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Abstract
A computer system often has multiple power manage-

ment modules controlling different power knobs. Un-
coordinated operation of these knobs not only leads to
suboptimal operation but may also cause unsafe behav-
iors. Coordination methods have thus been proposed to
jointly control the power knobs and performance. How-
ever, in many systems, such joint design is not feasi-
ble due to lack of visibility into all modules to be co-
ordinated. This occurs, for instance, in commodity soft-
ware that runs on multiple platforms, and emerging cloud
hosted applications that operate on platforms outside de-
velopers’ control and alongside unknown other work-
loads. We propose an approach for semantics-free coor-
dination where power-performance management can be
performed within each module without semantic knowl-
edge regarding other modules.

1 Introduction
The need to reduce computational energy consump-

tion has lead to the development of many power manage-
ment features across the system stack. Hardware compo-
nents support multiple active and idle states that enable
improved power management, and applications are being
increasingly written to scale resource usage and perfor-
mance. However, in most cases these power management
functionalities are not coordinated. Further, the hardware
power management is often performed by the system so
as not to impact application performance, but without
actual visibility into application performance. This can
cause problems, such as described in [6, 9, 11], includ-
ing unstable system behavior leading to power or per-
formance crashes. In particular, the lack of coordination
between application layer modules that do have visibility
into offered performance modes and lower layer system
modules that typically control the majority of hardware
power states, can lead to undesirable operating points.

Joint system and application optimization would thus
be more appropriate and has been considered [7, 11].
While the joint methods offer improved and potentially
optimal power-performance management, they require
communicating semantic information about the behav-
iors of multiple modules across the system-application
boundary. This semantic information is generally hard
to obtain and use. For example, an application may

be required to run on many different types of servers
with varying power management capabilities. It would
then be necessary to design the application to recognize
the different semantics used by system modules on each
server type. Moreover, physical systems may be shared
by multiple applications, as is the case for a cloud com-
puting infrastructure or for software from multiple ven-
dors on a single laptop, implying that no single entity can
control all knobs.

Consider as an example, an application developer who
writes a travel booking website to be hosted on Mi-
crosoft’s Azure cloud with unknown other applications
on unknown hardware. The cloud’s power management
modules are unaware of application specific details. We
need an interface that the cloud may expose to applica-
tions such that power management decisions can be co-
ordinated between multiple applications and the under-
lying platform. We design such an interface along with
semantic-less coordination methods for individual mod-
ules at the system and application layers. Semantic-less
operation implies that (i) the values shared via the in-
terface cannot be compared to other values, and (ii) a
module cannot know, except for its own values, whether
a higher or lower value is better. The goal is to com-
pose multiple modules, with their independent power-
performance management strategies, without resulting in
undesirable behavior.

Such semantic-less design poses various challenges,
akin to operating a market without conversion rates be-
tween currencies. This paper presents our initial thoughts
that suggest that semantic-less coordination is indeed
possible and exposes some of the related challenges.

Contributions: We propose a semantic-less mecha-
nism, consisting of a narrow data interface and a generic
coordination algorithm, for multiple applications and
system layer power management modules to coordinate
their actions. Only semantic-less numbers, derived from
performance and energy, are shared. As an example,
an application that can tune its QoS and a system that
can change its processor voltage and frequency (P-state)
are shown to coordinate without the application know-
ing anything about system P-states and vice versa. Ad-
ditionally, multiple applications are shown to compose
without causing undesirable behaviors. We illustrate this
with a scenario of a utility computing data center that



exposes the proposed interface, and multiple third party
applications that use it to coordinate power and perfor-
mance. Finally, we discuss key challenges that arise due
to semantic-less operation.

Related Work: The design proposed is partially in-
spired by blackboard systems [4] in AI, where the anal-
ogy is with different domain experts sharing notes on a
blackboard to jointly solve a large problem that no in-
dividual expert can solve. However, our design shares
data in a much more constrained interface than black-
board systems, for well-specified coordination.

Coordination of power management controls has been
recognized as an important problem and prior works
have considered the coordination among system mod-
ules [6], applications [3], and among applications and
system modules [11, 12, 8, 2]. Joint optimizations of sys-
tem and application performance have been considered
as well [1, 7]. However, these methods assume semantic
information about the coordinated entities. We explore
an approach that will enable each module to be designed
without explicit knowledge regarding others.

2 Power Performance Coordination
An application understands the performance impact

of various changes it can make and their effect on quality
of service (QoS). For instance, a movie streaming server
may know the exact relationship between video resolu-
tions and revenues from rental fees, and the effect on cus-
tomer loyalty due to reduced frame rates, encoding qual-
ity, and number of sound channels. However, the appli-
cation may not understand how these performance tuning
knobs affect resource and energy use. The resource us-
age may vary depending on processor architecture, cache
sizes, disk speeds and so on. The impact on energy may
vary depending on hardware power scaling capabilities.
It may even depend on additional workload hosted by
the server: for instance, for a disk-array, reducing the
I/O rate for the application may not reduce energy usage
significantly until the disk can be spun down. However,
if other applications also need the disk, then reducing the
I/O bandwidth of one application may let this disk array
be used by more applications, resulting in a denser con-
solidation and reduced number of active servers.

The system layer on the other hand understands the
power scaling knobs and may have models for their im-
pact on energy. However, the system may not know how
the settings on those knobs affect applications. For in-
stance, the system may find a transaction processing ap-
plication’s processor utilization to be low and scale down
the frequency. This does not affect throughput but causes
per transaction latency to increase. The increased latency
may cause the application to loose customers, leading to
still lower utilization, causing the system to further scale
down frequency. The application owners may then in-
crease the number of instances hosting the application to
make up for lost performance, causing more servers to
be powered on and increasing overall energy usage. In
other cases reducing the processor frequency may be re-
quired because of a thermal cap. This may render the

application useless. For instance, a media server may
end up dropping frames and frustrating customers. On
the other hand, it may have been possible for the media
server to reduce resolution, allowing for a lower proces-
sor frequency without losing customers.

Suppose the application can operate at n different per-
formance (QoS) levels, denoted A0, A1, ..., An−1, referred
henceforth as A-states. For each A-state, suppose the op-
timal system configuration, including choice of hardware
and power management settings, allows serving a con-
stant workload with energy costs shown in Figure 1, for
n = 4. The polygon OQmaxA0A1A2A3Emin represents the
feasible energy-performance trade-offs for this applica-
tion. A real system will operate somewhere within this
feasible region, such as denoted by the dashed curve in
the figure. Spending more energy than Emax does not
yield improvements in QoS but may happen due to sub-
optimal hardware configurations.
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Figure 1. Performance trade-off region.

The key challenge here is to automatically select
power management settings that keep the system oper-
ating close to the optimal curve. In the absence of proper
coordination, such as if the application reduces QoS to
save energy, it may operate on line segment q shown in
the figure: QoS is dropped without any energy savings as
may occur when the hardware does not have power scal-
ing options.On the other hand, if the system scales up
power without any insight into application performance,
it may operate along line p where the application contin-
ues to operate at low QoS because it is bottlenecked on a
resource that the system has not scaled up.

We wish to determine a coordinated mapping between
application A-states and system power states without ex-
changing any semantic information.

3 Coordinated System Design
Intuitively, it seems that a key piece of information

missing from the system is application layer performance
(QoS). We build on this intuition and propose an ap-
proach that exposes application QoS without any seman-
tic information regarding what the QoS metric repre-
sents. The QoS could be based on throughput, media
encoding quality, latency, query processing accuracy or
other metric of interest to a specific application.

The proposed approach is based on a constrained data
structure, denoted coordination interface, shared among
the applications and various system power management



modules (Figure 2). Multiple applications may share a
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Figure 2. Semantic-less coordination mechanism

common computer system, consisting of multiple com-
ponents, each with various power control knobs. Co-
ordination is achieved through a common coordination
algorithm implemented by each coordinating entity.

3.1 Coordination Interface
Each application i publishes its achieved performance

QoS(i). QoS may internally consist of complex behavior
changes but is externally exposed as a single semantic-
less number. QoS(i) is write-able only by application i.

Each system module publishes its power setting, P( j),
as a number in the range {1, ...,ns}, where ns is the num-
ber of power settings for that module. Other modules
need not know the meaning of this number (it could be
a P-state, throughput cap, sleep mode, etc). A module,
however, ensures that each of its settings is represented
by a unique number and the same number is published
every time that setting is used.

The system also publishes a signal C ∈ {−1,0,1} to
indicate if energy needs to be reduced (C =−1), is avail-
able for increasing performance (C = 1), or should be
kept constant (C = 0). C is write-able only by the sys-
tem module that understands the constraints on power
usage and can decide when there is a need to save power.
A system power measurement or estimate derived from
performance counters based power models [5, 10], may
be used to help determine when power usage needs to
be reduced. Applications may voluntarily reduce power
usage even when not indicated via C.

A lock object is also shared. Any system module or
application that wishes to change a setting first acquires
the lock, so that simultaneous uncoordinated changes do
not lead to undesirable states. System modules have
higher priority for acquiring the lock because if energy
can be saved without reducing QoS, that is desirable.

3.2 Coordination Algorithm
The following algorithm allows the various modules

to coordinate their actions by only exchanging semantic-
less values through the shared data structure. It is as-
sumed for this description that changes in workload are
slow and workload is constant during the convergence
times of these algorithms.

System Algorithm: This algorithm is run by each
system module that controls any power knob. The goal

of this algorithm is to reach the lowest power setting that
supports currently required performance.

Any system module that controls a power manage-
ment knob may determine if the resource controlled by
it is under-utilized and available for power scaling. It
then acquires the lock, and scales down the power to the
next lower state. It checks if this has impacted QoS neg-
atively. If yes, the setting is reversed, and the lock is
released. If not, it continues the previous step.

Algorithm at each power management module j:

1. Set state M = ACT IV E.

2. Acquire lock.

3. Change power knob to next lower setting.

4. IF this causes any QoS(i) to change:
(a) Revert setting to previous value.

(b) Set M = INACT IV E and release lock.
ELSE publish new P( j), release lock, and goto Step 2.

5. Monitor shared interface. If any QoS(i) or P( j) values change,
go to step 1.

Different modules may succeed in acquiring the lock
in any order and eventually each module reaches a state
beyond which it cannot turn its power down without af-
fecting application QoS (system modules avoid change
in QoS even if QoS was improved, since they have no
semantics as to whether higher or lower QoS value is bet-
ter). If no module is requesting access to the lock and the
system determines that energy usage must be reduced,
then it sets C =−1. Since no QoS(i) or P( j) values have
changed, this does not cause any system power manage-
ment module to request the lock. Instead, the applica-
tions request the lock.

Application Algorithm: An application may con-
tinue to operate at its current QoS unless it wishes to
save energy (eg., based on cloud hosting fees) or it re-
ceives the signal C = −1. It then attempts to reduce its
resource usage to allow the system to reduce energy us-
age, as follows.

Algorithm at each application i:

1. Continue to check if C =−1 or user requested to save power. If
need to reduce power, and not already in deepest A-state:

(a) Acquire lock.

(b) Switch to next lower A-state.

(c) Publish new QoS(i) and release lock.

The action for C = 1 is similar except that A-state is
changed to increase QoS. After the application releases
the lock, the system modules will detect that at least
one QoS(i) has changed, and having higher priority
on the lock than applications, will attempt to reduce
power. The reduced resource utilization due to a change
in i’s A-state may have reduced power usage to a
desired value and the system updates C = 0. If not, the
applications and system modules continue to contend
for the lock and reduce power usage until C = 0. To
prevent oscillations, the system will not supply C = +1



if the previous configuration (the set of QoS(i) and P( j)
values published) did not have the target power usage.

An application or system module does not block its
ongoing functions when waiting for the lock. Also, it
is possible that energy usage is not reduced sufficiently
after all applications have scaled QoS to their minimum
and then the system has to fall back to non-coordinated
mechanisms.

Property: If it is feasible to lower energy use to target
level by application QoS tuning, the above algorithm will
achieve the reduced QoS state before the system caps re-
sources.

Proof is omitted for brevity. The practical implica-
tion is that this approach, without exchanging any se-
mantic information, safely avoids the undesirable behav-
iors mentioned in section 2, such as violation of latency
constraints due to processor frequency reduction at low
utilization. The coordination allows achieving better op-
erating points than the non-coordinated operating points
along lines p and q in Figure 1. The algorithms are
generic so that they can be easily included in any ap-
plication and system module.

The next section shows prototype implementations of
the above approach for some useful coordination scenar-
ios.

4 Experiments
The following experiments illustrate two scenarios:

(i) an application that tunes its performance in coordi-
nation with the system’s P-state control without pass-
ing any semantic information about its functionality or
learning about the nature of system’s power manage-
ment capability, and (ii) multiple applications coordinate
their resource usage on a shared platform without any ex-
plicit knowledge about the other applications’ function-
ality and performance trade-offs.

Experiment 1: Consider a battery operated laptop
decoding high definition video. A common operation
used in media decoding is the Discrete Fourier Trans-
form (DFT). Suppose the application can perform DFT
computations to varying degrees of accuracy, and the per-
ceived QoS varies with the inverse of the logarithmic er-
ror. This yields 4 A-states (Table 1) where the error falls
as we consider successively higher order terms in the co-
sine expansion. The QoS is zero when the data cannot be
decoded at the required frame rate (this occurs at lower
processor frequencies if using high precision). The lap-

State A0 A1 A2 A3
QoS 11.60 6.38 5.37 3.42

Table 1. Application QoS

top, a Lenovo T61p, has the P-states (known only to the
system) and power usage shown in Table 2, measured us-
ing a WattsUp Pro power meter. Suppose the battery is
running low and the system desires to reduce power us-
age. A first possibility, entirely system managed and in
current usage, is that the OS lowers the processor fre-
quency. A second possibility is application managed:

P-State (MHz) 2200 1600 1200 800
Idle (W) 34.06 28.59 26.28 25.08

Active (W) 47.78 37.32 29.45 26.18
Table 2. System P-states.

the application reduces its QoS hoping to save power but
without the OS changing the P-state. The third, is a coor-
dinated strategy (Section 3). The three options are com-
pared in Figure 3. In this simple case, the coordination
strategy achieves the optimal power settings, though this
need not always be the case.
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Figure 3. Coordination for a single application on one
machine.

Experiment 2: This experiment considers multi-
ple applications with different functionalities sharing a
server. Suppose one application is a stream server that
can serve videos at HD resolution (typically 3.2Mbps),
DVD equivalent (2Mbps), broadband quality (300kbps)
and dial-up quality (28kbps). Suppose the application’s
revenues (QoS levels) are $4, $3, $2, and $0.5 respec-
tively in these A-states. Suppose another application is
serving search results over an in-memory index of flight
schedules. Varying the quality of search causes varying
CPU usage: 100%, 75%, 50%, and 25%, and the conver-
sion of searches to purchases varies with search quality
leading to varying revenues of $6, $5, $4, and $1 respec-
tively. Power measurements for operations in different
A-state combinations are performed on an HP DLG380
blade server with 2x4-core Xeon processors and an 8-
disk RAID array.

Note that while we have selected both QoS metrics
in the same units for purposes of a comparison with a
semantics based algorithm, the QoS metrics are not nec-
essarily comparable unless we reveal the semantics that
they are all measured in revenues. The semantics based
optimal algorithm performs a joint optimization, intelli-
gently reducing the A-state of the application that would
maximize the combined revenue for given energy use de-
pending on system power characteristics. Optimal coor-
dination can be practically achieved under certain condi-
tions (convexity of QoS curves, etc.) if common seman-
tics are assumed, such as using bidding mechanisms [3].
The semantic-less approach has no notion of a combined



QoS, and is executed by each application without any
knowledge of other applications or system power man-
agement capabilities.

Figure 4 plots the power-QoS behavior assuming the
system was supplying a C = −1 signal to reduce energy
use. Lock acquisition in the semantic-less approach is
random and different runs may lead to different behav-
iors: 20 such runs are plotted along with their average.
Server idle power is excluded from the power numbers.
The semantic-less algorithm is clearly not optimal but is
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Figure 4. Comparing semantics free (dotted lines are
multiple random runs and dashed curve their aver-
age) and optimal (solid curve).

able to avoid undesirable behaviors such as QoS crashes
due to blind resource capping by the OS.

5 Discussion
The semantic-less approach proposed in this paper has

several opportunities for improvement. Some of these,
such as limiting the number of power knob changes,
avoiding oscillations around desired power levels, elimi-
nating the use of a lock through simultaneous small QoS
changes, etc. can be addressed in the semantic-less do-
main but are omitted for brevity. Here, we discus some
of the more significant challenges in improving the algo-
rithm’s performance.

Optimality: Clearly, the semantic-less approach may
not achieve optimal operation. In fact, the definition it-
self of optimal operation requires semantics, such as a
method to measure the combined QoS of applications
based on their relative importance. Limited semantic in-
formation, such as a common currency to measure QoS,
may enable the coordinated modules to reach joint op-
tima, such as by exploring various possible configura-
tions [1] and learning good configurations among those
attained over time. Further, it would be interesting to
explore if the loss of performance due to semantic-less
operation can be bounded. The bounds may depend on
scale factors that characterize the relative weights of the
QoS from various applications as well as the relative en-
ergy impact of multiple power knobs.

Convergence Time: While the coordination mecha-
nism is guaranteed to converge (all entities quit request-
ing the lock), an important concern in practical deploy-

ments is the convergence time. For a small number of
applications and system modules this time may be small
compared to the time over which thermal or power caps
and workloads change. But as the number of coordi-
nated entities grows, this time becomes large and exter-
nal factors may change before the coordination mecha-
nism has converged. Heuristics can be designed to speed
up the convergence, such as incorporating memory in
each module or the shared data interface to store the
QoS and energy settings that have been explored before,
thus reducing the the number of state changes attempted.
Provably safe mechanisms to ensure stable operation are
required.

All applications were assumed independent. Interde-
pendence among applications may affect resource usage
and combined QoS in complex ways. Sharing of seman-
tic information among interdependent modules may thus
seem appropriate. It is worth exploring if such interde-
pendence can cause systems using the semantic-less ap-
proach to end up in undesirable configurations.
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