Tracing. We are now ready to present the Trace algo-
rithm. Note that semantic security follows from the trac-
ing property. The idea is to transform an adversary A that
creates a decryption box into an alleged sanitizer for the
database D used to generate the keys. We can then use the
algorithm T from the hardness-of-sanitization guarantee to
trace one of the database items that was in A’s collection
of keys. Throughout the analysis we assume that for the
D used to generate the keys (i.e. chosen according to the
hard-to-sanitize distribution D), indeed the two conditions
of hardness-of-sanitizing (Conditions 1 and 2 of Definition
2.3) hold. This is guaranteed to occur except with negligible
probability.

Let A be an adversary that asks for some of the decryption
keys and creates (with noticeable probability 1/p(n)) a de-
cryption box M that decrypts a random ciphertext correctly
with probability 1/2 + λ.

A decryption box can be used to predict the counts of
a collection of ` concepts with noticeable probability. The
Trace algorithm first uses the box M to generate a polyno-
mial size list of algorithms {M1, . . . , Mpoly}, one of which
correctly predicts the count of a random concept with very
high probability. We treat each of these algorithms as a san-
itization. Trace runs T on each of the algorithms Mj and
outputs the key (say the first) that contains an item that
was in T ’s output when run on one of these algorithms (or
⊥ if such a user does not exist).

The analysis will use the fact that one of the Mj ’s has
good utility, and so from the hardness of sanitizing, with
overwhelming probability T ’s output on the “good” Mj has
an intersection with one of the keys. We will also show that
with high probability all the items in T ’s output that are also
in D are ones that were in keys used by the traitor-tracing
adversary A.

Claim 5.8. Let A be any efficient traitor-tracing adver-
sary that with noticeable probability 1/p(n) outputs a decryp-
tion box M that has noticeable decryption advantage λ.

With all but negligible probability, when A generates a de-
cryption box M with decryption advantage λ, the Trace pro-
cedure run on M outputs one of the keys used by A.

Proof. We use the algorithm T as a traitor-tracing pro-
cedure on the decryption box M . As a first step, we view A
(the traitor-tracing adversary) as an alleged sanitizer. We
know that with probability 1/p(n) over the the selection of D
and the adversary A’s coins, the adversary outputs a “good”
decryption box M . This means that for a random tuple
(c1, . . . , c`, t), with probability at least λ/2 over the tuple,
the distinguishing advantage of M on random ciphertexts
created using that tuple is at least λ/2. By the Goldreich-
Levin Theorem, we can use M to output a set of O(1/λ2)
count vectors. With high probability, one of these count
vectors will be the correct rounded noisy fractional count
vector and is thus a 100/log(n)-approximation to the counts
of the database D on all of the concepts (c1, . . . , c`).

The Trace algorithm can now use the box M to generate
a list of s = O(n/λ2) boxes M1, . . . Ms such that with over-
whelming probability one of the boxes, say Mj , predicts the
count of a random concept with good accuracy with very
high probability. We treat each of these boxes as a sanitiza-
tion, and we treat A as a sanitizer that outputs one of the
boxes at random. We can thus run the algorithm T on all
of these alleged sanitizations.

With probability 1/(s · p(n)) over the selection of D and
the coins of A, it outputs a “good”box Mj , which is a saniti-
zation that is O(1/ log(n))-accurate for all but a O(1/ log(n))
fraction of the concepts. Viewing A as a sanitizer, by the
(neg(n), α = O(1/log(n)), β = 1 − f(n), γ = O(1/log(n)))-
hardness of sanitizing D, and as long as f(n) ≥ p(n) · n/λ2,
we get that this alleged sanitizer falls within the hard-to-
sanitize regime of parameters. This means that when M is
a decryption box with advantage λ, when we run T on the
“good” box Mj we constructed from M , with overwhelming
probability it outputs some element Dk ∈ D. In particular,
with overwhelming probability Trace will output the name
of some user (who has item Dk in his key). It remains to
show that with high probability this user was indeed a col-
luder, i.e. that all of the items in T ’s output that are also in
D are ones that were in user keys used by the traitor-tracing
adversary A.

First note that if A got all the keys as input then we are
done. It remains to show that when A only asks for some
(but not all) of the keys, T only outputs items of D that are
in one of A’s input keys (except with negligible probability).

Suppose this is not the case: A (adaptively) chooses a set
S of not all the database items, and outputs a decryption box
M with advantage λ. When we run Trace on this box, with
noticeable probability it outputs an item Dk ∈ D such that
Dk /∈ S. This will contradict Condition 2 of the hardness of
sanitizing D. Let us re-examine that condition, it stipulates
that if we replace any Di ∈ D with the (unique) item D′

i,
the probability that, when we run T on the output of any
efficient procedure on input D′, the output contains Di is
negligible.

To see that A as above contradicts condition 2, consider
running the Trace algorithm to generate the list of boxes
M1, . . . , Ms and running T on one of these boxes at ran-
dom. We assumed (for contradiction), that with noticeable
probability T ’s output contains Dk that was not in the in-
put item set S. Now choose at random an item i ∈ [n] and
replace Di with D′

i to obtain a new database D′. Whenever
the above event occurred and T ’s output contained Dk, if
we run the same procedure on the modified D′ (where we
choose i at random and replace Di), the probability that
i = k and the procedure’s output still contains Di is at least
1/n (because i was chosen uniformly at random). In total,
the probability that the output of T on a random box from
the collection M1, . . . , Ms contains Di is noticeable, contra-
dicting Condition 2 of the hardness of sanitizing D.

6. CONCLUSIONS AND OPEN PROBLEMS
We have provided an almost complete characterization of

when general methods for efficiently manufacturing a syn-
thetic database maintaining approximately correct fractional
counts for all concepts in C, while ensuring a strong privacy
guarantee, exist. We have shown an equivalence between
hardness of sanitizing with an arbitrary data structure and
the existence of traitor tracing schemes.

Is it possible to lower the dependence of the error in our
positive results to polylogarithmic in the sizes of the uni-
verses of concepts and data? It is conceivable that a differ-
ent type of recursive algorithm, perhaps with fewer calls to
the linear programming procedure for synthesizing database
(Section 4.1) or a better method for creating the indicator
vector v, would yield such a result. It is also worth exploring
the connection to boosting algorithms [19].

Are there tracing traitor schemes that are fully resilient
and yet have keys and ciphertext lengths independent of
the number of users? This would yield a relatively small
concept class ensemble that cannot be sanitized. Another
implication for such schemes would be for showing hardness
of learning privately, an issue considered by [15].

Finally, there are many domains where we do not know
of an efficient privacy preserving sanitizer. One example is
that of half-spaces, where the concepts are half-spaces and
the data items are points. [1] gave an efficient algorithm,
but one that answers not necessarily for the given half-space
query but for a near half space. There are many other geo-
metric type queries where we do not know whether a good al-
gorithm exists and it is conceivable that the tools and mech-
anism developed for our main positive result would be help-
ful, especially since they are not inherently expensive (e.g.
sampling and rounding). See [10] for very recent work on

differentially private coresets; these are weighted pointsets,
essentially synthetic databases for geometric problems.

7. REFERENCES
[1] A. Blum, K. Ligett, and A. Roth. A learning theory

approach to non-interactive database privacy. In
STOC, pages 609–618, 2008.

[2] D. Boneh and M. Naor. Traitor tracing with constant
size ciphertext. In ACM Conference on Computer and
Communications Security, pages 501–510, 2008.

[3] D. Boneh, A. Sahai, and B. Waters. Fully collusion
resistant traitor tracing with short ciphertexts and
private keys. In EUROCRYPT, pages 573–592, 2006.

[4] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In
CRYPTO, pages 257–270, 1994.

[5] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In S. Halevy and T. Rabin, editors, First
Theory of Cryptography Conference (TCC), volume
3876, pages 265–284. Springer-Verlag, 2006.

[7] C. Dwork, F. McSherry, and K. Talwar. The price of
privacy and the limits of lp decoding. In STOC, pages
85–94, 2007.

[8] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases. In
CRYPTO, pages 528–544, 2004.

[9] C. Dwork and S. Yekhanin. New efficient attacks on
statistical disclosure control mechanisms. In
CRYPTO, pages 469–480, 2008.

[10] D. Feldman, A. Fiat, H. Kaplan, and K. Nissim.
Private coresets. These Proceedings, 2009.

[11] O. Goldreich. The Foundations of Cryptography -
Volume 2. Cambridge University Press, 2004.

[12] O. Goldreich, S. Goldwasser, and S. Micali. How to
construct pseudorandom functions. Journal of the
ACM, 33(2):792–807, 1986.

[13] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Sciences,
28(2):270–299, 1984.

[14] R. Impagliazzo, R. Jaiswal, V. Kabanets, and
A. Wigderson. Uniform direct product theorems:
simplified, optimized, and derandomized. In STOC,
pages 579–588, 2008.

[15] P. Kasiviswanathan, H. K. Lee, K. Nissim,
S. Raskhodnikova, and A. Smith. What can we learn
privately? In FOCS, pages 1–19, 2008.

[16] A. Kiayias and M. Yung. Self protecting pirates and
black-box traitor tracing. In CRYPTO, pages 63–79,
2001.

[17] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103. IEEE
Computer Society, 2007.

[18] M. E. Saks and S. Zhou. Bp hspace(s) subseteq

dspace(s3/2). J. Comput. Syst. Sci., 58(2):376–403,
1999.

[19] R. E. Schapire. Theoretical views of boosting and
applications. In ATL, pages 13–25, 1999.

[20] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27(11):1134–1142, 1984.

