
J Autom Reasoning (2010) 44:111–144
DOI 10.1007/s10817-009-9142-9

HOL-Boogie —An Interactive Prover-Backend
for the Verifying C Compiler

Sascha Böhme · Michał Moskal ·
Wolfram Schulte · Burkhart Wolff

Received: 13 November 2008 / Accepted: 2 February 2009 / Published online: 8 July 2009
© Springer Science + Business Media B.V. 2009

Abstract Boogie is a verification condition generator for an imperative core lan-
guage. It has front-ends for the programming languages C# and C enriched by
annotations in first-order logic, i. e. pre- and postconditions, assertions, and loop
invariants. Moreover, concepts like ghost fields, ghost variables, ghost code and
specification functions have been introduced to support a specific modeling method-
ology. Boogie’s verification conditions—constructed via a wp calculus from anno-
tated programs—are usually transferred to automated theorem provers such as
Simplify or Z3. This also comprises the expansion of language-specific modeling
constructs in terms of a theory describing memory and elementary operations on
it; this theory is called a machine/memory model. In this paper, we present a proof
environment, HOL-Boogie, that combines Boogie with the interactive theorem
prover Isabelle/HOL, for a specific C front-end and a machine/memory model. In
particular, we present specific techniques combining automated and interactive proof
methods for code verification. The main goal of our environment is to help program
verification engineers in their task to “debug” annotations and to find combined
proofs where purely automatic proof attempts fail.

S. Böhme (B)
Technische Universität München, Munich, Germany
e-mail: boehmes@in.tum.de

M. Moskal
European Microsoft Innovation Center, Aachen, Germany
e-mail: michal.moskal@microsoft.com

W. Schulte
Microsoft Research, Redmond, WA, USA
e-mail: schulte@microsoft.com

B. Wolff
Université Paris-Sud, LRI, CNRS, Orsay, France
e-mail: wolff@lri.fr

112 S. Böhme et al.

Keywords Isabelle/HOL · Theorem proving · Program verification ·
Memory models · Annotation languages

1 Introduction

Verifying properties of programs at their source code level has attracted substantial
interest recently. While not too long ago, “real programming languages” like Java or
C have been considered as too complex for formal analysis, there are meanwhile ver-
ification systems like ESC/Java [29], Why/Krakatoa/Caduceus [28], and Boogie [6]
used both for Spec# [3, 4, 7] and C [15, 49]. The latter system, called “Verifying C
Compiler” or VCC for short, is currently used in a substantial verification effort for
the Microsoft Hypervisor as part of the Verisoft XT project [45, 46].

VCC/Boogie not only supports nearly the complete ANSI-C language—a com-
pleteness that was hitherto unseen in a proof environment—, but comes with a
rich annotation language including means to define auxilliary predicates, framing
conditions and syntactic support for them, and ways to add types, fields in structures,
function paramaters and code just for the purpose of specification. These so-called
ghost types, ghost fields, ghost parameters and ghost code increase the expressiveness
of the annotation language in various ways while maintaining a constructive, proof-
oriented style; for example, it is common practice to provide ghost code that actually
constructs a witness for existential quantifiers.

Combining VCC/Boogie with an interactive prover has a number of incentives:

– existing front-end compilers for Spec# and C to the Boogie core language
represent an alternative to a logical embedding of these languages,

– verification attempts can be debugged by interactive proofs, so interactive tech-
niques may increase the verification productivity,

– combinations of structured interactive and automated techniques can make
infeasible verifications feasible, especially if algorithmic problems are involved,
and

– the logical foundation of the VCC/Boogie-approach can be improved.

In this paper, we present a new verification environment, called HOL-Boogie
[12, 13], based on VCC/Boogie and Isabelle/HOL, and discuss challenges and
achievements.

1.1 VCC/HOL-Boogie as an Alternative to Embeddings

Compiling ANSI-C into a transition system described in the fairly small and logically
clean Boogie core language (called BoogiePL) represents an alternative to a logical
embedding into HOL. Such an embedding approach, for example, has been taken
by [35, 48] describing a big-step transition semantics for a C fragment comprising
only side-effect free expressions. While this approach—linking a C Hoare-calculus
via a proven correct, but simplistic compiler to a small-step semantics of an academic
assembler—has a perfect logical foundation, it is obvious that an embedding of a

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 113

more substantial C fragment is an enormous effort with questionable value. The
reasons for this, reflecting C’s historical roots as “portable assembler”, are two-fold:

1. The ANSI-C language semantics is heavily under-specified; the standard is
essentially a collection of requirements on a not further defined “underlying
execution model”. In contrast, “real C code” as occurring in operating system
level programs (device drivers, OS kernels, etc.) characteristically relies on an
architecture-dependent memory/machine model, be it x86, PowerPC, VAMP [9],
etc.1 To be useful, the embedding approach has to take them into account.

2. “Real C code” is usually compiled by aggressively optimizing compilers, which
are not necessarily correct wrt. to a given memory/machine model in practice
(which does not imply that concrete resulting code is incorrect). A logical
embedding following the embedding approach would need to verify all these
compiler-specific semantic decisions and optimizations.

These problems are solved if one uses the resulting machine-specific, optimized code
of a given compiler; if verification is performed on this level, all architecture and
compiler features can be taken into account. In our case, we use a slight abstraction
of the resulting x86 assembler code into a machine/memory model assuming linear
memory and arithmetically computed pointers into it; the distinctive feature of this
model called C Virtual Machine (CVM) is that it supports type unions and bit fields.

1.2 HOL-Boogie as a Technology for Debugging Verification Attempts

Starting to annotate a given program will sooner or later lead to situations where
the automated prover fails and can neither find a proof nor a counterexample. All
existing systems report a degree of automation approaching 100%, causing wide-
spread and understandable enthusiasm. However, there is also a slight tendency to
overlook that the remaining few percent are usually the critical ones, related to the
underlying theory of the algorithm rather than implementation issues like memory
and sharing. Moreover, these figures tend to hide the substantial effort that may have
been spent to end up with a formalization that can be finally proven automatically;
there is even some empirical evidence that in the difficult cases, the labor to massage
the specification can be comparable to the effort of an interactive proof [8].

The reason for a prover failure might be:

– specification-related, i. e. annotations and “background theories” (see below) are
inconsistent, incomplete, or specify unintended behavior,

– program-related, e. g. a program simply does not behave as intended, or
– it can be a problem of the prover, by just using a wrong heuristics for the concrete

task, or even by bad luck (e. g. Z3 [22] uses random-based heuristics).

The key advantage of HOL-Boogie is that assertions at specific program points can
be tracked back to the precise set of facts valid at it; in combination with other
automated techniques, these facts can be simplified and filtered to the relevant ones.
Thus, insufficient preconditions or invariants can be inferred fairly efficiently.

1...consequently it has long been considered to be “dirty” and out of the reach of formal verification
in academia. . .

114 S. Böhme et al.

1.3 HOL-Boogie can Increase the Overall Proof Power

Generated verification conditions can be very large—we have seen examples which
were several Megabytes large (measures as size of the SMT exchange format). While
there are powerful techniques to slice them into smaller pieces, it can be safely
predicted that any automated procedure will reach at some point its limits, being
simply flooded by the large number of facts to be taken into account. The situation
is worse if there is a substantial number of auxiliary definitions, representing “the
theory” of an algorithm including invariants and formalizations of key concepts;
in practice, these definitions are simply unfolded, and usually not in an adequate
manner.

An interactive proof, suitably adapted to the problems arising from automated
formula generation, can decompose the verification conditions along the program
structure and finally the logical structure of the annotations as needed. Moreover,
interactive theorem proving technology has developed a body of techniques to
abstract and structure proof tasks, profiting from techniques developed for proofs
of mathematical problems of considerable size. In particular, relations between
auxiliary predicates can be exploited abstractly without actually unfolding them.

1.4 Strengthening Logical Foundations

Conceptually, BoogiePL allows for specifying programs running over an axiomatized
machine/memory model, in our case the CVM. This machine model presents a
(slight) abstraction over an x86 processor architecture, taking into account the
processor intricacies of little-endianness, bit-padding, etc., but assuming linear mem-
ory and abstracting from registers and jumps (which are represented by goto’s in
BoogiePL). The CVM provides also complex operations for allocation, release, move
and copy memory. Furthermore, the CVM provides the critical infrastructure to state
framing conditions.

Getting an axiomatization of this size (ca. 900 axioms) consistent is a non-trivial
task, and for several automated and interactive provers to work together, one has
to make sure that all provers agree on this axiomatization. Besides formal proofs of
consistency, it can be proven formally within HOL-Boogie that a given CVM model
indeed represents an abstraction of a concrete machine model, for example a precise
formal model of the x86 architecture.

1.5 Contribution

We built HOL-Boogie to exploit these aforementioned incentives and to support
the rich annotation language. We provided techniques for assertion tracking in
an interactive setting, and an integration of the target SMT solver Z3, including
techniques to maintain Z3’s prover instrumentation in order to leverage a real Z3
integration into Isabelle. HOL-Boogie also provides a generic framework to support
memory models; in this paper, we will discuss two particular versions of the CVM
called VCC1 and VCC2 including their specific tactic support, enabling also native
Isabelle proofs on the model. By a collection of smaller and larger examples, we
provide evidence for the feasibility of the approach, and show examples in the data

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 115

type domain where purely automated proof attempts even fail at the end of the
development.

1.5.1 Outline of the Paper

After presenting the background of this work, namely Isabelle/HOL, Boogie, and the
general HOL-Boogie architecture, we describe BoogiePL and its labeling techniques.
We discuss our SMT solver interface in HOL-Boogie and demonstrate the “debug-
ging approach” at a non-trivial imperative algorithm. In the next stage, we describe
the CVM annotation language and the underlying machine/memory model VCC1
as well as its specific proof-support and show its use in a non-trivial C example. A
further machine/memory model called VCC2 is introduced and discussed. Finally we
demonstrate how machine/memory models can also be verified inside HOL-Boogie.

2 Background

2.1 Isabelle/HOL and the Isar Framework

Isabelle is a generic theorem prover [43], i.e. new object logics can be introduced by
specifying their syntax and inference rules. Isabelle/HOL is an instance of Isabelle
with Church’s higher-order logic (HOL), a classical logic with equality. Substantial
libraries for sets, lists, maps, etc. have been developed for Isabelle/HOL, based on
definitional techniques, allowing the use of Isabelle/HOL as a “functional language
with quantifiers”.

Isabelle is based on the so-called “LCF-style architecture” which allows one to
extend a small trusted logical kernel by user-programmed procedures in a logically
safe way. Moreover, on top of the kernel, there is a generic system framework
Isabelle/Isar [51] that can be compared in a rough analogy to the Eclipse pro-
gramming system framework. It provides (1) a hierarchical organization of theory
documents, (2) incremental document processing for interactive theory and proof
development (with unlimited undo) and an Emacs-based GUI, and (3) extensible
syntax for top-level commands, embedded methods and attributes, and the inner
term language. HOL-Boogie is yet another instance of the Isabelle/Isar framework.
It comes with a loader of the verification conditions generated by Boogie, a proof-
obligation management and specific tactic support for the formulas arising in this
scenario as well as interactions with external provers such as Z3 which have been
integrated via the Isabelle oracle mechanism.

2.2 The VCC System Architecture

The Verifying C Compiler (VCC) (Fig. 1) evolved from the Spec# project [4, 7].
It comprises a C front-end supporting ANSI-C and—geared towards verification
of programs close to the hardware-level—bitwise representation of e. g. integers,
structs, and unions in memory. The core component of VCC is Boogie, a verification
condition generator. Its input language BoogiePL provides constants, functions and
first-order axioms, as well as a small imperative language with assignments, first-
order assertions, unstructured goto and structured control constructs (if, while,
break). From these annotated imperative programs, Boogie computes (optimized)

116 S. Böhme et al.

verification conditions over the program and the axiomatization of a background
theory, i. e. a machine/memory model. We use Isabelle’s theory mechanism to include
several such machine/memory models VCC(X) alternatively, which describe in our
cases linear memory (a map from references to bitvectors), allocation operations,
little-endian word-wise load and store operations, and a family of word-wise opera-
tions abstracting the x86-64 processor architecture.

Boogie also provides a framework into which converters to external prover
formats may be “plugged in”. Our HOL-Boogie integration is based on such a plug-
in that outputs the verification conditions in a typed, special-purpose format we
developed for interactive prover back-ends.

3 Foundations of Boogie and HOL-Boogie

3.1 Introduction to BoogiePL

BoogiePL is a many-sorted logical specification language extended by an imperative
language with variables, contracts, and procedures.

The type system of BoogiePL has several built-in as well as user-defined types.
The former cover basic types like bool and int, as well as one- and two-dimensional
arrays which can be indexed by any valid type.

BoogiePL includes the following kinds of top-level declarations:

– user-defined types:

type Vertex ;

– symbolic constants having a fixed but possibly unknown value:

const I n f i n i t y : i n t ;

– uninterpreted functions:

function Distance (from : Vertex , to : Vertex) returns (r e s u l t : i n t) ;

– axioms constraining symbolic constants and functions:

axiom 0 < I n f i n i t y ;

– global variables:

var ShortestPath : [Vertex] i n t ;

– procedure contracts, i.e. signatures with pre- and postconditions, and
– implementations of procedures.

An implementation begins with local-variable declarations which are followed by a
sequence of basic blocks. We will only consider the latter in more detail here, and we
omit the structured control structures, which can be desugared into the statements
and goto’s shown here. Each basic block has a name, a body, and a possibly empty
set of successors (Fig. 2). Expressions are first-order logic formulas with equality and
integer operations.

Semantically, each block corresponds to a transition relation over the variables
of a program; goto statements correspond to a composition with the intersection

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 117

of the successor transition relations, loops to fixpoints: Boogie represents a partial
correctness framework. The basic assertion assert constrains the subsequent tran-
sition, while assume weakens it. Pragmatically, assert produces obligations for the
programmer, while assume leaves him “off-the-hook”, see, e. g., [40, 42].

An assignment statement x := E updates the program state by setting the variable
x to the value of the expression E. The statement havoc x sets the variable x to an
arbitrary value. The statement S ; T corresponds to the relation composition. The
procedure call statement, i.e. call, is just a short-hand for suitable assert, havoc and
assume statements, encoding the callee’s pre- and postconditions [37]. The return
command is a short-hand for the procedure’s postconditions and a goto with no
successors.

BoogiePL also comes with a structured syntax with which one can express loops
(while) and branches (if) directly. These can be defined as a notation for certain basic
blocks; for example, the following schematic while loop:

while (G) invar iant P; { B }

is encoded by the following basic blocks [3]:

LoopHead : assert P ; goto LoopBody, LoopDone;
LoopBody : assume G ; B ; goto LoopHead;
LoopDone : assume ¬G ; . . .

More details of BoogiePL can be found in [3, 23].

3.2 Generating Verification Conditions

Verification condition generation proceeds in the following steps: First, the expan-
sion of syntactic sugar and (safe) cutting of loops result in an acyclic control-flow
graph. Second, a single-assignment transformation is applied. Third, the result is
turned into a passive program by changing assignment statements into assume
statements. Finally, a verification condition of the unstructured, acyclic, passive
procedure is generated by means of weakest preconditions.

We will present only the final step here, the reader interested in the first three
is referred to [5]. Each basic block in a preprocessed program consists only of a
sequence of assert and assume statements, followed by a final goto command.

For any statement S and predicate Q on the post-state of S, the weakest pre-
condition of S with respect to Q, written wp(S, Q), is a predicate that characterizes
all pre-states of S whose reachable successor states satisfy Q. The computation of
weakest preconditions follows the well-known rules:

wp(assert P, Q) = P ∧ Q
wp(assume P, Q) = P =⇒ Q

wp(S ; T, Q) = wp(S, wp(T, Q))

For every block

A : S ; goto B1, . . . , Bn;

118 S. Böhme et al.

an auxiliary variable Acorrect is introduced, the intuition being that Acorrect is true if the
program is in a state from which all executions beginning from block A are correct.
Formally, there is the following block equation:

Acorrect ≡ wp

⎛
⎝S,

∧
B∈{B1,...,Bn}

Bcorrect

⎞
⎠

Each block contributes one block equation, and from their conjunction, call it R, the
procedure’s verification condition is

R =⇒ Startcorrect

where Start is the name of the first block of the procedure. The verification condition
generated this way is linear in the size of the procedure [5].

3.3 Labeling in Boogie

Boogie is able to output source code locations of errors and also execution traces
leading to these errors. The underlying basic idea is to enrich formulas by labels, i.e.
uninterpreted predicate symbols intended to occur in counterexamples of verification
conditions. In verification conditions generated by Boogie, labels are either positive
(lblpos L : P) or negative (lblneg L : P). Logically, these formulas are equivalent to
P; the labels occur in counterexamples if P has the indicated sense (i.e. P or ¬P).
Their formal definition is as follows:

(lblneg L : P) = P ∨ L
(lblpos L : P) = P ∧ ¬L

Negative labels tag formulas of assertions (including invariants and postconditions)
with an abstract identifier referring to a location in the source program. If an
assertion cannot be proven, the accompanying label allows Boogie to emit an error
location identifying which program check failed. Positive labels tag the beginning of
a block by an additional assertion which is always true. This way, execution traces
contain information reflecting the order in which basic blocks were processed. If
execution terminates in an error, the positive labels represent an error trace.

A more detailed description of this use of labels is found in [36].
We extended Boogie to emit real program locations instead of abstract labels.

After producing a verification condition and loading it in HOL-Boogie, the program
locations then occur at the formulas to be proven.

3.4 Attribution in BoogiePL

We implemented a new feature in Boogie: The top-level declarations for types,
constants, functions, axioms, and global variables, can be tagged by attributes;
previously, Boogie allowed such attributes only on quantifier expressions (so-called
triggers [24]). Attributes are opaque for Boogie; they may carry information for
external provers and may influence Boogie’s back-ends. For example, consider the
following declarations:

function { : b v b u i l t i n " bvadd " } $add . u4 (x : bv32 , y : bv32) returns (bv32) ;
function { : b v b u i l t i n " bvadd " } $add . unchk . u8 (x : bv64 , y : bv64) returns (bv64) ;
axiom { : ignore "bvSem" } (∀ x : bv64 , y : bv64 : : { $add . unchk . u8 (x , y) }

$check . add . u8 (x , y) =⇒ $add . u8 (x , y) == $add . unchk . u8 (x , y)) ;

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 119

The attributes at the function declarations direct the Z3 back-end of Boogie to
translate these functions into Z3’s built-in bitvector addition operation. The axiom
attribute makes the prover back-end ignore the axiom, if a particular model is
assumed. The so-called trigger at the quantifier is directly passed to Z3, where it
is used to find instantiations for quantifiers via matching currently valid hypotheses.
Although the entirety of such attributes may sum up to a quite substantial and highly
critical part of a background theory (Z3 usually will loop or perform very bad without
them!), we will ignore them throughout the presentation of this paper. HOL-Boogie,
however, has to keep track of them in order to pass sub-formulas of a verification
condition to Z3.

3.5 Generic Proof Support in HOL-Boogie

HOL-Boogie comes with a set of specific tactics to manipulate verification conditions.
Based on the structure of verification conditions generated by Boogie, the central
tactic of HOL-Boogie, split-vc, extracts all assertions and associates them with their
execution trace, expressed as a list of premises. Each assertion then forms a subgoal
for the proof of the original verification condition.

After splitting a verification condition, each subgoal is passed to a number of sub-
tactics given as arguments to split-vc. The set of available sub-tactics is extensible
and currently comprises a generic SMT binding explained in Section 4, Isabelle’s
simplifier, and a specifically tailored tactic for VCC-generated verification conditions
(see Section 7.3). These tactics essentially give the “debugging flavor” to HOL-
Boogie, as we will see later, because they usually discharge all subgoals except the
incorrect or inconsistent ones.

4 A Generic Interface for SMT Solvers

The main task of automated program verification, i. e. deciding whether a given
verification condition holds or not, is nowadays performed by SMT (satisfiability
modulo theories) solvers. The underlying technology is an efficient combination of
DPLL, a fast SAT solving technology, with several first-order theories generally
connected by a variant of the congruence closure algorithm due to Nelson and Oppen
(see [31]). Theories covered by SMT solvers comprise uninterpreted functions, linear
arithmetics, (extensional) arrays, fixed-size bitvectors, and many more, but only few
of the currently available solvers support a considerable subset of these theories.
Several SMT solvers also decide (some) quantified formulas using clever heuristics,
despite the fact that such formulas are, in general, undecidable. Although many-
sorted logics are the default type system in the SMT community, some solvers also
support polymorphism [11] or a restricted kind of polymorphism for special built-in
functions only.

Each of the available SMT solvers comes with its own native input format,
where some differentiate between formulas and terms and others do not. In an
effort to provide a standardized interface for all solvers, the SMT-LIB initiative was
established. It developed the SMT-LIB format [47], which is nowadays understood
by most current SMT solvers. This format is necessarily a compromise, and hence
lacks features found in several solvers’ native input formats. Firstly, combinations
of logical theories are fixed. There is, for example, no logic comprising bitvectors,

120 S. Böhme et al.

arrays, uninterpreted functions and quantifiers, which is needed for low-level C
verification. Secondly, all logics are many-sorted without any kind of polymorphism,
and thirdly, there is a strict separation between terms and formulas. Nevertheless,
due to its broad support by solvers, any reasonable generic SMT interface should at
least be based on the SMT-LIB format.

Up to now, there have been some attempts to connect interactive provers with
SMT solvers [25, 30, 38], but all of them have been specific in one way or the other.
Moreover, none of them targeted Z3, the solver already used as back-end of VCC
and Boogie. In contrast, our currently implemented interface to SMT solvers in
Isabelle/HOL is designed to be generic in the sense that many different solver input
formats can be addressed. For now, only the SMT-LIB format and the native input
format of Z3, which supports more features than the former, are covered, but other
input formats may be implemented as well, especially if they differ only syntactically
to one of the already provided formats. Currently, our interface covers uninterpreted
functions, linear integer arithmetic, (extensional) arrays, and bitvectors; moreover,
support for quantifier instantiation heuristics (so-called triggers) is included.

As part of the HOL-Boogie core environment, some parts of the rich
Isabelle/HOL system were mapped to SMT primitives (notably bitvectors); this
provides the basis for all specific machine/memory models for C or other languages
represented in BoogiePL. We treat natural numbers as SMT integers and insert
conversion functions to guarantee that mapped values are always non-negative.
Moreover, variables with function type are transformed into SMT arrays, i. e. reason-
ing about higher-order functions gets possible. Thus, at least the interface can handle
quantified functions, although there are no results yet on how well SMT solvers come
along with this task.

Practice shows that speeding up the interface is of paramount importance. There-
fore, we implemented the Isabelle SMT interfaces as an (potentially unsound) oracle
to avoid the otherwise necessary, complicated proof reconstruction due to Isabelle’s
LCF architecture. This approach is also guided by the fact that the back-end SMT
solver is usually trusted in program verification. Moreover, we included a fast channel
to pass a huge background axiomatization directly to the solver, avoiding Isabelle’s
trusted kernel.

Although at the beginning the aim has been to automate program verification
proofs, the SMT binding may as well be applied to other problems in Isabelle/HOL.
Consider for example the integer recurrence relation xi+2 = |xi+1| − xi, which is
periodic with period 9. Since SMT solvers, in general, have no built-in notion of
absolute values, the function | · | :: int ⇒ int must be treated as uninterpreted with a
suitable axiomatization:

∀ (i::int). |i| = (if i < 0 then −i else i)

This definition is available in Isabelle as a theorem called zabs-def. The periodicity
property of the recurrence relation mentioned before then looks as follows in
Isabelle/HOL:

lemma [[x3 = |x2| − x1; x4 = |x3| − x2; x5 = |x4| − x3;
x6 = |x5| − x4; x7 = |x6| − x5; x8 = |x7| − x6;
x9 = |x8| − x7; x10 = |x9| − x8; x11 = |x10| − x9]]

=⇒ x1 = x10 ∧ x2 = (x11::int)
by (smt add: zabs-def)

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 121

This combination of linear integer arithmetic, uninterpreted functions and quanti-
fiers can be solved by current SMT solvers in an instant; in comparison, Isabelle’s
arith tactic takes several minutes to solve the same problem.

5 Case Study: Verifying Imperative BoogiePL Programs

Widely known and yet fairly complex, Dijkstra’s Shortest Path Algorithm already
poses a reasonable challenge for verification efforts. The following code, written
by Itay Neeman, presents a high-level implementation of Dijkstra’s algorithm,
abstracting from any memory model and even shortening several initializations and
assignments by logical expressions.

type Vertex ;
const Graph : [Vertex , Vertex] i n t ;
axiom (∀ x : Vertex , y : Vertex : : x �= y =⇒ 0 < Graph [x , y]) ;
axiom (∀ x : Vertex , y : Vertex : : x == y =⇒ Graph [x , y] == 0) ;

const I n f i n i t y : i n t ;
axiom 0 < I n f i n i t y ;

const Source : Vertex ;
var SP: [Vertex] i n t ; / / sho r t es t paths from Source

procedure D i j k s t r a () ;
modifies SP;
ensures SP[Source] == 0;
ensures (∀ z : Vertex , y : Vertex : :
SP[y] < I n f i n i t y ∧ Graph [y , z] < I n f i n i t y =⇒
SP[z] ≤ SP[y] + Graph [y , z]) ;

ensures (∀ z : Vertex : : z �= Source ∧ SP[z] < I n f i n i t y =⇒
(∃ y : Vertex : : y �= z ∧ SP[z] == SP[y] + Graph [y , z])) ;

implementation D i j k s t r a ()
{

var v : Vertex ;
var V i s i t e d : [Vertex] bool ;
var oldSP : [Vertex] i n t ;

havoc SP;
assume (∀ x : Vertex : : x == Source =⇒ SP[x] == 0) ;
assume (∀ x : Vertex : : x �= Source =⇒ SP[x] == I n f i n i t y) ;

havoc V i s i t e d ;
assume (∀ x : Vertex : : ¬V i s i t e d [x]) ;

while ((∃ x : Vertex : : ¬V i s i t e d [x] ∧ SP[x] < I n f i n i t y))
invar iant SP[Source] == 0;
invar iant (∀ y : Vertex , z : Vertex : :

¬V i s i t e d [z] ∧ V i s i t e d [y] =⇒ SP[y] ≤ SP[z]) ;
invar iant (∀ z : Vertex , y : Vertex : :

V i s i t e d [y] ∧ Graph [y , z] < I n f i n i t y =⇒ SP[z] ≤ SP[y] + Graph [y , z]) ;
invar iant (∀ z : Vertex : : z �= Source ∧ SP[z] < I n f i n i t y =⇒

(∃ y : Vertex : : y �= z ∧ V i s i t e d [y] ∧ SP[z] == SP[y] + Graph [y , z])) ;
{

havoc v ;
assume ¬V i s i t e d [v] ;
assume SP[v] < I n f i n i t y ;
assume (∀ x : Vertex : : ¬V i s i t e d [x] =⇒ SP[v] ≤ SP[x]) ;
V i s i t e d [v] := true ;
oldSP := SP;
havoc SP;
assume (∀ u : Vertex : :

Graph [v , u] < I n f i n i t y ∧ oldSP [v] + Graph [v , u] < oldSP [u] =⇒
SP[u] == oldSP [v] + Graph [v , u]) ;

122 S. Böhme et al.

assume (∀ u : Vertex : :
¬(Graph [v , u] < I n f i n i t y ∧ oldSP [v] + Graph [v , u] < oldSP [u]) =⇒

SP[u] == oldSP [u]) ;
}

}

While developing algorithms and their specifications like the one given here, it
commonly happens that, even if a program behaves as intended, its specification is
incomplete or inconsistent. Indeed, when letting Boogie check the given program, it
reports the following error message:2

Spec# Program Verifier Version 0.88, Copyright (c) 2003-2007, Microsoft.
dijkstra.bpl(34,5): Error BP5005: This loop invariant might not be

maintained by the loop.
Execution trace:

dijkstra.bpl(26,3): anon0
dijkstra.bpl(33,3): anon2_LoopHead
dijkstra.bpl(42,5): anon2_LoopBody

Spec# Program Verifier finished with 0 verified, 1 error

Using HOL-Boogie we can navigate to the cause for this error and inspect it. The
underlying techniques, described in Section 3.5, split the verification condition into
altogether 11 subgoals and pass each of them to Z3, which can discharge all of them
except two. The first of the remaining subgoals, without its premises, reads as follows
in HOL-Boogie :

assert-at Line-34-Column-5 (SP-2 Source = 0)

This formula corresponds to a negatively labeled formula in the verification condition
generated by Boogie. Note that SP-2 is an inflection of the program variable SP
holding the computed shortest paths after arbitrary runs of the while loop.

The subgoal found by HOL-Boogie is exactly the cause of the error reported
by Boogie, as the position label indicates. The associated premises represent the
complete execution trace until the point where the above invariant is checked.
Among those premises, there is one remarkably similar to the subgoal above:

SP-1 Source = 0

while two premises express properties of SP-2 stemming from the last two assump-
tions in the while loop:

∧
u. Graph(v-1, u) < Infinity ∧ SP-1 v-1 + Graph(v-1, u) < SP-1 u
=⇒ SP-2 u = SP-1 v-1 + Graph(v-1, u)

∧
u. Graph(v-1, u) < Infinity ∧ ¬(SP-1 v-1 + Graph(v-1, u) < SP-1 u)

=⇒ SP-2 u = SP-1 u

Based on those properties, we attempt to prove the subgoal. Note that we can use the
rich proof support developed for Isabelle, including the structured proof language

2Note that the current version of Boogie (version 0.90) does not terminate within a minute for the
same problem.

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 123

Isar as well as a connection to external first-order provers for filtering relevant
lemmas [39]. Consider the following Isar extract:

boogie-vc Dijkstra
proof (split-vc try: smt simp)

case goal1
note 1 = 〈SP-1 Source = 0〉
note 2 = 〈

∧
u. Graph(v-1, u) < Infinity ∧ SP-1 v-1 + Graph(v-1, u) < SP-1 u

=⇒ SP-2 u = SP-1 v-1 + Graph(v-1, u)〉
note 3 = 〈

∧
u. Graph(v-1, u) < Infinity ∧ ¬(SP-1 v-1 + Graph(v-1, u) < SP-1 u)

=⇒ SP-2 u = SP-1 u〉
show ?case
proof (simp add: labels)
show SP-2 Source = 0
proof (cases

G(v-1, Source) < Infinity ∧
SP-1 v-1 + G(v-1, Source) < SP-1 Source)

case True
with 2 have SP-2 Source = SP-1 v-1 + G(v-1, Source) by simp
moreover from True have SP-1 v-1 + G(v-1, Source) < SP-1 Source by simp
ultimately have SP-2 Source < 0 using 1 by simp

oops

We want to show that SP-2 Source = 0 holds, but with a case distinction and the
fact noted as 2, we can deduce that SP-2 Source < 0. Clearly, there must be an
error in the specification with respect to the implementation (or vice versa) leading
to this contradiction. Indeed, since Dijkstra’s algorithm takes as input a graph with
only non-negative distances, and shortest paths are computed by adding up those
distances, no computed shortest path, including that for the source node, may ever
be negative. The invariants of the while loop, however, do not maintain this property.
We correct the specification by adding the following invariant:

invar iant (∀ x : Vertex : : SP[x] ≥ 0) ;

This addition suffices to correct the specification; the program can now be verified
automatically by Boogie and Z3.

6 From CVM to the VCC1 Annotation Language

Compiling an annotated ANSI-C program into a BoogiePL program over an abstract
machine/memory model adds an additional layer in the tool-stack and therefore
some new complications. VCC [15, 49] and its C front-end represents a compiler
supporting a very large subset of the C language; at time being its front-end as
well as its machine/memory model are under active development by Microsoft
Research. The concrete version we are describing here—called VCC1—is based on
the concept of regions, i. e. sets of pointers representing a subdomain of the memory,
which is understood as a finite map from pointers to byte sequences. Another
memory model—an ownership-based one called VCC2 [15]—will be presented later
in Section 9. The difference between these two set-ups is reflected in a different
front-end and another CVM axiomatization; the architecture shown in Fig. 1 remains

124 S. Böhme et al.

VCC Isabelle/HOL

C front-end

Boogie
Program

(BoogiePL)

CVM
(BoogiePL)

Z3 SMT

HOL-Boogie

VCC(X) context

Proof

Obligations

Proof Obligations

Fig. 1 VCC and the HOL-Boogie back-end

the same. In the sequel, we will outline the key features of the VCC1 CVM and its
representation in BoogiePL.

6.1 The CVM Machine Model

The standard x86-64 machine operations are fairly easily described; we have to
distinguish several operator families for unsigned and signed integers of various byte-
lengths: u1, u2, u4, u8, i1, i2, i4, i8. Thus, we have declarations like:

. . .
function $add . i 1 (x : bv32 , y : bv32) returns (bv32) ;
function $add . i 2 (x : bv32 , y : bv32) returns (bv32) ;
function $add . i 4 (x : bv32 , y : bv32) returns (bv32) ;
function $add . i 8 (x : bv64 , y : bv64) returns (bv64) ;
function $add . u1 (x : bv32 , y : bv32) returns (bv32) ;
function $add . u2 (x : bv32 , y : bv32) returns (bv32) ;
function $add . u4 (x : bv32 , y : bv32) returns (bv32) ;
function $add . u8 (x : bv64 , y : bv64) returns (bv64) ;
. . .
function $cge . i 4 (x : bv32 , y : bv32) returns (bool) ;
function $cge . u4 (x : bv32 , y : bv32) returns (bool) ;
. . .

and their axiomatic definitions (together, these are about 80 operations). Here,
the types bv64, bv32, etc., are built-in types of BoogiePL representing bitvectors
of corresponding size. All machine operations are either double-word (bv32) or
four-word (bv64) aligned. Note that these assembler-like operations are modeled

Fig. 2 Schematic syntax of
blocks in BoogiePL

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 125

as functions, i. e. have no side-effects on registers or the like. Any side-effect will be
modeled as side-effect on memory to be discussed later.

6.2 The CVM Elementary Memory Model

Pointers are axiomatized in the CVM model to be pairs of a base and an offset (where
$_ptr is used as pointer constructor), and for pointers to the same base, pointer
addition is defined that takes into account the size of an object to be referenced by a
pointer:

type $ re f ;
type $p t r ;
. . .
const unique $ l d n u l l : $p t r ;
axiom $ l d n u l l == $_pt r (nu l l , 0bv64) ;

function $o f f s e t (p : $p t r) returns (bv64) ;
function $base (p : $p t r) returns (r e f) ;
function $add . p t r (p : $pt r , o f f : bv64 , e l s i z e : bv64) returns ($p t r) ;

axiom (∀ p : $pt r , o : bv64 , sz : bv64 : : { $add . p t r (p , o , sz) }
$add . p t r (p , o , sz) ==

$_pt r ($base (p) , $add . i 8 ($o f f s e t (p) , $mul . i 8 (o , sz)))) ;

Pointers can be converted to bitvectors of length 64; the conversion functions are
omitted here.

Memory is viewed as a map from references to lists of bytes. The elementary
axioms for byte-wise access capture the heart of the memory model:

type $memory ;
. . .
function $get8 (m: $memory , r : re f , o f f : bv64) returns (bv8) ;
function $set8 (m: $memory , r : re f , o f f : bv64 , v : bv8) returns ($memory) ;

axiom (∀ m:$memory , r : re f , o f f : bv64 , v : bv8 : :
$get8 ($set8 (m, r , o f f , v) , r , o f f) == v) ;

axiom (∀ m:$memory , r1 : re f , r2 : re f , o f f 1 : bv64 , o f f 2 : bv64 , v : bv8 : :
r1 �= r2 =⇒ $get8 ($set8 (m, r1 , o f f1 , v) , r2 , o f f 2) == $get8 (m, r2 , o f f 2)) ;

axiom (∀ m:$memory , r1 : re f , r2 : re f , o f f 1 : bv64 , o f f 2 : bv64 , v : bv8 : :
o f f 1 �= o f f 2 =⇒ $get8 ($set8 (m, r1 , o f f1 , v) , r2 , o f f 2) == $get8 (m, r2 , o f f 2)) ;

A region denotes a set of pointers; the core operations are:

type $region ;

function $empty () returns ($region) ;
function $universe () returns ($region) ;
function $region (p : $pt r , len : bv64) returns ($region) ;
function $union (r1 : $region , r2 : $region) returns ($region) ;
function $conta ins (smal l : $region , b ig : $reg ion) returns (bool) ;
function $over laps (r1 : $region , r2 : $region) returns (bool) ;

over which a small, single-typed set theory is axiomatized. Regions and the $overlaps
operation are the main tool of this memory model to express the sharing of data
structures or their absence.

126 S. Böhme et al.

6.3 The CVM x86 Memory Model

The elementary memory model forms the basis for a more complex one enabling for
byte-, word-, double-word- and four-word-wise access into byte lists; the alignment
reflects the behaviour of the little-endian x86-64 architecture.

. . .
function $ld . i 4 (m: $memory , p : $p t r) returns (bv32) ;
. . .
axiom (∀ m:$memory , p : $p t r : :

$ ld . i 4 (m, p) == $get8 (m, $base (p) , $add . i 8 ($o f f s e t (p) , 3bv64)) ++
$get8 (m, $base (p) , $add . i 8 ($o f f s e t (p) , 2bv64)) ++
$get8 (m, $base (p) , $add . i 8 ($o f f s e t (p) , 1bv64)) ++
$get8 (m, $base (p) , $o f f s e t (p))) ;

function $st . i 4 (m: $memory , p : $pt r , v : bv32) returns ($memory) ;
axiom { : ignore " bv In t " } (∀ m:$memory , p : $pt r , v : bv32 : :

$s t . i 4 (m, p , v) ==
$set8 (
$set8 (
$set8 (
$set8 (m,
$base (p) , $o f f s e t (p) , v [8 : 0]) ,

$base (p) , $add . i 8 ($o f f s e t (p) , 1bv64) , v [1 6 : 8]) ,
$base (p) , $add . i 8 ($o f f s e t (p) , 2bv64) , v [2 4 : 1 6]) ,

$base (p) , $add . i 8 ($o f f s e t (p) , 3bv64) , v [3 2 : 2 4])) ;
. . .

For all complex x86-64-oriented load/store operations, axiomatic definitions of this
form are given; from them, a number of rules—essentially representing a complete
case distinction for all $ld.X - $st.X combinations—are derived that reflect the
memory behaviour including alignment issues.

6.4 The Partial CVM x86 Memory Model with Typed Ghost State

The elementary memory model described in Section 6.2 models essentially an infinite
map from references to bytes. Of course, this is not a realistic “execution model” for
C, where only finite chunks of memory can be allocated, and access to a chunk has
to respect its size. This feature—size of allocated memory assigned to a pointer—is
stored in a separate memory, the ghost memory. As we will see, ghost memory is
not only used for internal purposes, in contrast, the user may use the ghost memory
indirectly by “attaching” new information to a pointer. For example, a pointer to the
head of a list may be associated with the number of nodes in that list.

The CVM state consists of two program variables (presentation simplified):

var $mem : $memory ;
var $gmem : [$gid , <x>name] x ;

where the ghost memory is typed memory. This is achieved by a slightly non-standard
construct in the BooglePL type-system, a sort of dependent type that associates to a
type key <x>name data of a given type x; $gid is the type of pointers into the ghost
state (which were defined bijectively to pointers).

On this basis, the $malloc operation can be specified by the following contract:

procedure $malloc (s ize : bv64) returns (p : $p t r) ;
modifies $gmem;
ensures $only_region_changed_or_new ($empty () , old ($gmem) ,$gmem,$mem,$mem) ;
ensures $al loc_grows (old ($gmem) , $gmem)
ensures

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 127

p �= $ l d n u l l =⇒
$base (p) �= n u l l ∧ $o f f s e t (p) == 0bv64 ∧
$sizep ($gmem, p) == s ize ∧ $sizep (old ($gmem) , p) == 0bv64 ∧
∀ r : r e f : : r �=$base (p) =⇒ $size (old ($gmem) , r) == $size ($gmem, r) ∧
∀ q : $gid , n: <x>name : : n�=$_size =⇒ old ($gmem) [q , n] == $gmem[q , n] ;

ensures p == $ l d n u l l =⇒ old ($gmem) == $gmem;

The modifies-clause is treated as a conjunction of equations like old($mem)=$mem,
relating the old state of all program variables not mentioned in the clause to their new
state after executing the operation. The predicates $only_region_changed_or_new
and $alloc_grows control that the ghost memory remains invariant wherever it was
defined and that its domain grows. The $malloc operation can fail and will return
the null pointer $ldnull in this case. If not, it will return a pointer whose base is
not null and “fresh”. In any case, the $size of other references will not change.
A peculiar, non-standard construct is contained in the last quantified formula of
this specification: a quantification ranging over all type keys (and implicitly over all
types). This framing condition is a tribute to the typed-ness of the ghost memory and
states that all “ghost attributes” different from $size are unchanged.

A key concept of the memory model is valid memory, a notion which is a critical
pre-requisite for pointer additions and dereferentiation.

axiom (∀ a l l o c : [$gid , <x>name] x , p : $pt r , len : bv64 : :
$va l i d (a l l oc , p , len) ⇐⇒

$base (p) �= n u l l ∧
$cge . u8 (len , 0bv64) ∧ $cge . u8 ($o f f s e t (p) , 0bv64) ∧
$cge . u8 ($add . i 8 ($o f f s e t (p) , len) , $o f f s e t (p)) ∧
$c le . u8 ($add . i 8 ($o f f s e t (p) , len) , $sizep (a l l oc , p))) ;

This definition—based on machine arithmetic tests—assures that a pointer (including
its offset) added to len points to a place in memory that has been allocated before.
This is due to the fact that the postcondition of malloc(n) implies $valid(alloc, p, n−1)
(provided that n > 0); key operations like $memcpy and $memmove are defined
similarly.

6.5 High-Level Annotations of VCC1

Specifying contracts directly in terms of the primitives of the VCC1 memory model is
quite tedious and error-prone. Therefore, a number of high-level constructs has been
added to facilitate this task.

For example, there is a writes clause (similarly to the modifies clause on the
BoogiePL level) specifying call-by-reference function parameters, and a reads clause
specifying which parameters are accessed and stay unchanged. For global variables
occurring in a writes clause the implicit equality between pre-state and post-state is
omitted, enabling arbitrary changes on them.

Writing a contract directly on the level of the VCC1 memory model, say, for a C
function that computes the maximum of a given array, might look like this:

s t a t i c UINT8 maximum(UINT16 a r r [] , UINT64 len)
requires (v a l i d (ar r , len ∗ sizeof (UINT16)))
ensures (v a l i d (ar r , len ∗ sizeof (UINT16)))
ensures (a r r == old (a r r))
ensures (∀ (UINT64 i ; i < len =⇒ a r r [i] == old (a r r [i])))

The built-in function sizeof, a compiler-dependent feature, computes for each type
the number of bytes which are used to represent it. The precondition and the first two

128 S. Böhme et al.

postconditions represent a common pattern in specifications; a short-cut for them are
SAL annotations which have been extensively used in the development of the Vista
code-base [17, 19]. With the help of these annotation short-cuts, a full example for
unsigned word-arrays of size bounded by 240 reads as follows:

#include " vcc . h "
. . .

s t a t i c UINT8 maximum(__in_ecount (len) UINT8 a r r [] , UINT64 len)
requires (0 < len ∧ len < (1UI64 << 40))
ensures (∀ (UINT64 i ; i < len =⇒ a r r [i] ≤ r e s u l t))
ensures (∃ (UINT64 i ; i < len ∧ a r r [i] == r e s u l t))

{
UINT8 max = a r r [0] ;
UINT64 p ;
spec (UINT64 wi tness = 0 ;)

for (p = 1 ; p < len ; p++)
invar iant (p ≤ len)
invar iant (∀ (UINT64 i ; i < p =⇒ a r r [i] ≤ max))
invar iant (wi tness < len ∧ a r r [wi tness] == max)

{
i f (a r r [p] > max) { max = a r r [p] ; speconly (wi tness = p ;) }

}
return max ;

}

The natural specification for the postcondition “There is a position i such that
result equals the array at that position” requires that there is an easy match against
a witness. In this case, verification succeeds as appropriate ghost code is added
to construct it: The declaration spec(UINT64 witness = 0;) introduces a local ghost
variable, which is only visible inside ghost code, and the ghost code assignment
speconly(witness=p;) updates that variable whenever a new candidate is found.

The compiled BoogiePL program is significantly larger (about 2400 lines), since
it contains the axiomatization of the CVM. In order to give an impression of its
abstraction level, we show some code resulting from the invariant’s:

invar iant $c le . u8 (p , len) ;
invar iant (∀ i : bv64 : : $_inrange . u8 (i) =⇒ $ c l t . u16 (i , p) =⇒
$c le . u4 ($ ld . u1 ($mem, $add . p t r (ar r , i , 1bv64)) , max)) ;

invar iant $ c l t . u8 (witness , len) ∧
$ld . u1 ($mem, $add . p t r (ar r , witness , 1bv64)) == max ;

f ree invar iant $only_region_changed_or_new (
old ($region (ar r , $mul . u8 (len , 1bv64))) ,
old ($gmem) , $gmem, old ($mem) , $mem) ;

invar iant $al loc_grows (# temp10 , $gmem) ;

and the resulting verification conditions—which have all architecture-specific pad-
dings resolved—are on the same level. However, as we will see, representation in
terms of the Isabelle bitvector library will drastically simplify this type of formulae.

Another important concept that we introduce here in more detail is the concept of
ghost fields: For the purpose of specification, it is possible to annotate data structures
with additional fields. Conceptually, such ghost fields denote “attributes” of data
cells in memory. Consider, for example, a list node for which we want to specify

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 129

the number of nodes in that list (length) and the set of contained nodes (entries, a set
of pointers to void to be casted accordingly):

struct l i s t _node {
i n t va l ;
struct l i s t _node ∗ next ;
spec (unsigned i n t l eng th ;)
spec (Set en t r i e s ;)

} ;

By suitable ghost code, such ghost fields may satisfy stronger object invariants; in
particular, typical auxiliary functions computing the values of these ghost-fields can
be avoided. Technically, the given ghost fields are represented by two new type keys,
$_list_node_ length and $_list_node_ entries, to be used for accessing and updating
ghost memory. Note that the postcondition part from the $malloc contract:

∀ q : $gid , n: <x>name : : n�=$_size =⇒ old ($gmem) [q , n] == $gmem[q , n] ;

also ranges over these new, user-defined type keys and, consequently, also implies
the necessary framing equalities for them.

7 The VCC1 Plugin in HOL-Boogie

7.1 Handling Bitvectors

Many machine operations shown in Section 6.1 are tagged by attributes (cf. Sec-
tion 3.4) resulting in their direct map to built-in operations in Z3. HOL-Boogie uses
these attributes in the same way, but maps bitvector functions to an Isabelle/HOL
formalization of polymorphic, fixed-size bitvectors [21]. This has two consequences:
First, since the Isabelle/HOL bitvector theory is based entirely on axiomatic defini-
tions and derived rules, reasoning about bitvector operations is sound. Second, the
syntax of bitvector operations strongly resembles their C code counterparts. Con-
sider, for example, the three loop invariants of the maximum function (Section 6.5).
Here are the corresponding goals in HOL-Boogie (the locally valid premises have
been dropped):

assert-at Line-19-Column-5 (p-1 ≤ len)

assert-at Line-20-Column-5 (∀ i. $min.u8 ≤ i ∧ i ≤ $max.u8 =⇒ i < p-1 =⇒
$ld.u1(Smem, $add.ptr(arr, i, 1)) ≤ max-3)

assert-at Line-21-Column-5 (witness-1 < len ∧
$ld.u1(Smem, $add.ptr(arr, witness-1, 1)) ≤ max-3)

Note that the machine operations $cle.u8 or $mul.u8 disappeared again and have
been replaced by standard mathematical symbols referring to operations of the
Isabelle bitvector library; the implicit types still distinguish them appropriately.
Thus, even on the representation level, a significant simplification and conciseness
is achieved while maintaining the necessary semantic precision.

130 S. Böhme et al.

7.2 Treating Typed Ghost Memory

Conceptually, ghost memory is modeled in BoogiePL as array (or function) from
pointer and type key to the corresponding type of that type key. Quantifications and
comparisons on type keys are allowed. Since the type system of Isabelle/HOL does
not support dependent types, let alone predicative comparisons on types as used in
the shown axioms, we need a different way to represent ghost memory and its access.
As a pre-requisite, we abstract the BoogiePL type :[$gid,<x>name]x by the type heap.

The key observation is that there are only universal quantifications over type
keys, and they all occur outermost and satisfy the main restrictions as “shallow type
quantifications” for Hindley-Milner type-systems. Furthermore, for any concrete
program there is only a finite number of type keys possible. This gives rise to the idea
that such quantifications can be viewed as axiom schemes, and constants containing
type keys in their types as constant declaration schemes; for a given program, these
schemes can be expanded.

This means that for the select operation $gmem[gp,tt] and for the update operation
$gmem[gp,tt] := E we have to introduce a constant family. For concrete type keys
(such as $size), this implies the declaration:

consts
select-S-size :: heap ⇒ Sgid ⇒ 64 word
store-S-size :: heap ⇒ Sgid ⇒ 64 word ⇒ heap

together with an Isabelle pretty-printer configuration resulting in output such as
($-size) Sgmem[: p :] or Sgmem[: p → ($-size) E:], respectively.

Typical access and update in BoogiePL:

$gmem1[p , $s ize] := 1bv64 + $gmem0[q , $s ize] ;

look now as follows in HOL-Boogie:

Sgmem1 = Sgmem0[: p → ($-size) (1 + ($-size) Sgmem0[: q :]) :]
The “classical” BoogiePL axiom of the ghost memory theory:

(∀ gp : $gid , n1: <x>name, n2: <x>name, h : [$gid , <x>name] x : :
n1 �= n2 =⇒ h [gp , n1] [gp , n2] == h [gp , n2])

is now expanded to

(∀ gp : $gid , h : [$gid , <x>name] x : :
(False =⇒ h [gp , $s ize] [gp , $s ize] == h [gp , $s ize])) ∧
(False =⇒ h [gp , $tag] [gp , $tag] == h [gp , $tag])) ∧
(True =⇒ h [gp , $s ize] [gp , $tag] == h [gp , $tag])) ∧
(True =⇒ h [gp , $tag] [gp , $s ize] == h [gp , $s ize]))

where $tag is assumed to be the only type key besides $size. Elementary logical
simplification and representation in terms of the select and update operator family
described above yields the axiom set used in HOL-Boogie. Note that the critical
framing equalities of $malloc’s postcondition (see discussion in Section 6.4) are
similarly generated.

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 131

Our encoding scheme makes no assumption over the type of the type keys; in
principle, this can be anything, like for example sets over relations over integer
numbers. One might ask if this generality can lead to deep inconsistencies for the
generated axiom schemes, and how they can be ruled out systematically. A possible
answer is the datatype package described in [14], where exactly this axiom system is
automatically derived entirely from definitional axioms. This approach can also pave
the way for incremental and modular proof techniques.

7.3 VCC1 Specific Tactic Support

Just dumping 900 axioms into an automated proof procedure does neither work for
Z3 nor for Isabelle’s tactics metis [33] or auto; for both provers, the axiom sets have
to be carefully instrumented. In the case of Z3, this has been done by a substantial
amount of work on the axiom annotations and the triggers (recall Section 3.4). In the
case of Isabelle, axioms have to be syntactically massaged to fit to Isabelle’s preferred
syntactic rule format. Moreover, rules have to be classified to be simplification rules,
introduction rules, elimination rules, etc., and to be collected in appropriate rule sets
used by certain tactics to be processed in a particular order. Sometimes, some derived
rules proved necessary for a better degree of automation.

As a result, we developed the new tactic vcc1-auto, which can also be applied as
sub-tactic for split-vc. Together with metis, we had been able to natively show in
Isabelle most of the verification conditions which could be proved by Z3. However,
vcc1-auto is usually slower, and proof scripts tend to profit from filtering relevant
assumptions by prior Z3 proof attempts. Nevertheless, producing native proofs is
a viable option both for increasing confidence in the tool integration as well as
having technical independence from external provers. Note that vcc1-auto may also
be extended easily.

7.4 A Generic Infrastructure for Memory Models

The VCC1 context is an Isabelle/HOL theory on top of HOL-Boogie and contains
axiomatization for a concrete machine/memory model, its instrumentation as well as
specific tactics such as vcc1-auto, and code to treat the specialities of the typed ghost
memory.

Thus, other theories for other machine/memory models may be added easily
to HOL-Boogie. Besides the natural candidate VCC2, the current head of the
development, it is also conceivable to add memory models for C# programs that are
also based on the Boogie verification condition generator.

8 Case Study: Verifying Circular Singly-Linked Lists in VCC1

8.1 Annotating the Data Structure

Linked lists are standard data structures in C, possibly showing up in nearly all
programs written in C. Their implementation is simple, but specifying correctness—
especially in a way suitable for automated solvers—is not trivial. This fact makes

132 S. Böhme et al.

them a good case study for HOL-Boogie. Here, we restrict to circular singly-linked
lists and to two basic operations on them, which can be implemented in C as follows:

typedef struct _Entry
{

struct _Entry ∗ next ;
} Entry , ∗ L i s t ;
void i n i t i a l i z e _ l i s t (L i s t l)
{
l−>next = l ;

}

void i n s e r t _ en t r y (L i s t l , Ent ry∗ en t ry)
{
ent ry−>next = l−>next ;
l−>next = en t ry ;

}

Note that, for simplicity, list entries do not contain any data except for a pointer to
the successor entry.

A specification for the two operations can be given in terms of graphs, a natural
abstraction of linked data structures. Consider the set of natural numbers from 0
to n − 1, where n is the number of list entries, as vertices of a graph, and take the
successor relation on the first n natural numbers as edges of the graph. With a further
edge from n − 1 to 0, we get a simple model for circular singly-linked lists, if we
additionally specify a mapping from pointers to natural numbers and then verify that
the relation induced by the entries’ next pointers corresponds to the edges of our
graph. Then, the function initialize_list has to establish this invariant to be correct.
The function insert_entry has to maintain this invariant while extending the graph
with a vertex corresponding to the inserted entry.

For every list, we restrict the domain of the according mapping to the set of
list entries. Additionally, we maintain a distinguished head entry and, because sets
in VCC’s background axiomatization do not support cardinalities, the number of
entries in the list. The usual approach to keep shared data for a list is to define a
separate structure and let every list entry point to that shared structure. It would
be natural to keep the mapping from entries to natural numbers also in this shared
structure, but it turns out that storing these numbers along with each corresponding
entry makes the specification and verification simpler. To avoid arithmetic overflows,
we limit the size of the list, and thus the maximum values taken by the mapping’s
range, to an abritrarily chosen value.

The annotated version of the list data structure then looks as follows:

#define MAX_LIST_SIZE 10000
typedef struct _Entry Entry , ∗ L i s t ;
speconly (

typedef struct _Meta
{

spec (unsigned i n t s ize ;)
spec (Ent ry∗ head ;)
spec (Set en t r i e s ;)

} Meta ;
)

typedef struct _Entry
{

struct _Entry∗ next ;

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 133

spec (Meta∗ meta ;)
spec (unsigned i n t index ;)

} Entry , ∗ L i s t ;

8.2 Annotating the Code

Based on the above annotated data structure, we formulate the validity of a circular
singly-linked list using the graph model and the mapping from entry pointers to
natural numbers developed before. Since the following invariant is rather long, we
present it piece-wise. To be valid, a list l has to fulfill the following properties:3

spec (bool i s _ v a l i d _ l i s t (L i s t l)
reads (∗ l)
returns (

– There is exactly one meta structure instance for the list, i. e. every list entry points
to the same meta structure:

∀ (Ent ry∗ e1 ; Entry∗ e2 ;
se t_ in (e1 , l−>meta−>en t r i e s) ∧ se t_ in (e2 , l−>meta−>en t r i e s) =⇒
e1−>meta == e2−>meta) ∧

– Every list entry is contained in the set entries (the domain of our model). In
particular, the distinguished head and l itself are in that set:

se t_ in (l , l−>meta−>en t r i e s) ∧
se t_ in (l−>meta−>head , l−>meta−>en t r i e s) ∧
∀ (Ent ry∗ e ;

se t_ in (e , l−>meta−>en t r i e s) =⇒
se t_ in (e−>next , l−>meta−>en t r i e s)) ∧

– The mapping from entries to numbers is bijective. We state this in the following
two properties. Firstly, the range of the mapping is the set of natural numbers
from 0 to n − 1, where n is the size of the list. Note that the lower border is
already guaranteed by the index type. Secondly, the mapping from entries to
numbers is injective.

∀ (Ent ry∗ e ;
se t_ in (e , l−>meta−>en t r i e s) =⇒ e−>index < l−>meta−>s ize) ∧

∀ (Ent ry∗ e1 ; Entry∗ e2 ;
e1 �= e2 ∧ se t_ in (e1 , l−>meta−>en t r i e s) ∧
se t_ in (e2 , l−>meta−>en t r i e s) =⇒
e1−>index �= e2−>index) ∧

– The model corresponds to the structure of the list, i. e. the relation induced by the
entries’ next pointers is reflected by the successor relation on natural numbers.
Furthermore, the index of the head’s predecessor is the greatest number of the

3Note that also specification functions require frame conditions. Here, reads(∗l) specifies that the
content of l is only read and will remain unchanged therefore.

134 S. Böhme et al.

mapping’s range, or, in terms of the graph model, there is an additional edge
from the last to the first entry.

(l−>meta−>head−>index == 0) ∧
∀ (Ent ry∗ e ;

se t_ in (e , l−>meta−>en t r i e s) =⇒
(e−>next == l−>meta−>head ⇐⇒ e−>index == l−>meta−>s ize − 1) ∧
(e−>next �= l−>meta−>head ⇐⇒
e−>index + 1 == e−>next−>index))

)
;)

This invariant specifies the correspondence between a list and its abstract model, but
it does not cover memory properties. The following invariant does just that. It states
that the list’s meta structure and all entries are valid memory regions and that none
of these regions pairwise overlap:

spec (bool is_val id_memory (L i s t l)
reads (∗ l)
returns (

v a l i d (l−>meta , sizeof (Meta)) ∧
∀ (Ent ry∗ e ;

se t_ in (e , l−>meta−>en t r i e s) =⇒
va l i d (e , sizeof (Ent ry)) ∧
d i s j o i n t (reg ion (e , sizeof (Ent ry)) ,
reg ion (l−>meta , sizeof (Meta)))) ∧

∀ (Ent ry∗ e1 ; Entry∗ e2 ;
e1 �= e2 ∧ se t_ in (e1 , l−>meta−>en t r i e s) ∧
se t_ in (e2 , l−>meta−>en t r i e s) =⇒

d i s j o i n t (reg ion (e1 , sizeof (Ent ry)) , reg ion (e2 , sizeof (Ent ry))))
)

;)

The annotation of the implementation requires yet two further specification func-
tions, which we only mention here without showing the corresponding code. The
property is_fresh_for(e, l) specifies that the entry e is a valid region and does not
overlap with the meta structure of the list l or any of l’s entries. By list_footprint(l), we
refer to the union of all entry regions of the list l.

With these specification functions at hand and the model in mind, it is straightfor-
ward to annotate initialize_list:

void i n i t i a l i z e _ l i s t (L i s t l)
requires (v a l i d (l , sizeof (Ent ry)))
writes (∗ l)
al locates (reg ion (l−>meta , sizeof (Meta)))
ensures (i s f r e s h (l−>meta))
ensures (is_val id_memory (l))
ensures (i s _ v a l i d _ l i s t (l))
ensures (l−>meta−>head == l)
ensures (l−>meta−>s ize == 1)
ensures (se t_ in (l , l−>meta−>en t r i e s))

{
l−>next = l ;

speconly (
Meta∗ meta = (Meta∗) mal loc (sizeof (Meta)) ;
assume (meta �= NULL) ;
l−>meta = meta ;

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 135

l−>meta−>en t r i e s = se t_s ing le ton (l) ;
l−>meta−>s ize = 1;
l−>meta−>head = l ;
l−>index = 0;

)
}

Note that, since we require a new instance of the meta structure to be associated with
the initialized list, we need to allocate a block of memory for it, even if the structure
resides in ghost memory.

In contrast to initialize_list, properly annotating insert_entry is more involved. The
specification becomes complicated because the mapping from entries to indices has
to be updated; the index of every entry following the new one up to the last entry has
to be increased by 1. Looping through the list requires a suitable set of invariants,
and we used HOL-Boogie in the way described in Section 5 to discover the necessary
ones. The fully annotated function then looks as follows:

void i n s e r t _ en t r y (L i s t l , Ent ry ∗ en t ry)
requires (is_val id_memory (l))
requires (i s _ v a l i d _ l i s t (l))
requires (l−>meta−>s ize < MAX_LIST_SIZE)
requires (i s _ f r e sh_ f o r (ent ry , l))
writes (∗ l , ∗ (l−>meta) , l i s t _ f o o t p r i n t (l) , ∗ en t ry)
ensures (is_val id_memory (l))
ensures (i s _ v a l i d _ l i s t (l))
ensures (l−>meta−>s ize == old (l−>meta−>s ize) + 1)
ensures (set_equal (l−>meta−>en t r i es ,

set_union (old (l−>meta−>en t r i e s) , se t_s i ng le ton (en t ry))))
{

speconly (
ent ry−>index = l−>index + 1;
ent ry−>meta = l−>meta ;

Entry∗ cu r ren t = l ;
Set v i s i t e d = set_empty () ;
while (¬set_equal (v i s i t e d , l−>meta−>en t r i e s))

invar iant (l−>meta == old (l−>meta))
invar iant (l−>meta−>en t r i e s == old (l−>meta−>en t r i e s))
invar iant (∀ (Ent ry∗ e ; se t_ in (e , l−>meta−>en t r i e s) =⇒

va l i d (e , sizeof (Ent ry))))
invar iant (se t_ in (cur ren t , l−>meta−>en t r i e s))
invar iant (set_subset (v i s i t e d , l−>meta−>en t r i e s))
invar iant (v a l i d (ent ry , sizeof (Ent ry)))
invar iant (l−>meta−>s ize == old (l−>meta−>s ize))

{
i f (cur ren t−>index ≥ entry−>index) cur ren t−>index ++;
v i s i t e d = set_union (v i s i t e d , se t_s i ng le ton (cu r ren t)) ;
cu r ren t = cur ren t−>next ;

}

l−>meta−>en t r i e s = set_union (l−>meta−>en t r i es , se t_s ing le ton (en t ry)) ;
l−>meta−>s ize ++;

)

ent ry−>next = l−>next ;
l−>next = en t ry ;

}

136 S. Böhme et al.

8.3 Verifying Circular Singly-Linked Lists

To inspect the subgoals stemming from a verification condition—and to verify
them completely with Isabelle’s built-in tools—, one can apply the split-vc tactic
without any sub-tactic. Then, the proof of initialize_list, for example, boils down to
14 subgoals, the first two of which are (omitting the premises here):

assert-at Line-81-Column-3
$valid(Sgmem, l, 8)

assert-at Line-81-Column-3
$contains(

$region(l, 8),

$union(Xwrites-0, $union(Xallocated-0, XlocalAllocated-0)))

Note that HOL-Boogie is able to track the location of assertions back to the original
source code. In this case, line 81 reads as follows:

l−>next = l ;

Thus, the first of the above subgoals asserts that l is a valid memory region of 8
bytes, i. e. the next pointer of l can be accessed. The second subgoal asserts that l is in
the writes set of the function, i. e. modifying the next pointer of l complies with the
frame conditions of initialize_list. Verifying the above two subgoals, and at the same
time another nine of the altogether 14 subgoals of initialize_list, can easily be done
by applying the vcc1-auto sub-tactic for split-vc. Proofs for the remaining subgoals
involve unfolding the definitions of involved, user-defined specification functions,
which cannot easily be automated. The complete proof of initialize_list’s correctness
in Isabelle’s structured proof language Isar reads as follows:

boogie-vc initialize-list
proof (split-vc try: vcc1-auto)

case goal1 with lemma-1 show ?case by (auto simp add: . . .)

next
case goal2 then show ?case

unfolding is-valid-list-def . . .

by (split-vc try: vcc1-auto)

next
case goal3 then show ?case
unfolding is-valid-memory-def . . .

proof (split-vc try: vcc1-auto)

case goal1
then have e = l by (simp add: . . .)

with goal1 show ?case
by (cases $base(l) = $base(malloc-result)) (auto simp add: . . .)

qed
qed

Finding the proofs for the last two subgoals was guided by the formula’s structure,
stepwise unfolding definitions and applying selected rules of the VCC1 context (see
Section 7.4).

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 137

Similarly as in Section 5, we may also apply the SMT tactic to verify initialize_list,
now in combination with the purely Isabelle-based, automated tactic applied before:

boogie-vc initialize-list
proof (split-vc try: smt)

case goal1 then show ?case
unfolding is-valid-list-def . . .

by (split-vc try: smt vcc1-auto)

qed

The verification of insert_entry is even easier, as all 43 subgoals can already be
discharged by the SMT tactic:

boogie-vc insert-entry
by (split-vc try: smt)

Note that VCC1 fails to prove this verification condition.

9 The VCC2 Machine/Memory Model

The VCC2 machine/memory model [16] follows a completely different verification
methodology than VCC1. Instead of regions, VCC2 uses a more high-level, typed
memory model based on ownerships and allowing two-state object invariants. De-
spite this major difference, the overall architecture of the tool chain (see Fig. 1) and
the annotation language (with pre- and post-conditions, writes- and reads-clauses,
see Section 6.5) remains the same.

9.1 Typed Memory Model

Memory is modeled as a map from pointers to values, where pointers are represented
as pairs of a type and a reference. This allows for distinguishing between &b and &b.a
in the following code:

struct A { i n t x ; } ;
struct B { A a ; i n t y ; } b ;

When seen as references in the light of pure pointer arithmetic, &b and &b.a are
equal (that is, they point to the same memory location), but as pointers in the sense of
the VCC2 model, they are unequal since their types differ. This latter fact is exploited
when introducing ownerships and invariants in the next section.

By default, aliasing between pointers of different types is not allowed (the only
exception being memory reinterpretations to be explained later), that is, if T and
S are distinct types, then modifying the value of a pointer of type T∗ must not
change the value of a pointer of type S∗. We ensure this by introducing the set of
non-overlapping top-level valid structs. Moreover, we restrict heap access to valid
locations only: A field access on a valid pointer yields a valid pointer (the address of
the field is valid, not the pointer possibly stored in the field), and each valid pointer
can only be constructed by a unique sequence of valid accesses. Hence, we disallow
aliasing between fields of different structs or different fields of the same struct.

To handle unions and operations like byte-wise copy of memory, as well as the
complicated pointer arithmetic used inside the memory allocator, we introduce an

138 S. Böhme et al.

explicit memory reinterpretation. Reinterpreting T ∗t as (S∗)t proceeds in two steps.
First, we assign all fields of (S∗)t to values which result from an coercion over the
underlying bit-representations from values of fields in t; second, we replace t by (S∗)t
in the set of top-level valid structs.

Memory reinterpretation is essentially confined to the memory allocator, to
generic byte-wise operations and to unions (whose fields reside at the same location
in memory, i.e. changing one field effects all over fields). Memory reinterpretation
allows for a precise treatment of such special cases while providing a representation
that can be handled by the prover efficiently in the common case, where the type
information can be used to partition the flat C memory into separate objects.

9.2 Invariants and Ownership

Similar as in the VCC1 model, we maintain ghost fields for every object. The boolean
ghost field closed is one of them and expresses, when set, that an object is not under
construction or in the middle of a change.

Based on this flag, we introduce two-state invariants for every type, i.e. formulas
holding for closed objects and preserved across system transitions. For example, we
can state:

struct S {
v o l a t i l e i n t x ;
invar iant (0 ≤ x ∧ x < 100)
invar iant (old (x) ≤ x)

} ;

which will allow the field x to grow only, as long as the object stays closed; moreover,
x is forced to stay within the bounds of 0 and 99. Thus, invariants restrict the set of
“proper” instances of a type as well as the possible changes of such instances.

An invariant of an object q is said to be admissible if it cannot be broken by
changes to objects other than q, provided that those objects are not closed or the
changes preserve their invariants. Consider, for example, the following structure:

struct T {
struct S ∗s ;
i n t y ;
invar iant (y ≤ s−>x)

} ;

The invariant of T is admissible (modulo closedness of s, see below), because the
invariant of S guarantees that s−>x only grows; thus, any change of s−>x maintains
the invariant of T. For the same reasons, the invariant y == s−>x, for example, would
not be admissible.

Invariant admissibility is enforced by generating a proof obligation for every
invariant, to be proven separately from the properties of the actual executable code.
Admissible invariants can then be checked locally, i.e. upon an update the only
invariant that might be broken is the one of the object being updated.

Since an object can only depend on invariants of closed objects, it must be
possible for an object to establish closedness of other objects. We use the concept
of ownership for this purpose: If q owns p then we can assume, when checking
admissibility of q’s invariant, that p is closed. Ownership is expressed by attaching
to each object a special owner ghost field pointing to the owning object.

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 139

Methodologically, we will enforce that each object can only have one owner, which
is common in ownership systems. This restriction can be mitigated by means of a
handle object, specified in the following way:

struct Handle {
struct Resource ∗ resource ;
invar iant (c losed (resource) ∧ (th is in resource−>handles))

} ;
struct Resource {

v o l a t i l e Set handles ;
invar iant (old (c losed (th is)) ∧ closed (th is) =⇒ handles == set_empty ())
invar iant (∀ (struct Handle ∗h ;

(h in old (handles)) ∧ ¬(h in handles) =⇒ ¬closed (h)))
invar iant (old (handles) == handles ∨ inv2 (owner (th is)))

} ;

Although the handle does not own the resource, it guarantees in its invariant that
the resource is closed; moreover, since a handle is not the owner of a resource, there
may be multiple handles on the same resource. For the invariant of the handle to
be admissible, we let the resource keep track of outstanding handles. The resource
guarantees that (1) it will only open if there are no outstanding handles, (2) if a
handle is closed and points at this resource, it will not be removed from the set of
outstanding handles, and finally (3) the handle set can only be updated if the owner
of the resource complies with that update. The last condition allows the owner of the
resource to control the set of handles, so the resource can be disposed, once there
are no more handles.

We additionally introduce claims, which are built-in handles on multiple objects,
possibly stating additional properties. These properties are much like invariants
of the claim objects, subject to admissibility checks, but can combine information
from invariants of multiple objects. Claims allow for expressing complex ownership
dependencies as well as for capturing and passing around information about the
system state.

Two-state invariants are also used to describe concurrent, atomic changes to
objects. This allows for verification of lock-free data structures (like spin locks,
reader-writer locks, volatile stacks and other custom concurrency protocols), with
useful external specification. For example, our specification for the lock is much like
the one in Concurrent Spec# [34], where the lock is introduced as a primitive.

10 Proving Consistency and Refinements of Machine/Memory Models

At present, the axiomatization of VCC1—called Prelude Version 61—consists of
about 900 axioms, where a certain number of axioms is not even taken into account
since they are “built-in” into the target prover; for example, reflexivity of equality
or the laws of arithmetic. There had been a number of errors in the current and
similar formalizations of background theories; and consistency is even a greater issue
if Boogie is used with different machine/memory models. Since the abstraction level
of a machine model is tantamount for deduction efficiency, more refined models
should be used only when inherently needed. This is the case if, for example, the
allocation function itself must be verified, which is atomic in a more abstract model,
or when inherently untyped memory is required such as in unions, where everything
is translated into bitvectors.

140 S. Böhme et al.

From the perspective of a HOL system, proving the consistency of a complex first-
order system is not exactly an easy task, but at least routine: Just build up a theory
by conservative extensions, i. e. by constant or type definitions, and derive all the
“axioms” from it. In the sequel, we report on a verification of a previous version of
the CVM model (Prelude Version 3.0). Since the CVM models are rapidly changing
at present, we plan to repeat this effort at a later stage.

The conservative theory for Prelude 3.0 is constructed as follows: First, a simple
bitvector library is built; bitvectors are represented as lists of boolean, and operations
like length, extract, and concat were defined as usual. Since the CVM operations work
only in byte and word formats, the necessary side-conditions referring to length can
be omitted if these formats are already expressed at the type level, for example:

typedef bv32 = {x :: bool list. length x = 32 }
Arithmetic operations for signed and unsigned integers are defined over bv32, as well
as bitwise conjunction or disjunction. For example, consider the definition:

constdefs shr-i4 :: [bv32, bv32] ⇒ bv32
shr-i4 v w ≡ Abs-bv32 (bv-shr (Rep-bv32 v) (Rep-bv32 w))

where bv-shr is defined on bitvectors directly representing the usual intuition “divi-
sion by two” (omitted here). Moreover, following the conventions on signs of the x86
architecture, it is enforced that the most significant bit is replicated and the size of
the bitvector remains identical.

Similarly, the type of pointers ptr is introduced as a pair of unsigned 64 bit integers
(references called ref) and an integer; the former is called the base and the latter
the offset. On ptr’s, pointer arithmetic operations are defined allowing byte-wise
addressing of memory. The core of the memory model is:

typedef memory = {x :: ref ⇒ Bitvector. True}
types state = (ref ⇒ bool) × memory

The pivotal concept of a valid reference, as discussed previously, can then simply be
defined. Definitions for malloc and free are straightforward.

We implemented a compiler that takes a Boogie-Configuration—i.e. a list of theo-
rems, their names, and attributes—and compiles this information into a BoogiePL
background theory file. In particular, attributes are generated that correspond to
Isabelle’s internal naming in the theory, for example:

axiom { : i s a be l l e " i d pre lude . basics_axms_1 " } (∀ x : i n t : : exp (x , 0) == (1)) ;

Since Boogie re-feeds attributes to its target provers, HOL-Boogie can check that
every axiom in the background theory of a verification condition indeed exists (and
by construction is derived) in its own logical environment; thus, a strict checking
mode can be implemented that makes sure that a verification in an external prover
is based only on a consistent axiomatization. With respect to a conservative model of
the ghost state, we suggest to use the HOL-OCL datatype package (see Section 7.2).

11 Conclusion

We have presented a novel Isabelle/HOL-based proof environment, called HOL-
Boogie, that is integrated into a verification toolchain for imperative programs, in

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 141

particular C. This toolchain ranges from an industry-strength IDE, into which VCC is
integrated (not described here), over Boogie together with its CVM model, to HOL-
Boogie into which a family of SMT solvers has been integrated, most notably Z3.
VCC1 leverages a rich annotation language whose distinctive feature is the support
of type unions and bit fields.

The verification conditions generated over this particularly fine-grained memory
model are already remarkably large (the overall size of the exchange file between
VCC and Isabelle for our linked list example is already over 600KB), and so are the
generated proof obligations. In contrast to wide-spread belief, this does not rule out
the use of an interactive theorem prover: for the linked-list example, several man-
months have been invested in the classical “fix-and-verify”-cycle using VCC(X)/Z3,
while with HOL-Boogie essentially one man-month has been spent. From our com-
parative experience with these toolchains, we believe that this situation will be similar
if other algorithmic problems are attacked (open problems at present in the Verisoft
XT project [46] are red-black-trees, complex, highly efficient sorting-algorithms,
complex refinements of data-structures. . .). Even if one ends up with an automated
verification of an algorithm, surprisingly, an interactive proof environment can be
extremely helpful when debugging the specifications.

Of course, dealing with generated formulas interactively results in technical
challenges that need to be addressed. Key issues of our integration are:

1. the support of labels and positions at the proof level, which enables tracking back
missing properties to assertions in the source,

2. specific tactic support for decomposition of verification conditions in a way stable
under certain changes of the source,

3. specific tactic support for the automated discharge of CVM-related proof oblig-
ations (native Isabelle proofs),

4. the seamless integration of target SMT solvers in order to discharge as many
subgoals as possible, and

5. mechanisms to exchange meta-information (attributes) between provers.

As a by-product, HOL-Boogie can also be used to verify parts of VCC’s meta-theory,
such as proving the (relative) consistency of the axiomatization of the underlying
machine/memory model or its refinement towards a more detailed machine model.

11.1 Related Work

As such, combining an interactive prover with a Boogie-like VCG is not a new
idea. In Fig. 1, just replace C-Front-End by Caduceus [27], Boogie by Why [26],
and Z3 by the default prover ERGO, and one gets (nearly) the architecture of
the Why/Caduceus system [28]. The memory model presented here is similar to
the embedding of C in Coq developed as part of the ongoing certification of a
moderately-optimising C compiler [10]. However, its interactive prover-back-end
based on Coq does not support labeling and has no integration of the target SMT
solver.

The architecture of VCC is also similar to the architecture of Escher’s C com-
piler [18]; among other things, we adopted their idea of allowing the user to add
mathematical theories to C. KeY-C [41] is a verifier for C that uses dynamic-logic
instead of our first-order framework. Another approach to structure C’s memory

142 S. Böhme et al.

model was recently performed as part of the L4 kernel verification [50]. They
embed separation logic in HOL to achieve better alias control. Except for the L4
kernel verifier, all these verifiers can not handle unions and bitfields. The SPARK
programming language, a subset of Ada, has its own verifier [2]. SPARK avoids the
issues with anti-aliasing and dangling pointers by disallowing allocation at run time
entirely.

There is a quite substantial body on programming language embeddings into
HOL, be it shallow [44, 48] or deep [35]. In particular, Leinenbach [35] provides
a small-step semantics for a language C0, which has been used for system level
verification, and Schirmer [48] derives a (shallow-ish) Hoare-Logic from this se-
mantics and formally developed a verification condition generator. C0 assumes a
typed memory model. While C0 has been used in substantial case studies [1, 20],
the limited language fragment restricts its use to “code designed for verification”,
i. e. academic projects. These limitations were partially overcome within the current
L4.VERIFIED project [32], where a trusted pre-compiler to C0 is used to enlarge the
supported C fragment; the code to be verified is about 10kloc. Still, VCC is designed
to push these limits substantially further; in the Hypervisor Verification Project [46],
the goal is to adapt the VCC toolchain to cope with 100kloc of production code of a
commercial OS System.

11.2 Future Work

We see the following directions for future work:

1. More Stable Proof Formats: In our scenario, where the specification of a program
is essentially re-constructed post-hoc, it is the annotations that change constantly
under development. This means that positions of assertions change easily, which
can (but must not) have influence on proofs resulting from previous proof
attempts. A proof style using control-flow labels (as generated by Boogie) would
be more stable under changes as our predominantly used technique.

2. Alternative machine/memory models: The verified C background theory con-
taining the memory and machine axiomatization is currently rapidly evolving; at
a later stage, we would like to verify the soundness of the VCC2 model [15]. From
our experience, this is a substantial task (several man-months), but routine.

Acknowledgement Sascha Böhme was supported by the German Federal Ministry of Education
and Research under grant 01IS07008.

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D.C., Schirmer, N.W., Starostin, A., Tsyban, A.:
Balancing the load: leveraging semantics stack for systems verification. J. Autom. Reason. 42
(2–4), 389–454 (2009)

2. Barnes, J., Barnes, J.G.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman, Boston (2003)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable
verifier for object-oriented programs. In: FMCO 2005. LNCS, vol. 4111, pp. 364–387, Springer
(2006)

HOL-Boogie —An Interactive Prover-Backend for the Verifying C Compiler 143

4. Barnett, M., Fähndrich, M., Leino, K.R.M., Logozzo, F., Müller, P., Schulte, W., Venter,
H., Xia, S.: Spec#. Microsoft Research, Redmond. http://research.microsoft.com/specsharp
(2008)

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE ’05,
pp. 82–87, ACM, New York (2005)

6. Barnett, M., Leino, K.R.M., Moskal, M., Rümmer, P.: Boogie program verification. Microsoft
Research, Redmond. http://research.microsoft.com/boogie/ (2008)

7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview. In:
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, New York (2005)

8. Basin, D., Kuruma, H., Miyazaki, K., Takaragi, K., Wolff, B.: Verifying a signature architecture:
a comparative case study. Form. Asp. Comput. 19(1), 63–91 (2007)

9. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all together: formal
verification of the VAMP. Int. J. Softw. Tools Technol. 8(4–5), 411–430 (2006)

10. Blazy, S., Leroy, X.: Formal verification of a memory model for C-like imperative languages. In:
Lau, K.-K., Banach, R. (eds.) ICFEM. Lecture Notes in Computer Science, vol. 3785, pp. 280–
299, Springer, New York (2005)

11. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers.
In: Barrett, C., de Moura, L. (eds.) SMT 2008: 6th International Workshop on Satisfiability
Modulo (2008)

12. Böhme, S.: HOL-Boogie. http://www4.in.tum.de/∼boehmes/hol-boogie.xhtml (2008)
13. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie—an interactive prover for the Boogie

program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs. Lecture Notes in
Computer Science, vol. 5170, pp. 150–166. Springer, New York (2008)

14. Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in HOL with
an application to IMP++. J. Autom. Reason. 41(3–4), 219–249 (2008)

15. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W.,
Tobies, S.: VCC: a practical system for verifying concurrent C. In: Theorem Proving in Higher
Order Logics (TPHOLs 2009). Lecture Notes in Computer Science, vol. 5674. Springer, Munich
Germany (2009, to appear)

16. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A precise yet efficient memory model for C. In:
4th International Workshop on Systems Software Verification (SSV 2009). Electronic Notes in
Theoretical Computer Science. Elsevier Science B.V. (2009, to appear)

17. Corp., M.: Visual studio 2005 developer library. Online documentation. http://msdn.microsoft.
com/en-us/library/ms235402(VS.80).aspx (2005)

18. Crocker, D., Carlton, J.: Verification of C programs using automated reasoning. In: SEFM ’07:
Proceedings of the Fifth IEEE International Conference on Software Engineering and Formal
Methods, pp. 7–14. IEEE Computer Society, Los Alamitos (2007)

19. Das, M.: Formal specifications on industrial-strength code—from myth to reality. In: Ball, T.,
Jones, R.B. (eds.) CAV. Lecture Notes in Computer Science, vol. 4144, p. 1. Springer, New York
(2006)

20. Daum, M., Dörrenbächer, J., Wolff, B.: Proving fairness and implementation correctness of a
microkernel scheduler. J. Autom. Reason. 42(2–4), 349–388 (2009)

21. Dawson, J.E.: Isabelle theories for machine words. In: Seventh International Workshop on
Automated Verification of Critical Systems (AVOCS’07). Elsevier, Amsterdam (2007)

22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS 2008. LNCS, vol. 4963,
pp. 337–340. Springer, New York (2008)

23. DeLine, R., Leino, K.R.M.: BoogiePL: a typed procedural language for checking object-oriented
programs. Tech. Rep. 2005-70, Microsoft Research (2005)

24. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J. ACM
52(3), 365–473 (2005)

25. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: Automated
Formal Methods’08, Princeton, New Jersey, USA, pp. 3–13. ACM, New York (2008)

26. Filliâtre, J.-C.: Why: a multi-language multi-prover verification condition generator. Tech. Rep.
1366, LRI, Université Paris Sud (2003)

27. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: ICFEM 2004. LNCS,
vol. 3308, pp. 15–29. Springer, New York (2004)

28. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program verifi-
cation. In: CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, New York (2007)

29. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static
checking for Java. In: PLDI 2002, pp. 234–245. ACM, New York (2002)

http://research.microsoft.com/specsharp
http://research.microsoft.com/boogie/
http://www4.in.tum.de/~boehmes/hol-boogie.xhtml
http://msdn.microsoft.com/en-us/library/ms235402(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms235402(VS.80).aspx

144 S. Böhme et al.

30. Fontaine, P., Marion, J.-Y., Merz, S., Prensa Nieto, L., Tiu, A.: Expressiveness + automation +
soundness: towards combining SMT solvers and interactive proof assistants. In: Hermanns, H.,
Palsberg, J. (eds.) 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems—TACAS’06, 03/2006. Lecture Notes in Computer Science, vol. 3920,
pp. 167–181. Springer, New York (2006)

31. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Tinelli, C.: DPLL(T): fast decision procedures. In:
Proceedings of the 16th International Conference on Computer Aided Verification, CAV’04,
pp. 175–188. Springer, New York (2004)

32. Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.M.: Towards trustworthy computing
systems: taking microkernels to the next level. SIGOPS 41(4), 3–11 (2007)

33. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Vito,
B.D., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics
(STRATA 2003), no. NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

34. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A simple sequential reasoning approach for sound
modular verification of mainstream multithreaded programs. Electr. Notes Theor. Comput. Sci.
174(9), 23–47 (2007)

35. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 compiler: code
generation and implementation correctness. In: SEFM 2005, pp. 2–12. IEEE, Piscataway (2005)

36. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification-condition
counterexamples. Sci. Comput. Program. 55(1–3), 209–226 (2005)

37. Leino, K.R.M., Saxe, J.B., Stata, R.: Checking Java programs via guarded commands. In: FTfJP
1999, Tech. Rep. 251, Fernuniversität Hagen (1999)

38. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: a case study combining HOL-
light and CVC lite. Electr. Notes Theor. Comput. Sci. 144(2), 43–51 (2006)

39. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution prob-
lems. In: ESCoR: Empirically Successful Computerized Reasoning, pp. 53–69 (2006)

40. Morgan, C.: The specification statement. ACM TOPLAS 10(3), 403–419 (1988)
41. Mürk, O., Larsson, D., Hähnle, R.: KeY-C: A Tool for Verification of C Programs. In: Pfenning,

F. (ed.) CADE. Lecture Notes in Computer Science, vol. 4603, pp. 385–390. Springer, New York
(2007)

42. Nelson, G.: A generalization of Dijkstra’s calculus. ACM TOPLAS 11(4), 517–561 (1989)
43. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order

Logic. LNCS, vol. 2283. Springer, New York (2002)
44. Norrish, M.: C formalised in HOL. Ph.D. thesis, Computer Laboratory, University of Cambridge

(1998)
45. Paul, W., Santen, T., Tobies, S.: Verifying 50000 Lines of Code. Futures—Microsoft’s European

Innovation Magazine, pp. 42–43 (2008)
46. Paul, W., von der Rhieden, T., Santen, T., Schulte, W.: The Verisoft XT Project. Universität des

Saarlandes (2007)
47. Ranise, S., Tinelli, C.: The SMT-LIB standard: version 1.2. Tech. rep., Dept. of Comp. Sci., The

University of Iowa (2006)
48. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis,

Technische Universität München (2006)
49. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verifying C compiler (extended

abstract). In: C/C++ Verification Workshop (2007)
50. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M., Felleisen,

M. (eds.) POPL, pp. 97–108. ACM, New York (2007)
51. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework. In: TPHOLs

2007, LNCS, vol. 4732, pp. 351–366. Springer, New York (2007)

	HOL-Boogie ---An Interactive Prover-Backend for the Verifying C Compiler
	Abstract
	Introduction
	VCC/HOL-Boogie as an Alternative to Embeddings
	HOL-Boogie as a Technology for Debugging Verification Attempts
	HOL-Boogie can Increase the Overall Proof Power
	Strengthening Logical Foundations
	Contribution
	Outline of the Paper

	Background
	Isabelle/HOL and the Isar Framework
	The VCC System Architecture

	Foundations of Boogie and HOL-Boogie
	Introduction to BoogiePL
	Generating Verification Conditions
	Labeling in Boogie
	Attribution in BoogiePL
	Generic Proof Support in HOL-Boogie

	A Generic Interface for SMT Solvers
	Case Study: Verifying Imperative BoogiePL Programs
	From CVM to the VCC1 Annotation Language
	The CVM Machine Model
	The CVM Elementary Memory Model
	The CVM x86 Memory Model
	The Partial CVM x86 Memory Model with Typed Ghost State
	High-Level Annotations of VCC1

	The VCC1 Plugin in HOL-Boogie
	Handling Bitvectors
	Treating Typed Ghost Memory
	VCC1 Specific Tactic Support
	A Generic Infrastructure for Memory Models

	Case Study: Verifying Circular Singly-Linked Lists in VCC1
	Annotating the Data Structure
	Annotating the Code
	Verifying Circular Singly-Linked Lists

	The VCC2 Machine/Memory Model
	Typed Memory Model
	Invariants and Ownership

	Proving Consistency and Refinements of Machine/Memory Models
	Conclusion
	Related Work
	Future Work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

