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On the Difficulties of Disclosure Prevention in
Statistical Databases or The Case for

Differential Privacy

Cynthia Dwork∗ and Moni Naor†

1 Introduction

A privacy-preserving statistical database enables the data analyst to learn properties of
the population as a whole, while protecting the privacy of the individuals whose data
were used in creating the database. A rigorous treatment of privacy requires definitions:
What constitutes a failure to preserve privacy? What is the power of the adversary
whose goal it is to compromise privacy? What auxiliary information is available to
the adversary (newspapers, medical studies, labor statistics) even without access to the
database in question? Of course, utility also requires formal treatment, as releasing no
information, or only random noise, clearly does not compromise privacy; we will return
to this point later. However, in this work privacy is paramount: we will first define our
privacy goals and then explore what utility can be achieved given that the privacy goals
will be satisfied.

A 1977 paper of Dalenius [9] articulated the following desideratum: access to a
statistical database should not enable one to learn anything about an individual that
could not be learned without access. We show this type of privacy cannot be achieved
in general. The obstacle is in the auxiliary information, that is, information available
to the adversary other than from access to the statistical database. Very roughly, our
main result says that in any ‘reasonable’ setting there is a piece of information that is
in itself innocent, yet in conjunction with even a modified (noisy) version of the data
yields a privacy breach. The intuition behind the proof of impossibility is captured by
the following parable. Suppose one’s exact height were considered a sensitive piece of
information, and that revealing the exact height of an individual were a privacy breach.
Assume that the database yields the average heights of women of different nationalities.
An adversary who has access to the statistical database and the auxiliary information
“Terry Gross is two inches shorter than the average Lithuanian woman” learns Terry
Gross’ height, while anyone learning only the auxiliary information, without access to
the average heights, learns relatively little.
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Related Work. There is an enormous literature on privacy in databases; we briefly
mention a few fields in which the work has been carried out. See [1] for a survey of
many techniques developed prior to 1989.

By far the most extensive treatment of disclosure limitation is in the statistics com-
munity; for example, in 1998 the Journal of Official Statistics devoted an entire issue
to this question. This literature contains a wealth of privacy supportive techniques and
investigations of their impact on the statistics of the data set. Rigorous definitions of
privacy and modeling of the adversary are not prominent features of this portion of the
literature.

Research in the theoretical computer science community in the late 1970’s had very
specific definitions of privacy compromise, or what the adversary must achieve to be
considered successful (see, e.g., [12]). The consequent privacy guarantees would today be
deemed insufficiently general, as modern cryptography has shaped our understanding of
the dangers of the leakage of partial information. Privacy in databases was also studied
in the security community. Although the effort seems to have been abandoned for over
two decades, the work of Denning [10] is closest in spirit to the line of research recently
pursued in [17, 4, 16].

The work of Agrawal and Srikant [2] and the spectacular privacy compromises
achieved by Sweeney [33] rekindled interest in the problem among computer scientists,
particularly within the database community.

Rigorous definitions of (non)-privacy and information leakage are the pillars of mod-
ern cryptography (see, e.g., [24, 25, 22]). Readers familiar with semantic security –
roughly, everything computable about the plaintext given the ciphertext should be
computable without access to the ciphertext [24] – will note the similarity to Dalenius’
goal. Also relevant might be the definition of privacy in the context of secure function
evaluation. Informally, secure function evaluation permits a set of players to compute
a specific function f(x1, . . . , xn), where each xi is the input to f provided by the ith
player; the privacy guarantee is that no information is leaked about the individual values
other than that which can be deduced from the output [21] (see [20] for a comprehensive
treatment). In our work, privacy is paramount; in this respect it differs from the work
on secure function evaluation, where privacy is ensured only modulo the function to be
computed: if the function is inherently disclosive, then the privacy of secure function
evaluation is meaningless. In contrast, we are concerned with which functions should
be computed, given that privacy is mandated.

1.1 Private Data Analysis: The Setting

There are two natural models for privacy mechanisms: interactive and non-interactive.
In the non-interactive setting the (trusted and trustworthy) data curator, or collector
publishes a “sanitized” version of the collected data; the literature uses terms such as
“anonymization” and “de-identification”. Traditionally, sanitization employs techniques
such as data perturbation and sub-sampling, as well as removing well-known identifiers
such as names, birth dates, and social security numbers. It may also include releasing
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various types of synopses and statistics. In the interactive setting the data curator,
again trusted, provides an interface through which users may pose queries about the
data, and get (possibly noisy) answers. The results in this paper apply to both settings.

2 Impossibility of Absolute Disclosure Prevention

We now show that for any useful mechanism and any non-trivial notion of disclosure,
there exists auxiliary information that an adversary might possess in the context of
which the output of the mechanism would be disclosive.

This result should not be taken to imply that the study of disclosure limitation
should be abandoned. We only demonstrate the existence of a single, arguably contrived,
adversary who is configured to learn from a given non-trivial mechanism. Instead, the
result should be taken to show that the prevention of disclosures is simply not a property
that a useful mechanism can have in the presence of auxiliary information; the obstacle
is usefulness itself. Thus, any discussion of disclosure limitation must address auxiliary
information. See Section 3 for a successful approach.

2.1 Formalism and the Construction

We begin with a high level description of the result, made formal in the next subsection.
Consider any mechanism with the property that it conveys useful information, in the
sense that it can be reliably used to determine something about the data set that is not
otherwise known to the analyst. Consider also a sensitive predicate of the data, whose
value is unknown to the analyst. We construct an auxiliary information generator the
couples (XOR’s) the useful information provided by the mechanism with the sensitive
information. The adversary can then convert the useful information conveyed by the
mechanism into an exposure of the sensitive information.

Note that this approach requires some notion of utility – after all, a mechanism that
always outputs the empty string, or a purely random string, clearly preserves privacy.1

Intuitively, there should be a vector of questions (most of) whose answers should be
learnable by the analyst, but whose answers are not in general known in advance. We
will therefore posit a utility vector, denoted with w. We concentrate on the case where
this is a binary vector of some fixed length κ.2 We can think of the utility vector as
answers to questions about the (raw) data; we assume w is computable from the raw
data. For a sanitization to be useful, a large part of w should be learnable by the
analyst.

A privacy breach for a database is described by a function (program, Turing machine)
C that takes as input a description of a distribution3 D on databases, a database DB
drawn according to this distribution, and a string – the purported privacy breach– and

1The height parable from the Introduction fails in these trivial cases, since it is only through the
sanitized version that the adversary learns the average height.

2There is nothing special about the use of binary values; one may consider larger domains.
3We are agnostic as to how a distribution D is given as input to a function.
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outputs a single bit denoting whether the privacy breach occurred or not. We say the
adversary wins, with respect to C and for a given (D, DB) pair, if it produces a string
s such that C(D, DB, s) accepts. Henceforth “with respect to C” will be implicit. For a
privacy breach to be meaningful, we would require that:

� It should be hard to come up with a privacy breach without getting any informa-
tion about the database itself, beyond knowledge of the distribution. Otherwise,
preserving privacy is trivial – there is none to give up anyway.

� On the other hand, given the actual database it should be possible to find some
breach. Otherwise, again, it is very easy to preserve the privacy: just give away
the actual data.

To model any additional information the adversary may have about the database
we use an auxiliary information generator. This is a function that takes as input a
description of the distribution D from which the database is drawn, as well as the
database DB itself, and outputs a string, z, of auxiliary information. This string is
given both to the adversary A and to a simulator A∗. The simulator A∗ has no access
of any kind to the database, whereas the adversary A has access to the database via
the privacy mechanism.

We model the adversary by an interactive procedure (communicating Turing ma-
chine). The theorem below says that for any privacy mechanism San() and any distri-
bution D satisfying certain technical conditions, there is always some particular piece
of auxiliary information, z, so that z alone is useless to someone trying to win, while
z in combination with access to the data through the privacy mechanism permits the
adversary to win with probability arbitrarily close to 1. In addition to formalizing the
entropy requirements on the utility vectors as discussed above, the technical conditions
on the distribution say that learning the length of a privacy breach does not help one
to guess a privacy breach. We state a “meta-theorem” below that captures our results;
specific assumptions and the bound Δ are instantiated in Theorems 3 and 4 below.

Theorem 1. [Meta-Theorem.] For any privacy mechanism San() and privacy breach
decider C there is an auxiliary information generator X and an adversary A such that
for all distributions D such that D, C and San() satisfy certain assumptions, and for all
adversary simulators A∗,

Pr[A(D, San(D, DB),X (D, DB)) wins]− Pr[A∗(D,X (D, DB)) wins] ≥ Δ

where Δ is a suitably chosen (large) constant. The probability spaces are over choice of
DB ∈R D and the coin flips of San, X , A, and A∗.

The distribution D completely captures any information that the adversary (and
the simulator) has about the database, prior to seeing the output of the auxiliary infor-
mation generator. For example, it may capture the fact that the rows in the database
correspond to people owning at least two pets. Note that in the statement of the theo-
rem all parties have access to D and may have a description of C hard-wired in; however,
the adversary’s strategy does not use either of these.
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Approach to Proving Theorem 1. The goal is to begin with a random variable (the
utility vector) which is sufficiently hard to guess, and to distill from it a random variable
which is close to uniform. This latter random variable can then be used as a one-time
pad to create a “secret channel” between the data curator and the data analyst. We
define “hard to guess” via min-entropy, which measures the probability of the most
likely value:

Definition 1. Let X be a discrete random variable obtaining values in U . For all
x ∈ U , let px = Pr[X = x]. Then the min-entropy of X is

H∞(X) = min
x∈U

(− log px) = −(max
x∈U

log px) = − log max
x∈U

px

Thus, we need to convert a random variable with high min-entropy, but which may
not be uniform, to one that is close to uniform. The usual tool for this, and one that
we employ, is a randomness extractor. In particular, we will be using two types of
extractors; a strong extractor (Definition 2) and a fuzzy extractor (Definition 3). The
former is used for a slightly weaker result, but achieving better bounds; the latter for
the most general result.

2.2 Strategy for X and A when all of w is learned from San(DB)

To develop intuition we first describe, slightly informally, the strategy for the special
case in which the adversary always learns all of the utility vector, w, from the privacy
mechanism. Although this case is covered by the more general one, in which not all of
w need be learned, it permits a simpler proof that exactly captures the height example.
This is also realistic: the utility vector is completely learned when the sanitization
produces a histogram, such as a table of the number of people in the database with
given illnesses in each age decile, or a when the sanitizer chooses a random subsample
of the rows in the database and reveals the average ages of patients in the subsample
exhibiting various types of symptoms. Arguments for this case are presented slightly
informally; the more general case has full details.

The distribution D on databases induces a distribution on the utility vectors.

Assumption 1.

1. For � ∈ Z+, Υ ∈ R+, and 0 ≤ γ < 1, both the following conditions hold:

(a) The distribution W on utility vectors has min-entropy at least 3� + Υ.

(b) Let DB ∈R D. Then with probability at least 1−γ over D, DB has a privacy
breach of length �; that is, Pr[∃y C(D, DB, y) = 1] ≥ 1− γ.

2. Pr[B(D, San(D, DB)) wins] ≤ μ for all interactive Turing machines B, where μ =
μ(D, San()) is a suitably small constant. The probability is taken over the coin
flips of B and the privacy mechanism San(), as well as the choice of DB ∈R D.
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Part (1a) ensures that we can extract � bits of randomness from the utility vector
(Claim 2), which can be used as a one-time pad to hide any privacy breach of the same
length, and Part (1b) says there is (almost) always some secret of that length to leak.
Part 2 is a nontriviality condition saying that the sanitization algorithm provides some
privacy, at least against adversaries that have no auxiliary information.

We claim that the assumption implies that conditioned on most privacy breaches of
length �, the min-entropy of the utility vector is at least � + Υ:

Claim 2. Let D be as in Assumption 1 Part (1a). Consider any deterministic procedure
P for finding a privacy breach given the database DB, i.e., with high probability over
D, y = P(DB) is a privacy breach. Let P(DB) = 0� if there is no breach of length �.
Consider the distribution Y on y’s obtained by sampling DB ∈ D and then computing
P(DB). Then with probability at least 1− 2−� over y ∈ Y , H∞(W |y) ≥ � + Υ.

Proof. Suppose, for the sake of contradiction, that the event “the conditional min en-
tropy of W drops below � + Υ, given y”, happens with probability β > 2−� over choice
of DB in D. We now argue that the min-entropy of W has to be less than 3� + Υ.
Let DB be a database, let w be its utility vector, and let y = P(DB). Consider the
following method for producing ŵ, a ‘guess’ for w: choose ŷ ∈R {0, 1}�; then, based on
ŷ, take ŵ to be the most likely (according to D) value, given ŷ. The probability that
ŷ is chosen correctly is 2−�; moreover this even holds conditioned on the event that
H∞(W |y) < � + Υ. Given that ŷ is correct and the min-entropy of W |y is small, the
probability that ŵ is correct is greater than 2−(�+Υ). So, over all, the probability of
guessing w is at least β · 2−(2�+Υ) > 2−(3�+Υ), whence the min-entropy of W is strictly
less than 3� + Υ. This contradicts Assumption 1a.

Definition 2. [Strong extractor] A (k, ε) strong extractor is a function Ext : {0, 1}n×
{0, 1}d �→ {0, 1}m such that for every distribution X on {0, 1}n with H∞(X) ≥ k the
distribution Ud ◦ Ext(X, Ud) is ε-close to the uniform distribution on {0, 1}m+d. The
two copies of Ud denote the same random variable.

The important measure is the entropy loss k −m. For us, n = κ, the length of the
utility vector. There are good constructions of strong extractors; see [29, 31]. In particu-
lar, from the Leftover Hash Lemma [26] it is known that If H = {h : {0, 1}n �→ {0, 1}m}
is a pairwise independent family where m = k − 2 log(1/ε), then Ext(x, h) def= h(x) is a
strong (k, ε)-extractor. The seed length is O(n), and we can even use logarithmic-sized
seeds using almost pairwise independence [23, 32].

Given a (k, ε) strong extractor, with m ≥ � and k ≥ � + Υ, the strategy for X and
A is as follows. On input DB ∈R D, X :

� Find a privacy breach y for DB of length �, if one exists, which occurs with
probability at least 1− γ over D.4

� Compute the utility vector w.
4We will discuss efficiency in Section 2.3.1.
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� Choose a seed s ∈R {0, 1}d and use the (k, ε) strong extractor to obtain from w
an �-bit almost-uniformly distributed string r; that is, r = Ext(w, s).

� The auxiliary information will be z = (s, y ⊕ r).

From the properties of the strong extractor and Claim 2, the distribution on r is within
statistical distance ε+2−� from U�, the uniform distribution on strings of length �, even
given s and y.

Since the adversary learns all of w, from s it can obtain r = Ext(s, w) and hence
the privacy breach y. Since a privacy breach exists with probably at least 1 − γ, the
adversary A wins with probability at least 1 − γ. We next argue that any adversary
simulator A∗ wins with probability bounded above by μ + ε + 2−�, yielding a gap of at
least 1− (γ + μ + ε + 2−�).

Assumption 1(2) implies that Pr[A∗(D) wins] ≤ μ. Let ρ denote the maximum, over
all y ∈ {0, 1}�, of the probability, over choice of DB ∈R D, that y is a privacy breach
for DB. Assumption 1(2) also implies that ρ ≤ μ.

By Assumption 1(1a), even conditioned on y, the extracted r is (almost) uniformly
distributed, and hence so is y⊕ r. Consequently, ∀z, the probability that X produces z
is essentially independent of y. Thus, the simulator’s probability of producing a privacy
breach of length � for the given database is bounded by ρ + ε + 2−� ≤ μ + ε + 2−�, as it
can generate simulated “auxiliary information” with a distribution within distance ε of
the correct one. We conclude:

Theorem 3. [Full Recovery of Utility Vector] Let Ext be a (k, ε) strong extractor.
For any privacy mechanism San() and privacy breach decider C there is an auxiliary
information generator X and an adversary A such that for all distributions D such that
D, C and San() satisfy Assumption 1 with k ≥ � + Υ and for all adversary simulators
A∗,

Pr[A(D, San(D, DB),X (D, DB)) wins]− Pr[A∗(D,X (D, DB)) wins] ≥ Δ

where Δ = 1 − (γ + μ + ε + 2−�). The probability spaces are over choice of DB ∈R D
and the coin flips of San, X , A, and A∗.

Using the constructions of strong extractors based on pairwise independence it suf-
fices that Υ ≥ 2 log 1/ε.

2.3 Strategy when w need not be fully learned:

The more interesting case is when the sanitization does not necessarily reveal all of w;
rather, the guarantee is only that it always reveal a vector w′ within Hamming distance
κ/c of w for constant c to be determined.5 The difficulty with the previous approach is

5One could also consider privacy mechanisms that produce good approximations to the utility vector
with a certain probability for the distribution D, where the probability is taken over the choice of
DB ∈R D and the coins of the privacy mechanism. The theorem and proof hold mutatis mutandis.
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that if the privacy mechanism is randomized, then the auxiliary information generator
may not know which w′ is seen by the adversary. Thus, even given the seed s, the
adversary may not be able to extract the same random pad from w′ that the auxiliary
information generator extracted from w (as is the case, for example, in the extractors
based on pair-wise independent hash functions). This problem is solved by using fuzzy
extractors [13].

Definition 3. An (M, m, �, k′, t, ε) fuzzy extractor is given by two procedures (Gen,Rec),
for generating and reconstructing.

1. Gen(w) is a randomized generation procedure. On input w ∈ M outputs an “ex-
tracted” string r ∈ {0, 1}� and a public string p. For any distribution W on M
of min-entropy m, if (R, P ) ← Gen(W ) then the distributions (R, P ) and (U�, P )
are within statistical distance ε.

2. Rec(p, w′) is a deterministic reconstruction procedure allowing recovery of r =
R(w) from the corresponding public string p = P (w) together with any vector w′

of distance at most t from w. That is, if (r, p) ← Gen(w) and ||w−w′||1 ≤ t then
Rec(w′, p) = r.

In other words, r = R(w) looks uniform, even given p = P (w), and r = R(w) can
be reconstructed from p = P (w) and any w′ sufficiently close to w. There exist efficient
fuzzy extractors where the two procedures run in time polynomial in the representation
size of an element in M [13, 14]. The important parameters for us are the entropy loss
(m− �) and the length of the public string (k′).

Constructions of fuzzy extractors can be based on error-correcting codes. Roughly
speaking, let ECC be a code where any two codewords differ by at least 2t bits. The
generation procedure Gen(w) is: choose r′ uniformly at random; let r be extracted
from r′, and let p = w ⊕ ECC(r). Note that if w′ is close to w, then w′ ⊕ p is close to
ECC(r′). Given p and w′: compute w′ ⊕ p and then apply the decoding procedure of
ECC to retrieve r′, and then extract r. See [13].

Assume a sanitization mechanism San() and a distribution D on databases, where
San(D, DB) always reveals a vector within Hamming distance κ/c of the real utility
vector w. The sanitization mechanism implicitly defines a distribution on these revealed
vectors, denoted UtilitySan(D).

We now strengthen Part (1a) of Assumption 1 to say that the entropy of the source
UtilitySan(D) is sufficiently high, so that even conditioned on privacy breach y of length
� and P = Gen(W ) there is sufficient entropy to encode y.

Assumption 2. Same as Assumption 1, but with(1a) replaced with: the min-entropy
of UtilitySan(D) is at least k′+3�, where k′ is the length of the public string p produced
by the fuzzy extractor.

By Claim 2, this means that with probability at least 1− 2−� over y ∈ Y ,
H∞(UtilitySan(D)|y) ≥ � + k′.
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Repeating the strategy of X from Section 2.2, while substituting the strong extractor
with a fuzzy extractor raises a new problem: the public string p might leak information
about w: not enough to learn w, but enough to disclose some privacy breach y. To
overcome this possibility we will use the fact that the presumed sanitization procedure
does not leak a privacy breach.

For a given database DB, let w be the utility vector. This can be computed by X ,
who has access to the database. X simulates interaction with the privacy mechanism
to obtain a non-disclosive w′ close to w (within Hamming distance κ/c). The auxiliary
information generator runs Gen(w′), obtaining (r = R(w′), p = P (w′)). It chooses a
privacy breach y of length �, assuming one exists. It then sets z = (p, r ⊕ y).

Let w′′ be the version of w seen by the adversary. Clearly, assuming 2κ/c ≤ t in
Definition 3, the adversary can reconstruct r. This is true since w′ and w′′ are both
within distance κ/c of w, and hence they are within distance 2κ/c of each other. So
w′′ is within the “reconstruction radius” for any r ← Gen(w′). Once the adversary
has reconstructed r, obtaining y is immediate. Thus the adversary is able to produce a
privacy breach with probability at least 1− γ.

It remains to analyze the probability with which the simulator, having access only
to z but not to the privacy mechanism (and hence, not to any w′′ close to w), produces
a privacy breach.

In the sequel, let B always denote the best machine, among all those with access to
the given information, at producing a privacy breach (“winning”).

By Assumption 1(2), Pr[B(D, San(D, DB)) wins] ≤ μ, where the probability is taken
over the coin tosses of the privacy mechanism and the machine B, and the choice of
DB ∈R D. Since p = P (w′) is computed from w′, which in turn is computable from
San(DB), we have

p1 = Pr[B(D, p) wins] ≤ μ

where the probability space is now also over the choices made by Gen(), that is, the
choice of p = P (w′). Now, let U� denote the uniform distribution on �-bit strings.
Concatenating a random string u ∈R U� to p cannot help B to win, so

p2 = Pr[B(D, p, u) wins] = p1 ≤ μ

where the probability space is now also over choice of u. For any fixed string y ∈ {0, 1}�

we have U� = U� ⊕ y, so for all y ∈ {0, 1}�, and in particular, for all privacy breaches y
of DB,

p3 = Pr[B(D, p, u⊕ y) wins] = p2 ≤ μ.

From Assumption 2 we know that for a DB chosen according to D, we have that given
y = P(DB) the distributions (P, R) = Gen(W ′), and (P, U�) have distance at most
ε + 2−�. It follows that

p4 = Pr[B(D, p, r ⊕ y) wins] ≤ p3 + ε + 2−� ≤ μ + ε + 2−�.
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Now, p4 is an upper bound on the probability that the simulator A∗ wins, given D and
the auxiliary information z = (p, r ⊕ y), so

Pr[A∗(D, z) wins] ≤ p4 ≤ μ + ε + 2−� .

Thus the gap between the winning probabilities of the adversary and the simulator is
at least

(1− γ)− (μ + ε + 2−�) = 1− (γ + μ + ε + 2−�).

Setting Δ = 1− (γ + μ + ε + 2−�) proves the following theorem.

Theorem 4. [Partial Recovery of Utility Vector] Let FExt be an (M, m, �, k′, t, ε) fuzzy
extractor. For any privacy mechanism San() and privacy breach decider C there is an
auxiliary information generator X and an adversary A such that for all distributions D
for which:

1. San(DB) produces a vector that is within distance κ/c of w, where 2κ/c ≤ t; and

2. D, C and San() satisfy Assumption 2 where � and k′ are as in FExt,

and for all adversary simulators A∗:
Pr[A(D, San(D, DB),X (D, DB)) wins]− Pr[A∗(D,X (D, DB)) wins] ≥ Δ

where Δ = 1 − (γ + μ + ε + 2−�). The probability spaces are over choice of DB ∈R D
and the coin flips of San, X , A, and A∗.

2.3.1 Comments

Fuzzy Extractors: A good fuzzy extractor “wastes” little of the entropy on the public
string. Better fuzzy extractors are better for the adversary, since the attack requires �
bits of residual min-entropy after the public string has been generated.

Unlike most applications of fuzzy extractors (see, in particular, [13, 14]), in this
proof we are not interested in hiding partial information about the source, in our case
the approximate utility vectors w′ revealed by the San mechanism, so we don’t care how
much min-entropy is used up in generating p. We only require sufficient residual min-
entropy for the generation of the random pad r. This is because information revealed by
the privacy mechanism is not itself disclosive; indeed it is by definition safe to release.
Similarly, we don’t necessarily need to maximize the tolerance t, although if we have a
richer class of fuzzy extractors the impossibility result applies to more relaxed privacy
mechanisms (those that reveal worse approximations to the true utility vector).

Other distance measures: we have concentrated on the Hamming distance of the the
noisy utility vector w′ from the original one. There are fuzzy extractors of other distance
measures, such as the edit distance or set difference as well as general metric spaces that
will fit nicely when the utility vector retrieved is close to the original in those distance
measures – see [13] (full version).
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Complexity: One possible recourse from impossibility results is arguing that performing
the attack is too costly computationally wise and hence not likely to occur. However,
this is not the case here: provided finding a privacy breach y, given DB, can be done
efficiently, the complexity of X and A are both low and simply requires simulating the
sanitizing process and the legitimate database user.

3 The Case for Differential Privacy

A surprising aspect of the height example is that the compromise can occur even if
Terry Gross is not in the database. In order to sidestep this issue, Dwork and McSherry
shift from absolute guarantees about disclosures to relative ones: any given disclosure
– indeed, any output at all of the privacy mechanism – should be, within a small
multiplicative factor, just as likely independent of whether any individual opts in to,
or opts out of, the database. As a consequence, there is a nominally increased risk
to the individual in participating, and only nominal gain to be had by concealing or
misrepresenting one’s data. Note that a bad disclosure can still occur, but the differential
privacy guarantee assures the individual that it will not be the presence of her data that
causes it, nor could the disclosure be avoided through any action or inaction on the part
of the user.

Two data sets differ on at most one element if one is a subset of the other and the
larger contains at most one additional element.

Definition 4. [Dwork and McSherry, 2006] A randomized function K gives ε-differential
privacy if for all data sets D1 and D2 differing on at most one element, and all S ⊆
Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)

A mechanism K satisfying this definition addresses concerns that any participant
might have about the leakage of her personal information x: even if the participant
removed her data from the data set, no outputs (and thus consequences of outputs)
would become significantly more or less likely. For example, if the database were to
be consulted by an insurance provider before deciding whether or not to insure Terry
Gross, then the presence or absence of Terry Gross in the database will not significantly
affect her chance of receiving coverage.

This definition extends to group privacy as well. A collection of c participants
might be concerned that their collective data might leak information, even when a
single participant’s does not. Using this definition, we can bound the dilation of any
probability by at most exp(εc), which may be tolerable for small c. Note that we
specifically aim to disclose aggregate information about large groups, so we should
expect privacy bounds to disintegrate with increasing group size.

A general technique for achieving ε-differential privacy for any ε appears in [16]. See
also [30, 28, 5, 4, 30, 3, 27] for other works dealing with the notion.
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4 Discussion

It is initially puzzling that Dalenius’ goal, formalized as a relaxed version of semantic
security, cannot be achieved, while semantic security for cryptosystems can be achieved
(under reasonable computational assumptions). This discrepancy arises from the utility
requirement. Our adversary is analogous to the eavesdropper, while our user is anal-
ogous to the message recipient, and yet there is no decryption key to set them apart,
they are one and the same. Very roughly, the database is designed to convey certain in-
formation. An auxiliary information generator knowing the data therefore knows much
about what the user will learn from the database. This can be used to establish a shared
secret with the adversary/user that is unavailable to anyone not having access to the
database.

A natural question is the relationship between code obfuscation and statistical
databases. The goal in code obfuscation is to be able to publish a program “while
hiding its guts” – intuitively users should learn no more than what they would learn
with black-box (oracle) access to the program. A basic impossibility result of Barak et
al [6] says that some functions cannot be obfuscated.

Obfuscation and sanitization might appear to be related as follows: One can think
of the database as the program to be obfuscated, and the queries whose answers are the
bits of the utility vector as the inputs to the program. This intriguing, albeit superficial,
similarity suggests further study of the connection.
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