
Embedded Contract Languages

Manuel Fähndrich
Microsoft Research

maf@microsoft.com

Michael Barnett
Microsoft Research

mbarnett@microsoft.com

Francesco Logozzo
Microsoft Research

logozzo@microsoft.com

ABSTRACT
Specifying application interfaces (APIs) with information
that goes beyond method argument and return types is a
long-standing quest of programming language researchers
and practitioners. The number of type system extensions
or specification languages is a testament to that. Unfortu-
nately, the number of such systems is also roughly equal to
the number of tools that consume them. In other words,
every tool comes with its own specification language.

In this paper we argue that for modern object-oriented
languages, using an embedding of contracts as code is a bet-
ter approach. We exemplify our embedding of Code Con-
tracts on the Microsoft managed execution platform (.NET)
using the C# programming language. The embedding works
as well in Visual Basic. We discuss the numerous advantages
of our approach and the technical challenges, as well as the
status of tools that consume the embedded contracts.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Programming by contract ; D.2.1 [Software Engi-
neering]: Requirements/Specifications—Methodologies, Tools;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Assertions,
Invariants, Pre- and post-conditions, Specification techniques

General Terms
Design, Languages, Reliability, Verification

Keywords
C#, .NET, CodeContracts

1. SPECIFICATIONS AND CONTRACTS
Writing specifications for programs and verifying these spec-
ifications against the actual code (either dynamically or stat-
ically) has a long tradition in the research community. Spec-
ifications and their corresponding checkers take on a multi-
tude of forms, from simple extensions to type systems [6,
7, 17], dependent types [19], monitors [1, 5], to full fledged
logical specification and verification [16, 12, 2, 4, 20, 3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

string Compute(string str , int index , Collection c,out int len)
{

Contract.Requires(str == null ∣∣
0 <= index && index < str.Length);

Contract.Ensures(str == null ∣∣
! String .IsNullOrEmpty(Contract.Result())

&& c.Count > Contract.OldValue(c.Count));
Contract.Ensures(Contract.ValueAtReturn(out len) >= 0);
Contract.Ensures(str == null ∣∣ Contract. ForAll (

0, Contract.ValueAtReturn(out len),
i => Contract.Result()[i] == s[i]));

}

Figure 1: Example of embedded contracts

One of the recurring issues with specification languages is
that they are either very specialized and limit the expres-
siveness of what properties can be expressed (often towards
the goal of static checking), or they are general specifica-
tion languages either with their own specialized program-
ming language [16, 2, 4, 20, 3], or augmenting an exist-
ing language via structured comments [12]. In either case,
these approaches require entire compiler infrastructures to
support tools consuming the specifications. Specialized lan-
guages are difficult to get into general usage, as the compilers
and support tools are usually not on par with commercial
product quality. Often such infrastructures need to track
the evolution of some original language (Spec# vs. C# and
JML vs. Java), which means they either don’t support the
same language, or lag several years behind the features of
the main language. Comment- and annotation-based ap-
proaches have additional problems that we discuss in the
next section.

To avoid all these issues, we propose a novel approach
based on embedding contract specifications in a program-
ming language without any change to the programming lan-
guage and taking full advantage of the existing language,
compiler, and its supporting IDE and tools.

2. EMBEDDED CONTRACTS
The idea of embedding contracts in an existing programming
language is to

1. express specification conditions as expression in the
programming language itself, to

2. leverage the existing language compiler to perform name
and overloading resolution, type checking, and code
generation, and to

3. extract contract conditions from the compiled target
code for use in contract related tools.

Figure 1 shows our embedding of contracts for C#. The
method Compute specifies a precondition using a boolean ex-
pression that is the argument to the Contract.Requires method.
It also specifies several postconditions using boolean expres-
sions as the argument to the Contract.Ensures method.

In this embedding, contract specifications appear as method
calls at the beginning of methods, where the specification
conditions are simply the boolean expressions appearing as
arguments to these methods. In .NET we are using static
void methods defined in a static class called Contract. Other
approaches are possible using global objects and methods.

Using an embedded approach for writing specifications
provides numerous benefits to the programmer:

∙ The language of conditions is just the language of ex-
pressions in the programming language used.

∙ The existing editor and IDE can not only be used to
author the contracts, the IDE actually supports writ-
ing proper contract expressions by providing highlight-
ing, completion, intellisense, and early feedback on er-
roneous expressions (due to the fact that the existing
language will background check the expressions as nor-
mal code).

∙ Refactoring tools work properly on contracts as well,
e.g., renaming a parameter will rename any parameter
use inside specifications as well. Contrast this to hav-
ing specifications in attributes or special comments.

Thus, programmers don’t have to learn a new language, a
new compiler, or a new IDE, and the authoring of contracts
feels like writing code.

Embedding is also beneficial to writers of tools such as
dynamic and static contract checkers:

∙ Since the specifications are compiled by the existing
compiler, the tool writer has no need to duplicate the
full compiler infrastructure, such as the parser, type
checker, name and overloading resolution, etc., or ex-
tend the IDE to recognize specifications in non-standard
positions, such as attribute strings or comments.

∙ Extracting the specifications from the compiled tar-
get code as opposed to the source code allows the tool
writer to deal with a smaller and usually better spec-
ified language than the original source language. In
our example, consider the difference in complexity be-
tween the full C# language and the relative simplicity
of the target MSIL intermediate language of .NET.

∙ The semantics of the expressions appearing in the spec-
ifications are unambigous. Consider operator overload-
ing and other special language constructs. Working at
the source level of expressions would require tool writ-
ers to duplicate the knowledge of how such operators
are translated. Working in the target language obvi-
ates this need.

∙ The tool writer can typically reuse existing well tested
infrastructure to manipulate/analyze the target code,
such as .NET binary reader/writers, or similarly Java
byte code infrastructures.

[ContractClass(typeof(IContracts))]
interface I {
int Foo(string s);

}

[ContractClassFor(typeof(I))]
class IContracts : I {
int Foo(string s) {

Contract.Requires(s ! = null);
Contract.Requires(s .Length > 5);
Contract.Ensures(Contract. Result () > 0);

return default (int); // dummy body
}

}

Figure 2: Contracts on interface methods

Embedding a contract language also presents some chal-
lenges over alternative approaches. We examine these chal-
lenges in the next sections and provide solutions for them.

2.1 Common Specification Encodings
While reusing the existing language for expressions appear-
ing in specifications is great, it also poses a problem in that
specification languages usually require a few extra constructs
not typically among the expressions of standard program-
ming languages.

2.1.1 Method Result Expression
Postconditions often need to refer to the method result value.
Languages typically don’t have an expression form for this
result value. To work around this issue, we use a dummy
nullary method whose result stands for the result value of
the method:

static T Result<T>();

The type parameter T stands for the method return type.
Some languages can infer this type, but often programmers
will need to specify it. An example use appears in Figure 1,
where the postcondition ensures that the result string is nei-
ther null, nor empty.

2.1.2 Prestate Values
It is convenient to mention the old value of an expression
in a postcondition, meaning the value of the expression on
entry to the method. This is typically used to related the
pre and the post state, e.g., to express that a count was
incremented, an element was added, etc.

Again, standard programming languages don’t have syn-
tax for such a construct and we make use of a unary dummy
function with the following signature:

static T OldValue<T>(T oldExpression);

2.1.3 Contracts on Interfaces
Writing contracts on interface declarations is very desirable,
but not straightforward. Since we use code in method bodies
to express contract conditions and interface methods don’t
typically allow writing method bodies, we have to find a way
to write the contracts separately from the interface declara-
tion and link the two.

To annotate an interface I with contracts, we use a buddy
contract class, typically named IContracts that implements

the interface and for each method contains the contracts and
a dummy body (Figure 2). The interface type and its con-
tract class are linked in our C# embedding using attributes.
An alternative mechanism could use naming conventions.

2.1.4 Quantifiers
Specifications often require universal or existential quanti-
fiers which are not typically available in mainstream pro-
gramming languages. Fortunately, modern languages now
provide support for closures, making it possible to express
quantifiers as helper methods in ordinary expressions. Fig-
ure 1 contains a postcondition using a universal quantifica-
tion over the range 0..len. The bound variable and univer-
sally quantified boolean expression is represented in C# as
a lambda expression

i => <expression over i>

where i is a bound variable and <expression over i> is the
lambda body.

In our C# embedding, we provide several overloads of
ForAll and Exists that work over integer ranges and collec-
tions. In the example, we use the following:

delegate bool Predicate<T>(T value);
bool ForAll (int lb , int ub, Predicate<int> condition);

Unbounded quantification can be expressed as well, but poses
obvious problems for runtime checking.

2.1.5 Object Invariants
Object invariants are conditions on object state that should
hold on all public method boundaries. Such invariants need
to be specified at the type level, but languages again don’t
provide a way to associate code directly with types. Instead,
we embed object invariants by defining additional instance
methods on types and marking them as object invariants as
shown below in our C# embedding:

[ObjectInvariantMethod]
void ObjectInvariant () {

Contract. Invariant (this . field >= 0);
}

These invariant methods take no parameters and return no
result. The body consists of a sequence of Contract. Invariant

method calls specifying the invariant conditions.

2.1.6 Language Workarounds
Programming language rules may get in the way of certain
embedding usages, namely due to the fact that postcondi-
tions appear at the beginning of the method rather than
where they are evaluated. E.g., C# supports out-parameters
which are parameters passed by reference that need not be
initialized on entry, but the method is guaranteed to as-
sign them. C# enforces the rule that such parameters are
not read before being assigned. A postcondition referencing
an out-parameter will be flagged by the compiler as a use-
before-assignment. To work around this and related issues
in constructors, we provide a helper method whose meaning
is that the location is read in the post state.

static T ValueAtReturn<T>(out T location);

Figure 1 contains a postcondition stating that the value
upon return of the out-parameter len is non-negative.

2.2 Other Specification Encodings
There are a number of specification language features that
we have not yet attempted to support in our encodings and
tools. We list them here and provide ideas for how to encode
them.

Model Fields are data members or properties of data struc-
tures that are typically only referred to from specifications
rather than real code. They can be expressed as ordinary
virtual properties, tagged with special attributes. Concrete
implementations then act as the representation formuala.

Modifies Clauses describe the set of locations potentially
modified by a method. A set of dummy methods, similar
to ValueAtReturn, can be used to express classes of such loca-
tions.

Data Groups [13] are typically used to abstract over sets
of locations, including recursively defined sets in order to
express which parts of the machine state are (un)modified.
We envision that such groups can be encoded with extra
attributes.

Finally, specification languages often use Model Types, i.e.,
mathematical structures such as sets and sequences to ex-
press properties of implementation data structures. Spec#
supports such model types as actual .NET implementations
of functional data structures. The same approach can be
used in an embedded setting.

3. CONTRACT EXTRACTION
Contract extraction consists of separating the code gener-
ated for contract conditions (preconditions and postcondi-
tions) inside a method from the code making up the body
of the method.

For ordinary methods, code extraction is relatively sim-
ple. It consists of finding the last use of a contract method
(Requires or Ensures) and then splitting up all code from the
beginning of the method to that point into individual pre-
and postconditions. This process must ensure certain well-
formedness conditions in order to guarantee that the con-
tracts and code can be properly separated:

∙ Each individual pre- and postcondition must post-do-
minate the entry point of the method. This guarantees
that the contracts actually appear at method entry and
are not control-flow dependent.

∙ Local variables initialized inside contracts must not be
used inside the method body. This guarantees that
contracts can be separated from the method body with-
out having to perform detailed dependency analysis
and to duplicate local initializations.

∙ No references to contract helper methods should ap-
pear in the main method body. This guarantees that
the special meaning of contract helper methods only
needs to be recognized as part of the contracts them-
selves.

∙ Preconditions can only mention types and members
that are visible to all callers of the method. This guar-
antees that callers can understand the contract they
are held to and avoids having meaningless precondi-
tions, e.g., on private object state.

∙ Postconditions of virtual methods can only mention
types and members that are visible to all potential im-

plementers of the method. This guarantees that over-
rides and implementations of the method can under-
stand the postcondition they are held to.

∙ Contract helper methods such as OldValue, Result, and
ValueAtReturn should only be referenced from within
postconditions. Furthermore, the type instantiation of
the Result method should agree with the method return
type.

∙ Contract inheritance of preconditions should be checked
to guarantee that methods don’t strengthen precondi-
tions. A simple way to enforce this without needing
to determine arbitary logical implications is to simply
disallow overriding methods from declaring their own
preconditions and further guaranteeing that methods
only have one base method (base class or interface)
from which they inherit contracts.

∙ Any methods called from within contract expressions
should be pure methods (or referentially transparent)
to avoid issues of contract semantics and changing the
behavior of the program depending on whether con-
tract assertions are evaluated at runtime or not. We
advocate requiring a purity annotation on methods
called from contracts such as [Pure] to 1) document
the intention of the method’s purity and thus captur-
ing it in the code, and 2) enable a separate analysis
to discharge the purity obligation of such annotated
methods.

Additionally, methods used in contracts should be well-
founded to avoid ill-defined specifications. Checking
methods for purity and well-foundedness is non-trivial
and beyond the scope of discussion for this paper.

Contracts need to be cleanly separated from ordinary code
in order to enable manipulating the code for various runtime
checking scenarios, such as removing all contract code, in-
heriting contract code to overridden methods, and inserting
contract checking code at call-sites of methods.

3.1 Challenges
The basic extraction of contracts from methods is fairly sim-
ple as described above. Challenges arise when the code gen-
erated by the compiler is substantially more complicated
than the source due to expansion of certain language fea-
tures.

3.1.1 Constructors
Extraction from constructor methods is more complicated
than for ordinary methods due to two issues: 1) base or
delegated constructor calls, and 2) field initialization. De-
pending on the language, field initialization may appear be-
fore or after the base/delegated constructor call (e.g., C#
puts field initialization before, Visual Basic puts them after).
This makes recognizing the beginning of contracts more dif-
ficult, as they will appear after all the field initializations
and base constructor call.

Another complication with constructors is that even though
preconditions physically appear after the base/deferred con-
structor call, logically, the preconditions must be evaluated
prior to the base/deferred constructor call. Prior to that call,
the object being constructed is not yet accessible (fields may
be written but not read and the object may not escape). As

a result, preconditions in constructors must be checked to
contain no references to the object under construction.

3.1.2 Closures
Most modern object oriented languages now support clo-
sures (or anonymous delegates) in one form or another. If
the underlying target language does not support this feature
directly, the compiler will emit helper types and methods to
implement the feature, complicating the contract extraction.
E.g., if a closure is used inside a contract, then the method
code will contain closure object initialization code. Such
code needs to be part of the contract code, but may also
need to be part of the ordinary method body, since com-
pilers will try to share the closure object between the two
sections. As a result, such closure construction code has to
be specially recognized and considered to be part of both
the contract section and the normal method body.

3.1.3 Iterator Methods
Languages like C# and Visual Basic support iterator meth-
ods, i.e., methods producing an enumeration of values that
can be written in the form of a coroutine using yield state-
ments to yield individual values.

Compilers turn such iterator methods into iterator clo-
sure classes that implement enumeration interfaces. The
code transformations are quite substantial, causing the em-
bedded contracts to end up inside a different compiler gener-
ated method body for advancing to the next element of the
iteration. To extract contracts properly from iterators, the
extraction process must essentially recognize such iterators
and partially decompile them.

4. MODULARITY
Before discussing tools built on top of embedded contracts,
we need to discuss the issue of how to handle separate com-
pilation and contracts of third-party components.

We view every component (be it a .NET assembly, or a
Java class file, or other packaging granularity) as having a
set of declared contracts. Tools working on a component
A referencing a component B, typically need to obtain the
contracts of component B, independently of whether B is
instrumented with runtime checks or not. We therefore
introduce the notion of a Contract Reference Component
(CRC), such that for every component A there is a CRC
called A.Contracts containing only contracts, no method
bodies. One way to think about a CRC is as a rich header
file giving detailed contract information beyond the typical
type signatures.

Note that a CRC is a persisted form of the contracts in
the source. The format of this persisted form is already
given by whatever compiler target language we are employ-
ing, e.g., .NET or JVM. This again simplifies the contract
story, as contracts in component reference assemblies have
the same fixed semantics we have already assigned to the
target language.

CRCs simplify dealing with multiple components and also
permit writing contracts for components separately if the
component does not originally contain contracts. It simpli-
fies the description of tools acting on components. For the
remainder of the paper, we assume that we can compile a
component in such a way that it contains no contracts, to
yield the uninstrumented pristine compiled component A.
For C# and Visual Basic, we use the Conditional (”Contracts”)

compilation attribute on all the Contract methods which causes
the compilers to omit any calls to these methods when the
compilation is performed without defining the symbol ”Con-
tracts”.

Note that this approach permits authoring contracts on
components, while guaranteeing that the non-contract code
can easily be compiled into pristine form (i.e., containing
just the non-contract code) with the standard compilers
without any other tool in the process. This ability is im-
portant for adoption by product teams if they don’t trust
other tools to modify their code before shipping.

We can thus view the standard language compilers as our
first tool in the contract toolbox. The next tools we need is
the CRC generator, generating a contract reference compo-
nent.

5. TOOLS

5.1 CRC Generation
Generating a contract reference component is simple: Com-
pile the original code with contracts and then rewrite this
component A to strip the method bodies and persist only
the contracts as A.Contracts.

It is useful to perform an extra step in CRC generation,
namely to persist the original source string of any contract
conditions as part of the method calls to Contract.Requires,
Contract.Ensures, and Contract. Invariant . Effectively, what
this step does is it turns any code of the form

Contract.Requires(expr);

into

Contract.Requires(expr , ”expr”);

and similarly for Ensures and Invariant .
In order to perform this rewriting, we assume (or emit) bi-

nary forms of the contract methods that take an additional
string argument after the boolean condition. Persisting the
original source of the condition in this manner permits down-
stream tools to emit better error messages that can display
the original condition that fails without the need to decom-
pile a low-level target language into readable source.

The source extraction is done by using source debugging
file information on the compiled target to help locate the
correct source file and text extent.

5.2 Runtime Contract Checking
A principal use of contracts is to instrument contract checks
as runtime assertions into the target code. Runtime check-
ing increases test effectiveness as the extra assertions provide
expected outcomes (oracles) and provide more ways to fail
the code under test. Runtime contract checking is particu-
larly effective in conjunction with automated testing, such
as fuzzing [11, 8], and automated white-box testing [10, 9,
18].

Runtime checking can be instrumented on a component
basis (or finer grained if desired). To instrument a com-
ponent A, we need the pristine form of A, along with its
CRC A.Contracts, as well as any CRCs B.Contracts, for
any component B referenced by A.

Instrumentation can support different levels by includ-
ing/omitting certain kinds of checks. Here we describe how
our implementation instruments all contracts.

We view instrumentation as a rewriting of component A
into A′, where A′ contains runtime assertions for contracts,
but is otherwise identical to A. In particular, the actual
name of the instrumented component does not change, but
we use the primed version to simplify the explanation.

Rewriting proceeds on a per class basis, in an order where
base classes (in the same component) are visited prior to
derived classes.

5.2.1 Runtime Failure Behavior
Runtime failure of contracts should be customizable, as dif-
ferent scenarios require different behaviors. E.g., standard
interactive debugging scenarios may want contract failure to
pop-up a dialog box with the option to enter the debugger.
Automated testing environments usually need failure in the
form of a thrown exception, while deploying instrumented
code scenarios may require the component to abort or to log
failures in a file or over the network.

We therefore don’t advocate any particular failure behav-
ior, but leave that up to the instrumentation tool and the
user’s choice. All we assume is that the runtime failure oper-
ation has access to the source string representing the original
contract condition in order to provide a meaningful level of
detail about the failed contract.

5.2.2 Invariants
The various object invariant methods declared on a type are
consolidated into a new method with a fixed name that does
not clash with user defined method names, e.g., $invariant$.
This $invariant$ method is a protected instance method con-
taining all Contract. Invariant checks of all contract invariant
methods. In addition, if the base class contains a $invariant$

method, then this means that the base class is instrumented
and we can chain the invariant checking by calling this base
method.

At the end of selected methods (e.g., all public methods),
calls to this generated $invariant$ method can be inserted to
validate the object invariant.

5.2.3 Preconditions
If contracts are well-formed (Section 3), a method only has
one source of preconditions, either the method itself, or if
it overrides/implements a base method, the base method’s
preconditions.

Instrumenting a precondition declared on the method it-
self is trivial, as the precondition can simply be copied in its
existing form to the beginning of the method.

When inheriting a precondition, complications arise. The
base class could be generic, and thus the base contract must
be instantiated with the same instantiation used by the base
type declaration. In target languages where generic code is
compiled away (JVM), such instantiation is trivial, as it does
not require changing the inherited code for the precondition.
In target languages where generics are explicit however, such
as .NET, the inherited code has to be properly instantiated
before being emitted, or the runtime will reject the code.

5.2.4 Postconditions
Runtime checking of postconditions is more complicated due
to the presence of the special Contract methods such as Result,
OldValue, and ValueAtReturn. The simplest of the three is
ValueAtReturn, which can simply be replaced by a dereference
operation of the by-ref location.

Return values: To handle Result, we first replace all re-
turn points in the method with assignments to a new $result$

local and a branch to a common method exit point where the
post conditions will be checked. Any calls to Contract. Result

in the postcondition code can then be replaced with uses of
the $result$ local variable.

Old-expressions: Dealing with OldValue requires evalu-
ating the expression serving as the argument to OldValue in
the prestate of the method and storing the result away in a
fresh local variable. Each occurrence of a call to OldValue in
the postconditions is then replaced with the corresponding
local variable.

Due to shortcut evaluation constructs such as ∣∣ , &&, and
conditional expressions present in most languages, OldValue

expressions may not and should not be evaluated uncondi-
tionally. E.g., consider the postcondition:

int M(C c)
{

Contract.Ensures(c == null ∣∣
Contract. Result () < Contract.OldValue(c.Count));

...
}

If the parameter c is non-null, then the method guarantees
that the return value is less than the value of c.Count on en-
try to the method. Note that if c == null the method con-
tract does not require evaluating the old value of c.Count.
In fact, evaluating c.Count would throw a null reference fail-
ure in most languages. Essentially, the evaluation of the old
value of c.Count is guarded by the condition c ! = null in this
case, and instrumentation should be careful to only evaluate
the old expression under that condition. As an alternative
to determine the dominating guards of an old-expression,
instrumentation can be emitted that masks all failures of
old-expression evaluation, but that is in practice less desir-
able as it degrades the debugging experience.

Also note that guards must be meaningful in the pre-state
of a method. If a guard were dependent on the post-state of
a method, the evaluation is not well defined.

Parameters: Many imperative programming languages
permit parameter values to be modified within the body
of a method, essentially treating parameters as local vari-
ables. In such languages, the initial value parameters that
are modified by a method body and referenced in postcon-
ditions must be stored away in auxiliary locals and used in
place of the final value of a parameter in postconditions. Ef-
fectively, referring to a paramter p in a postcondition has
the meaning OldValue(p), as it isn’t meaningful to callers to
express postconditions mentioning the final value of a local
parameter.

5.2.5 Call-Site Checks
A useful feature a runtime contract checker can provide is
the option of evaluating preconditions and or postconditions
at call-sites to methods. Such a feature is useful in scenarios
where a component B is being developed against another
component A that ships without runtime contract checking
enabled (possibly for efficiency reasons), but for which a
contract reference component A.Contracts is available. In
that case, the developer of B can get the benefit of runtime
precondition checks on methods in A at all call sites from
B into A. The resulting development experience is as if the
component A had precondition checks instrumented.

Checking postconditions at call-sites provides additional

interface IDictionary <K,V> {
[Pure]
bool ContainsKey(K key);
[Pure]
bool TryGetValue(K key, out V value);

ensures Contract. Result()==ContainsKey(key);
}

class MyDict : IDictionary <int, int> {
bool ContainsKey(int key) {

int dummy;
return this .TryGetValue(key, out dummy);

}

bool TryGetValue(int key, out int value) {
...

}
}

Figure 3: Non-termination Example for Runtime
Checking

guarantees that the called component upholds the contract
of the interface, even if the component isn’t instrumented
itself. Call-site postcondition checking poses an additional
challenge: postconditions may mention members that are
not accessible in the calling context (e.g., private base class
fields, or component internal members). Instrumenting such
checks into the calling context would thus produce invalid
code. The postconditions need thus be filtered by removing
all postconditions containing references to members that are
inaccessible in the calling context

5.2.6 Recursion Guards
Since contracts may call pure methods, which in turn may
call other pure methods, it is possible that instrumenting
code with contracts may introduce non-terminating recur-
sion into programs. This is particularly unforseeable when
inheriting contracts. The runtime instrumentation of con-
tract checks should therefore introduce recursion guards for
all contract evaluations. An easy way to implement such
guards is to use a thread-local variable inContract that is
tested prior to evaluating any contracts and set upon en-
trance of a contract evaluation.

Figure 3 shows a scenario where recursion guards are nec-
essary. The Dictionary interface specifies that the return
value of TryGetValue is the same as the return value from
ContainsKey for the same key. This postcondition is instru-
mented into every implementation of TryGetValue, and in par-
ticular into MyDict. The implementor of MyDict decided to
implement ContainsKey by calling TryGetValue, which is per-
fectly reasonable. Naive instrumentation would generate
an infinite recursion between the two methods in the post-
condition evaluation of TryGetValue. With recursion guards,
we prevent this problem. Note that the contracts are still
well-formed and that memoizing of pure methods would also
solve the problem.

5.3 Documentation Generation
Contracts enable programmers to document design decisions
for future reference. These design decision may be about
methods internal to a component, or public APIs. Con-
tracts on component internal methods come in handy dur-
ing code maintenance, which is often done by programmers

Figure 4: Generated Documentation with Contracts

other than the original author. For public APIs, contracts
provide programmers with unambigous descriptions of the
API they are trying to use, complementing any natural lan-
guage documentation.

Thus, generating good documentation from the embedded
contracts is a key scenario when using an embedded contract
language. Most programming languages and platforms come
with tools that generate API documentation (web pages and
help files) from idiomatic comments in the code, such as
JavaDocs and .NET XML doc comments.

We have prototyped an extension this documentation gen-
eration approach for .NET where we augment the XML
documentation file of .NET assemblies with new elements
for contracts based on the corresponding contract reference
component and the original source text of preconditions,
postconditions, and object invariants.

The resulting XML file can then be rendered into docu-
mentation with an existing tool such as Sandcastle (http://
www.codeplex.com/Sandcastle), which only requires patch-
ing a few XSL transforms. An example of the generated
documentation is presented in Figure 4.

As is visible in the example, a key feature of the gener-
ated documentation is that it includes inherited contracts
on derived methods, thereby making it easier to discover
contracts than if they were another hyperlink away.

5.4 Static Contract Checking
Various approaches can be used to attempt to validate con-
tracts statically. ESC/Java and Spec# translate a method
and its contracts into a logic verification condition that is
then given to a theorem prover which either discharges it or
produces a counterexample. Alternatively, special purpose
static checkers can be written for subsets of specifications,

e.g., those having to do with nullness of pointers.
Yet another approach is to use abstract interpretation to

compute program invariants and then attempt to use these
invariants to discharge the proof-obligations introduced by
contracts. Abstract interpretation enables more automation
than verification condition approaches due to its ability to
infer loop-invariants and post-conditions. It also enables
fine-tuning performance/precision trade-offs [15].

Whatever the mechanism used to prove contracts, all con-
tracts can be viewed as assert or assume statements in the
code to be analyzed. E.g., a precondition at a call-site
turns into an assertion, as the precondition needs to be dis-
charged there. The same precondition at the beginning of
the method declaring or inheriting it turns into an assump-
tion, a condition the rest of the method can assume and does
not need to be proven. Similarly, postconditions on exit of
a method must be treated as asserts, but on return from a
method are treated as assumes. This rely-guarantee view
of contracts enables modular static checking, where each
method can be analyzed in isolation (if desired). Of course,
checkers are free to inline methods, or determine stronger
contracts than the declared ones, thereby performing more
global analyses.

Our approach advocates performing the static contract
checking on the target language of the compiler, as this is
how we associate semantics with contract conditions. Note
that contract conditions and ordinary code therefore use the
same language and the analysis is thus simpler than if these
were two distinct code representations. Furthermore, an-
alyzing the target language of a compiler is often simpler,
as it is usually smaller than a source language in terms of
complexity and number of distinct language elements [14].

The presence of CRC’s again provides the necessary access
to contracts of components being called from a component
A under analysis. To analyze A, we thus need A.Contracts,
as well as B.Contracts for all components B referenced from
A.

6. CONCLUSION
This paper argues for embedding a contract language inside
an existing, standard, production quality language instead
of inventing custom contract annotations or comment con-
ventions. Embedding contracts means expressing specifica-
tions as expressions in the existing programming language
and making them machine discoverable through the use of
marker methods such as Contract.Requires.

Advantages of embedding a contract language are that
programmers need not learn a new specification language,
and existing tools such as compilers and IDEs can be used
without modification, making it easier for developers to adopt
contract-based programming. Furthermore, the semantics of
contract conditions is the same as the semantics of the exist-
ing program expressions. The target language provides an
automatic persisted format for contracts.

Since contract expressions are compiled by the existing
compiler, the typical problem of having the specifications
and the code drift apart due to edits, refactoring, etc., is
avoided.

7. REFERENCES
[1] Thomas Ball, Byron Cook, Vladimir Levin, and

Sriram K. Rajamani. SLAM and static driver verifier:

http://www.codeplex.com/Sandcastle
http://www.codeplex.com/Sandcastle

Technology transfer of formal methods inside
Microsoft. In Integrated Formal Methods, pages 1–20.
Springer, 2004.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The Spec# programming system: An
overview. In CASSIS, volume 3362 of LNCS. Springer,
2004.

[3] Bernard Carré and Jonathan Garnsworthy.
SPARK—an annotated Ada subset for safety-critical
programming. In TRI-Ada ’90: Proceedings of the
conference on TRI-ADA ’90, pages 392–402. ACM,
1990.

[4] Markus Dahlweid, Michal Moskal, Thomas Santen,
Stephan Tobies, and Wolfram Schulte. VCC:
Contract-based modular verification of concurrent C.
In 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Companion Volume, pages
429–430. IEEE, 2009.

[5] Manuvir Das. Formal specifications on
industrial-strength code-from myth to reality. In
Computer Aided Verification, 18th International
Conference, CAV 2006, page 1, 2006.

[6] Robert Deline and Manuel Fahndrich. Typestates for
objects. In Proceedings of the 18th European
Conference on Object-Oriented Programming, pages
465–490. Springer, 2004.

[7] Manuel Fähndrich and K. Rustan M. Leino. Declaring
and checking non-null types in an object-oriented
language. In OOPSLA ’03: Proceedings of the 18th
annual ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications,
pages 302–312. ACM, 2003.

[8] Patrice Godefroid. Compositional dynamic test
generation. In Proceedings of the 34th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 47–54, 2007.

[9] Neelam Gupta, Aditya P. Mathur, and Mary Lou
Soffa. Generating test data for branch coverage. In
ASE : IEEE International Conference on Automated
Software Engineering, pages 219–228, 2000.

[10] James C. King. Symbolic execution and program
testing. Communications of the ACM, 19(7):385–394,
1976.

[11] Bogdan Korel. Automated software test data
generation. IEEE Transactions on Software
Engineering, 16(8):870–879, 1990.

[12] Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT, 31(3):1–38,
March 2006.

[13] K. Rustan M. Leino. Data groups: specifying the
modification of extended state. In OOPSLA ’98:
Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 144–153, 1998.

[14] F. Logozzo and M. A. Fähndrich. On the relative
completeness of bytecode analysis versus source code
analysis. In CC’08, LNCS. Springer-Verlag, March
2008.

[15] F. Logozzo and M. A. Fähndrich. Pentagons: A
weakly relational abstract domain for the efficient
validation of array accesses. In ACM SAC’08 - OOPS.
ACM Press, March 2008.

[16] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[17] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa,
Jr., Jeff H. Perkins, and Michael D. Ernst. Practical
pluggable types for Java. In ISSTA ’08: Proceedings of
the 2008 international symposium on Software testing
and analysis, pages 201–212. ACM, 2008.

[18] Nikolai Tillmann and Jonathan de Halleux. Pex-white
box test generation for .NET. In TAP: Tests and
Proofs Second International Conference, pages
134–153, 2008.

[19] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. In POPL ’99: Proceedings of
the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 214–227.
ACM, 1999.

[20] Dana N. Xu, Simon L. Peyton Jones, and Koen
Claessen. Static contract checking for Haskell. In
Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 41–52. ACM, 2009.

