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Abstract
Early web content was expressed statically, making it

amenable to straightforward prefetching to reduce user-
perceived network delay. In contrast, today’s rich web
applications often hide content behind JavaScript event
handlers, confounding static prefetching techniques. So-
phisticated applications use custom code to prefetch data
and do other anticipatory processing, but these custom
solutions are costly to develop and application-specific.

This paper introduces Crom, a generic JavaScript
speculation engine that greatly simplifies the task of
writing low-latency, rich web applications. Crom takes
preexisting, non-speculative event handlers and cre-
ates speculative versions, running them in a cloned
browser context. If the user generates a speculated-upon
event, Crom commits the precomputed result to the real
browser context. Since Crom is written in JavaScript, it
runs on unmodified client browsers. Using experiments
with speculative versions of real applications, we show
that pre-commit speculation overhead easily fits within
user think time. We also show that speculatively fetching
page data and precomputing its layout can make subse-
quent page loads an order of magnitude faster.

1 Introduction
With the advent of web browsing, humans began a

new era of waiting for slow networks. To reduce user-
perceived download latencies, researchers devised ways
for browsers to prefetch content and hide the fetch de-
lay within users’ “think time” [4, 15, 17, 20, 23]. Find-
ing prefetchable objects was straightforward because
the early web was essentially a graph of static ob-
jects stitched together by declarative links. To discover
prefetchable data, one merely had to traverse these links.

In the web’s second decade, static content graphs
have been steadily replaced by rich Internet applica-
tions (RIAs) that mimic the interactivity of desktop ap-
plications. RIAs manipulate complex, time-dependent
server-side resources, so their content graphs are dy-
namic. RIAs also use client-side code to enhance inter-
activity. This eliminates the declarative representation
of the content graph’s edges, since now content can be
dynamically named and fetched in response to the exe-
cution of an imperative event handler.

1.1 New Challenges to Latency Reduction
RIAs introduce three impediments to reducing user-

perceived browser latencies. First, prefetching opportu-
nities that once were statically enumerable are now hid-
den behind imperative code such as event handlers. Since
event handlers have side effects that modify application
state, they cannot simply be executed “early” to trigger
object fetches and warm the browser cache.

Second, user inputs play a key role in naming the con-
tent to fetch. These inputs may be as simple as the click-
ing of a button, or as unconstrained as the entry of arbi-
trary text into a search form. Given the potentially com-
binatorial number of objects that are nameable by future
user inputs, a prefetcher must identify a promising subset
of these objects that are likely to be requested soon.

Third, RIAs spend a non-trivial amount of time updat-
ing the screen. Once the browser has fetched the neces-
sary objects, it must devise a layout tree for those objects
and render the tree on the display. For modern, graphi-
cally intensive applications, screen updates can take hun-
dreds of milliseconds and consume 40% of the processor
cycles used by the browser [22]. Screen updates con-
tribute less to page load latencies than network delays do,
but they are definitely noticeable to users. Unfortunately,
warming the browser cache before a page is loaded will
not reduce its layout or rendering cost.

1.2 Prior Solutions
To address these challenges, some RIAs use custom

code to speculate on user intent. For example, email
clients may prefetch the bodies of recently arrived mes-
sages, or speculatively upload attachments for emails
that have not yet been sent. Photo gallery applications
often prefetch large photos. Online maps speculatively
download new map tiles that may be needed soon. The
results page for a web search may prefetch the highest
ranked targets to reduce their user-perceived load time.
While such speculative code provides the desired latency
reductions, it is often difficult to write and tightly inte-
grated into an application’s code, making it impossible
to share across applications.

1.3 Our Solution: Crom
To ease the creation of low-latency web applications,

we built Crom, a reusable framework for speculative



JavaScript execution. In the simplest case, the Crom API
allows applications to mark individual JavaScript event
handlers as speculable. For each such handler h, Crom
creates a new version h shadow which is semantically
equivalent to h but which updates a shadow copy of the
browser state. During user think-time, e.g., when the
user is looking at a newly loaded page, Crom makes a
shadow copy of the browser state and runs h shadow
in that context. As h shadow runs, it fetches data, up-
dates the shadow browser display, and modifies the appli-
cation’s shadow JavaScript state. Once h shadow fin-
ishes, Crom stores the updated shadow context; this con-
text includes the modified JavaScript state as well as the
new screen layout. Later, if the user actually generates
the speculated-upon event, Crom commits the shadow
context. In most cases, the commit operation only re-
quires a few pointer swaps and a screen redraw. This is
much faster than synchronously fetching the web data,
calculating a new layout, and rendering it on the screen.

To constrain the speculation space for arbitrarily-
valued input elements, applications use mutator func-
tions. Given the current state of the application, a mu-
tator generates probable outcomes for an input element.
For example, an application may provide an autocom-
pleting text box which displays suggested words as the
user types. Once a user has typed a few letters, e.g.,
“red”, the application passes Crom a mutator function
which modifies fresh shadow domains to represent ap-
propriate speculations; in this example, the mutator may
set one shadow domain’s text box to “red sox”, and an-
other domain’s text box to “red cross”. Later, when
the user generates an actual event for the input, Crom
uses application-defined equivalence classes to deter-
mine whether any speculative domain is the outcome for
the actual event and thus appropriate to commit.

The Crom API contains additional functionality to
support speculative execution. For example, it provides
an explicit AJAX cache to store prefetched data that the
regular browser cache would ignore. It also provides a
server-side component that makes it easier to specula-
tively upload client data. Taken as a whole, the Crom li-
brary makes it easier for developers to reason about asyn-
chronous speculative computations.

1.4 Our Contributions
This paper makes the following contributions:
• We identify four sources of delay in rich web ap-

plications, explaining how they can be ameliorated
through speculative execution (§4).

• We describe an implementation of the Crom API
which is written in standard JavaScript and runs on
unmodified browsers (§5). The library, which is
65 KB in size, dynamically creates new browser
contexts, rewrites event handlers to speculatively

execute inside of these contexts, and commits them
when appropriate.

• We describe three implementation optimizations
that mitigate JavaScript-specific performance limi-
tations on speculative execution (§5).

• Using these optimizations, we demonstrate the fea-
sibility of browser speculation by measuring the
performance of three modified applications that use
the Crom library. We show that Crom’s pre-commit
speculation overhead is no worse than 114 ms,
making it feasible to hide speculative computation
within user think time. We also quantify Crom’s
reduction of user-perceived latency, showing that
Crom can reduce load times by an order of mag-
nitude under realistic network conditions (§6).

By automating the low-level tasks that support specula-
tive execution, Crom greatly reduces the implementation
effort needed to write low-latency web applications.

2 Background: Client-side Scripting
The language most widely used for client-side script-

ing is JavaScript [7], a dynamically typed, object-
oriented language. JavaScript interacts with the browser
through the Document Object Model (DOM) [24], a stan-
dard, browser-neutral interface for examining and ma-
nipulating the content of a web page. Each element in
a page’s HTML has a corresponding object in the DOM
tree. This tree is a property of the document object
in the global window name space. The browser ex-
poses the DOM tree as a JavaScript data structure, allow-
ing client-side applications to manipulate the web page
by examining and modifying the properties of DOM
JavaScript objects, often referred to as DOM nodes.
The DOM allows JavaScript code to find specific DOM
nodes, create new DOM nodes, and change the parent-
child relationships among DOM nodes.

A JavaScript programmer can create other objects be-
sides DOM nodes. These are called application heap
objects. All non-primitive objects, including functions,
are essentially dictionaries that maps property names to
property values. A property value is either another object
or a primitive such as a number or boolean. Properties
may be dynamically added to, and deleted from, an ob-
ject. The for-in construct allows code to iterate over
an object’s property names at run-time.

Built-in JavaScript objects like a String or a DOM
node have native code implementations— their methods
are executed by the browser in a way that cannot be in-
trospected by application-level JavaScript. In contrast,
JavaScript can fetch the source code of a user-defined
method by calling its toString() method.

JavaScript uses event handlers to make web pages in-
teractive. An event handler is a function assigned to a
special property of a DOM node; the browser will in-
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voke that property when the associated event occurs.1

For example, when a user clicks a button, the browser
will invoke the onclick property of that button’s DOM
object. This gives application code an opportunity to up-
date the page in response to user activity.

The AJAX interface [9] allows a JavaScript appli-
cation to asynchronously fetch web content. AJAX
is useful because JavaScript programs are single-
threaded and network operations can be slow. To
issue an AJAX request, JavaScript code creates an
XmlHTTPRequest object and assigns an event handler
to its onreadystatechange property. The browser
will call this handler when reply data arrives.

3 Design
Crom’s goal is to reduce the developer effort needed to

create speculative applications. In particular, Crom tries
to minimize the amount of custom code that develop-
ers must write to speculate on user inputs like keyboard
and mouse activity. Crom’s API leverages the fact that
event-driven applications already have a natural gram-
mar for expressing speculable user actions—each action
can be represented as an event handler and a particular
set of arguments to pass to the handler. Using the Crom
API, applications can mark certain actions as specula-
ble. Crom will then automatically perform the low-level
tasks needed to run the speculative code paths, isolate
their side-effects, and commit their results if appropriate.

Crom provides an application-agnostic framework for
speculative execution. This generality allows a wide va-
riety of programs to benefit from Crom’s services. How-
ever, as a consequence of this generality, Crom requires
some developer guidance to ensure correctness and to
prevent speculative activity from consuming too many
resources. In particular:
• Speculating on all possible user inputs is computa-

tionally infeasible. Thus, Crom relies on the devel-
oper to constrain the speculation space and suggest
reasonable speculative inputs for a particular appli-
cation state (§4.1.1 and §5.1.3).

• Speculative execution should only occur when the
application has idle resources, e.g., during user
think time. Crom’s speculations are explicitly ini-
tiated by the developer, and Crom trusts the de-
veloper to only issue speculations when resources
would otherwise lie fallow.

• A speculative context should only be committed if
it represents a realizable outcome for the current
application state. In particular, the initial state of
a committing speculative context must have been
equal to the current state of the application. This
guarantees that the speculative event handler did the

1This description applies to the DOM Level 0 event model. The
DOM Level 2 model is also common, but it has incompatible semantics
across browsers. We do not discuss it in this paper.

same things that its non-speculative version would
do if executed now. We call this safety principle
start-state equivalence. Crom could automatically
check for this in an application-agnostic way by bit-
comparing the current browser state with the ini-
tial state for the speculative context. However, per-
forming such a comparison would often be expen-
sive. Thus, Crom requires the developer to leverage
application knowledge and define an equivalence
function that determines whether a speculative con-
text is appropriate to commit for a given application
state (§4.1.1 and §5.1.3).

• A client-side event handler may generate writes
to client-side state and server-side state. The de-
veloper must ensure that client-side speculation is
read-only with respect to server state, or that server-
side updates issued by speculative code can be un-
done, e.g., by resetting the “message read” flags on
an email server (§ 4.1.2).

Writing speculative code is inherently challenging.
Crom hides some of the implementation complexity, but
it does not completely free the developer from reason-
ing about speculative operations. We believe that Crom
strikes the appropriate balance between the competing
tensions of correctness, ease of use, and performance.

Crom ensures correctness by rewriting speculative
code to only touch shadow state, and by using developer-
defined equivalence functions to determine commit
safety. Crom provides ease of use through its generic
speculation API. With respect to performance, Crom’s
goal is not to be as CPU-efficient as custom speculative
code. Indeed, Crom’s speculative call trees will gener-
ally be slower than hand-crafted speculation code. Such
custom code has no rewriting or cloning overhead, and
it can speculate in a targeted way, eliding the code in an
event handler call chain that is irrelevant to, say, warming
a cache. However, Crom’s speculations only need to be
“fast enough”—they must fit within user think time, be
quick with respect to network latencies, and not disturb
foreground computations. If these conditions are satis-
fied, Crom’s computational inefficiency relative to cus-
tom speculation code will be moot, and Crom’s specula-
tions will mask essentially as much network latency as
hand-coded speculations would.

In addition to processor cycles, speculative activity re-
quires network bandwidth to exchange data with servers.
Crom does not seek to reduce this inherent cost of spec-
ulation. As with hand-crafted speculative solutions, de-
velopers must be mindful of network overheads and be
judicious in how many Crom speculations are issued.

Figure 1 lists the primary Crom API. We discuss this
API in greater detail in the next two sections. Most of
the technical challenges lie with the implementation of
Crom.makeSpeculative(), which allows an appli-
cation to define speculable user actions.
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Crom.makeSpeculative(DOMnode,eventName, Register DOMnode.eventName as a speculable
mutator,mutatorArgs,stateSketch, event handler (§4.1 and §5.1). The mutator,
DOMsubtree) mutatorArgs, and stateSketch arguments

constrain the speculation space and define the
equivalence classes for commits (§4.1.1 and §5.1.3).
DOMsubtree defines a speculation zone (§5.5.2).

Crom.autoSpeculate Boolean which determines whether Crom should
automatically respeculate after committing a prior
speculation (§4.1.1).

Crom.forceSpeculations() If autoSpeculate is false, this method forces
Crom to issue pending speculations.

Crom.maxSpeculations(N) Limits number of speculations Crom issues (§5.6).
Crom.createContextPool(N, stateSketch, Proactively make N speculative copies of the current

DOMsubtree) browser context; tag them using the stateSketch
function (§5.5.3).

Crom.rewriteCG(f) Rewrite a closure-generating function to make it
amenable to speculation (§5.1.5).

Crom.prePOST(formInput, Collaborates with Crom’s server-side component to
specUploadDoneCallback) make a form element speculatively upload data (§4.2

and §5.4).

Crom.cacheAdd(key, AJAXdata) Used to cache speculatively fetched AJAX data that
Crom.cacheGet(key) would otherwise be ignored by the regular browser

cache (§4.1.2 and §5.3).

Figure 1: Crom API calls and configuration settings.

4 Speculation Opportunities & Techniques
In this section, we describe four ways that specula-

tive execution can reduce latency in rich Internet appli-
cations. We also explain how to leverage the Crom API
from Figure 1 to exploit these speculative opportunities.

4.1 Simple Prefetching
When a user triggers a heavyweight state change in

a RIA, the browser does four things. First, it executes
JavaScript code associated with an event handler. In turn,
this code fetches data from the local browser cache or
external web servers. Once the content is fetched, the
browser determines the new display layout for the page.
Finally, the browser draws the content on the screen.

Pulling data across the network is typically the slow-
est task, so warming the browser cache by specula-
tively prefetching data can dramatically improve user-
perceived latencies. For example, a photo gallery or
an interactive map application can prefetch images to
avoid synchronous fetches through a high-latency or low-
bandwidth network connection. As another example,
consider the DHTMLGoodies tab manager [12], which
allows applications to create tab pane GUIs. When the
user clicks a “new tab” link, the tab manager issues an
AJAX request to fetch the new tab’s content. When the
AJAX request completes, a callback dynamically cre-

<div id='tab-container'>
<div class='dhtmlgoodies_aTab'>

This is the initial tab.
<a href='#' id='loadLink'>

Click to load new tab.
</a>

</div>
</div>
<script>
var link = document.getElementById('loadLink');
link.onclick = function(){

//Invoke DHTMLGoodies API to make new tab
createNewTab('http://www.foo.com');

};
Crom.makeSpeculative(link, 'onclick');
Crom.forceSpeculations();
</script>

Figure 2: Creating a new tab GUI element.

ates a new display tab and inserts the returned HTML
into the DOM tree. Figure 2 demonstrates how to make
this operation speculative. When the application calls
Crom.makeSpeculative(), Crom automatically
makes a shadow copy of the current browser state and
rewrites the onclick event handler, creating a specula-
tive version that accesses shadow state. When the appli-
cation calls Crom.forceSpeculations(), Crom
runs the rewritten handler in the hidden context, fetch-
ing the AJAX data and warming the real browser cache.
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Once the browser cache has been warmed, Crom can
discard the speculative context. However, saving the
context for future committing provides greater reduc-
tions in user-perceived fetch latencies (§4.3).

4.1.1 Speculating on Multi-valued Inputs

In the previous example, an application speculated on
an input element with one possible outcome, i.e., being
clicked. Other input types can generate multiple specu-
lable outcomes. For example, a list selector allows one
of several options to be chosen, and a text box can accept
arbitrary character inputs.

To speculate on a multi-valued input, an applica-
tion passes a mutator function, a state sketch func-
tion, and a vector of N mutator argument sets
to Crom.makeSpeculative(). Crom makes N
copies of the current browser state, and for each argu-
ment set, Crom runs the rewritten mutator with that ar-
gument set in the context of a shadow browser environ-
ment. This generates N distinct contexts, each represent-
ing a different speculative outcome for the input element.
Crom passes each context to the sketch function, gener-
ating an application-defined signature string for that con-
text. Crom tags each context with its unique sketch and
then runs the speculative event handler in each context,
saving the modified domains. Later, when the user actu-
ally generates an event, Crom determines the sketch for
the current, non-speculative application state. If Crom
has a speculative context with a matching tag, Crom can
safely commit that context due to start-state equivalence.

Figure 3 shows an example of how Crom specu-
lates on multi-valued inputs. In this example, we
use the autocompleting text box from the popular
script.aculo.us JavaScript library [21]. The first two
lines of HTML define the text input and the but-
ton which triggers a data fetch based on the text
string. We create a custom JavaScript object called
acManager to control the autocompletion process and
register it with the script.aculo.us library. The library in-
vokes acManager.customSelector() whenever
the user generates a new input character. Once the user
has typed five characters, acManager uses AJAX to
speculatively fetch the data associated with each sug-
gested autocompletion. The state sketch function simply
returns the value of the search text—a speculative con-
text is committable if its search text is equivalent to that
of the real domain.

Note that the code sets Crom.autoSpeculate to
false, indicating that Crom should not automatically
respeculate on the handler when a prior speculation for
the handler commits. The autocompletion logic explic-
itly forces speculation when the user has typed enough
text to generate completion hints.

<input id='sText' type='text' />
<button id='sButton'>Search</button>
<script>
var sText = document.getElementById('sText');
var sButton = document.getElementById('sButton');
sButton.onclick = function(){

updateDisplayWithAJAXdata(sText.value);
};

Crom.autoSpeculate = false;
function mutator(arg){ //Set value of text input

sText.value = arg;
}
function sketch(ctx){

var doc = ctx.document;
var textInput = doc.getElementById('sText');
return textInput.value;

}
var acManager = {

getHints: function(textSoFar){
//Logic for generating autcompletions;
//returns an array of strings

},
customSelector: function(textSoFar){

if(textSoFar.length == 5){
var hints = this.getHints(textSoFar);
Crom.makeSpeculative(sButton,

'onclick',mutator,hints,sketch);
Crom.forceSpeculations();

}
//Display autocompletions to user...

}
};
new Autocompleter('sText', acManager);
</script>

Figure 3: Speculating on an autocompletion event.

4.1.2 Separating Reads and Updates

In some web applications, pulling data from a server
has side effects on the client and the server. In these sit-
uations, speculative computations must not disturb fore-
ground state on either host. For example, the Decimail
webmail client [5] uses AJAX to wrap calls to an IMAP
server. The fetchNewMessage() operation updates
client-side metadata (e.g., a list of which messages have
been fetched) and server-side metadata (e.g., which mes-
sages should be marked as seen).

To speculate on such a read/write operation, the de-
veloper must explicitly decompose it into a read portion
and a write portion with respect to server state. For ex-
ample, to add Crom speculations to the Decimail client,
we had to split the preexisting fetchNewMessage()
operation into a read-only downloadMessage()
and a metadata-writing markMessageRead(). The
read-only operation downloads an email from the
server, but specifies in the IMAP request that the
server should not mark the message as seen. The
markMessageRead() tells the server to update this
flag, effectively committing the message fetch on the
server-side. Inside fetchNewMessage(), the call
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<form action='server.com/recv.py' method='post'>
<div>

<label>File 1:</label>
<input type='file' id='fInput'/>

</div>
<div>

<input type='submit' value='Send data!'/>
</div>

</form>

<script>
var fInput = document.getElementById('fInput');
Crom.speculativePOST(fInput,

function(){alert('File uploaded!')};
</script>

Figure 4: Making a POST operation speculative.

to markMessageRead() is conditioned on whether
fetchNewMessage() is running speculatively; code
can check whether this is true by reading the special
Crom.isSpecEx boolean.

Although downloadMessage() may be
read-only with respect to the server, it may up-
date client-side JavaScript state. So, when spec-
ulating on fetchNewMessage(), we run
downloadMessage() in a speculative execution
context. In speculative or non-speculative mode,
downloadMessage() places AJAX responses
into a new cache provided by Crom. Later, when
downloadMessage() runs in non-speculative mode,
it checks this cache for the message and avoids a refetch
from the server.

Like the regular browser cache, Crom’s AJAX cache
persists across speculations (although not application
reloads). The regular cache will store AJAX results
containing “expires” or “cache control” headers [6], so
an application-level AJAX cache may seem superfluous.
However, some AJAX servers do not provide caching
headers, making it impossible to rely on the regular cache
to store AJAX data if the client side of the application is
developed separately from the server side. Examples of
such scenarios include mash-ups and aggregation sites.

4.2 Pre-POSTing Uploads
Prefetching allows Crom to hide download latency.

However, in some situations, such as Decimail’s attach-
file function, the user is stalled by upload (HTTP POST)
delays. To hide this latency, Crom’s client and server
components cooperate to create a POST cache. When
a user specifies a file to send, Crom speculates that the
user will later commit the send. Crom asynchronously
transfers the data to the server’s POST cache. Later, if
the user commits the send, the asynchronous POST will
be finished (or at least already in-progress).

Figure 4 demonstrates how to make a POST operation
speculative. The web application simply registers the rel-
evant input element with the Crom library. Once the

user has selected a file, Crom automatically starts up-
loading it to the server. When the speculative upload
completes, Crom invokes an optionally provided call-
back function; this allows the application to update fore-
ground (i.e., non-speculative) GUI state to indicate that
the file has safely reached the server.

Speculative uploading is not a new technique, and it
is used by several popular services like GMail. Crom’s
contribution is providing a generic framework for adding
speculative uploads to non-speculative applications.

4.3 Saving Client Computation
When an application updates the screen, the browser

uses CPU cycles for layout and rendering. During lay-
out, the browser traverses the updated DOM tree and de-
termines the spatial arrangement of the elements. Dur-
ing rendering, the browser draws the laid-out content on
the screen. Speculative cache warming can hide fetch
latency, but it cannot hide layout or rendering delays.

Crom stores each speculative browser context inside
an invisible <iframe> tag. As a speculative event han-
dler executes, it updates the layout of its corresponding
iframe. When the handler terminates, Crom saves the
already laid-out iframe. Later, if the user generates
the speculated-upon event, Crom commits the specula-
tive DOM tree in the iframe to the live display, paying
the rendering cost but avoiding the layout cost. The re-
sult is a visibly smoother page load.

4.4 Server Load Smoothing
Some client delays are due not to network delays, but

to congestion at the server due to spiky client loads. Us-
ing selective admission control at the server, speculative
execution spreads client workload across time, just as
speculation plus differentiated network service smooths
peak network loads [3]. When the server is idle, specula-
tions slide requests earlier in time, and when the server is
busy, speculative requests are rejected and the associated
load remains later in time. This paper does not explore
server smoothing further, but the techniques described
above, together with prioritized admission control at the
server, should adequately expose this opportunity.

5 Implementation
The client-side Crom API could be implemented in-

side the browser or by a regular JavaScript library. For
deployability, we chose the latter option. In this sec-
tion, we describe our library implementation and the op-
timizations needed to make it performant.

5.1 Making Event Handlers Speculative
To create a speculative version of an event han-

dler bound to DOM node d, an application calls
Crom.makeSpeculative(d, eventName); Fig-
ures 2 and 3 provide sample invocations of this function.
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The makeSpeculative() method does two things.
First, it creates a shadow browser context for the specula-
tive computation. Second, it creates a new event handler
that performs the same computation as the original one,
but reads and writes from the speculative context instead
of the real one. We discuss context cloning and function
rewriting in detail below.

5.1.1 The Basics of Object Copying

Crom clones different types of objects using different
techniques. For primitive values, Crom just returns the
value. For built-in JavaScript objects like Dates, Crom
calls the relevant built-in constructor to create a semanti-
cally equivalent but referentially distinct object.

JavaScript functions are first-class objects. Calling
a function’s toString() method returns the func-
tion’s source code. To clone a function f, Crom calls
eval(f.toString()), using the built-in eval()
routine to parse the source and generate a semantically
equivalent function. Like any object, f may have proper-
ties. So, after cloning the executable portion of f, Crom
uses a for-in loop to discover f’s properties, copying
primitives by value and objects using deep copies.

To clone a non-function object, Crom creates an ini-
tially empty object, finds the source object’s properties
using a for-in loop, and copies them into the target
object as above. Since object graphs may contain cycles,
Crom uses standard techniques from garbage collection
research [11] to ensure that each object is only copied
once, and that the cloned object graph is isomorphic to
the real one.

To clone a DOM tree with a root node n, Crom calls
the native DOM method n.cloneNode(true),
where the boolean parameter indicates that n’s
DOM children should be recursively copied. The
cloneNode() method does not copy event handlers
or other application-defined properties belonging to a
DOM node. Thus, Crom must copy these properties
explicitly, traversing the speculative DOM tree in
parallel with the real one and updating the properties
for each speculative node. Non-event-handler properties
are deep-copied using the techniques described above.
Since Crom rewrites handlers and associates special
metadata with them, Crom assumes that user-defined
code does not modify or introspect event handlers. So,
Crom shallow-copies event handlers by reference.

5.1.2 Cloning the Entire Browser State

To clone the whole browser context, Crom first copies
the real DOM tree. Crom then creates an invisible
<iframe> tag, installing the cloned DOM tree as the
root tree of the iframe’s document object. Next,
Crom copies the application heap, which is defined as
all JavaScript objects in the global namespace and all

objects reachable from those roots. Crom discovers the
global properties using a for-in loop over window.
Crom deep-copies each of these properties and inserts
the cloned versions into an initially empty object called
specContext. specContext will later serve as the
global namespace for a speculative execution.

Global properties can be referenced with
or without the window. prefix. To prevent
window.globalVar from falling through to
the real window object, Crom adds a prop-
erty to specContext called window that
points to specContext. Crom also adds a
specContext.document property that points
to the hidden <iframe>’s document object. As we
explain in Section 5.1.4, this forces DOM operations in
the speculative execution to touch the speculative DOM
tree instead of the real one.

5.1.3 Commit Safety & Equivalence Classes

As described so far, a shadow context is initialized
to be an exact copy of the browser state at clone time.
This type of initialization has an important consequence:
it prevents us from speculating on user intents that are
not an immediate extension of the current browser state.
For example, a text input generates an onchange event
when the user types some characters and then shifts input
focus to another element. If the text input is empty when
Crom creates a speculative domain, Crom can specula-
tively determine what the onchange handler would do
when confronted with an empty text box. However, if
Crom creates shadow contexts as exact copies of the cur-
rent browser state, Crom has no way to speculate on what
the handler would do if the user had typed, say, “val-
halla” into the text input.

To address this problem, we allow applica-
tions to provide three additional arguments to
Crom.makeSpeculative(): a mutator func-
tion, a mutator argument vector, and a state sketch
function. Section 4.1.1 provides an overview of these
parameters. Here, we only elaborate on the sketch
function and its relationship to committability.

The sketch function accepts a global namespace, spec-
ulative or real, and returns a unique string identifying
the salient application features of that name space. Each
speculative context is initially a perfect copy of the real
browser context at time t0. Thus, at t0, before any spec-
ulative code has run, the new speculative context has the
same sketch as the real context. Crom tags each specu-
lative context with the state sketch of its source context.
Later, at time t1, when Crom must decide whether the
speculative context is committable, it calculates the state
sketch for the real browser context at t1. A speculative
context is only committable if its sketch tag matches the
sketch for the current browser context. This ensures that
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the speculative context started as a semantically equiva-
lent copy of the current browser state, and therefore rep-
resents the appropriate result for the user’s new input.

State sketches provide a convenient way for appli-
cations to map semantically identical but bit-different
browser states to a single speculable outcome. For
example, the equivalence function in Figure 3 could
canonicalize the search strings blue\tbook and
blue\t\tbook to the same string.

5.1.4 Rewriting Handlers
After creating a speculative browser context, Crom

must create a speculative version of the event handler,
i.e., one that is semantically equivalent to the orig-
inal but which interacts with the speculative context
instead of the real one. To make such a function,
Crom employs JavaScript’s with statement. Inside a
with(obj){...} statement, the properties of obj are
pushed to the front of the name resolution chain. For
example, if obj has a property p, then references to p
touch obj.p rather than a globally defined p.

To create a speculative version of an event handler,
Crom fetches the handler’s source code by calling its
toString() method. Next, Crom alters the source
code string, placing it inside a with(specContext)
statement. Finally, Crom uses eval() to generate a
compiled function object. When Crom executes the new
handler, each handler reference to a global property will
be directed to the cloned property in specContext.

The with() statement binds lexically, so if
the original event handler calls other functions,
Crom must rewrite those as well. Crom does
this lazily: for every function or method call
f() inside the original handler, Crom inserts a
new variable declaration var rewritten f =
Crom.rewriteFunction(f, specContext);,
and replaces calls to f() with calls to
rewritten f().
The document object mediates application access

to the DOM tree. specContext.document points
to the shadow DOM tree, so speculative DOM oper-
ations can only affect speculative DOM state. Since
document methods do not touch application heap ob-
jects, Crom does not need to rewrite them.

The names of function parameters may shadow those
of global variables. Speculative references to these vari-
ables should not resolve to specContext. When
rewriting functions with shadowed globals, Crom passes
a new speculative scope to with() statements; this
scope is a copy of specContext that lacks references
to shadowed globals.

If speculative code creates a new global property,
it may slip past the with statement into the real
global namespace. Fortunately, JavaScript is single-
threaded, so Crom can check for new globals after the

function genClosure(x){
function f(){alert(x++);}
return f;

}
var closureFunc = genClosure(0);
button0.onclick = closureFunc;
button1.onclick = closureFunc;

Figure 5: Variable x persists in a hidden closure scope.

function genClosure(x){
var __cIndex = Crom.newClosureId();
__closureEnvironment[__cIndex].x = x;
function f(){
alert(__closureEnvironment[__cIndex].x++);

}
f.__cIndex = __cIndex;
return f;

}

Figure 6: The rewritten closure scope is explicit.

speculative handler has finished and sweep them into
specContext before they are seen by other code.

When speculative code deletes a global property,
this only removes the property from specContext.
When the speculation commits, this property must also
be deleted from the global namespace. To accomplish
this, Crom rewrites delete statements to additionally
collect a list of deleted property names. If the specula-
tion later commits, Crom removes these properties from
the real global namespace.

5.1.5 Externally Shared Closures

Whenever a function is created, it stores its lexical
scope in an implicit activation record, using that scope
for subsequent name resolution. Unfortunately, these ac-
tivation records are not introspectable. If they escape
cloning, they become state shared with the real (i.e., non-
speculative) browser context. To avoid this fate, Crom
rewrites closures to use explicit activation objects. Later,
when Crom creates a speculative context, it can clone the
activation object using its standard techniques.

Consider the code in Figure 5, which creates a clo-
sure and makes it the event handler for two different but-
tons. During non-speculative execution, clicking either
button updates the same counter inside the shared clo-
sure. However, closureFunc.toString() merely
returns “function (){alert(x++);}”, with no mention of
x’s closure binding. Using the rewriting techniques de-
scribed so far, a rewritten handler would erroneously
look for x in the global scope.

Figure 6 shows genClosure() rewritten to use an
explicit activation record. Crom.newClosureId()
creates an empty activation record, pushes it onto a
global array closureEnvironments, and returns
its index. Crom rewrites each property that implicitly
references the closure scope to explicitly reference the
activation record via a function property cIndex.
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Later, when rewriting the button0 or button1
event handler, Crom detects that the handler is a closure
by its cIndex property. If the value of f. cIndex
is, say, 2, Crom rewrites the closure function by adding
the statement var cIndex = 2; immediately be-
fore the with(specContext) in the string passed to
eval(). This gives the rewritten handler enough state
to access the proper explicit activation record. Like any
other global, closureEnvironments is specula-
tively cloned, so each speculative execution has a private
snapshot of the state of all closures.

Currently, applications must explicitly invoke Crom to
rewrite functions which return closures. They do this
by executing g = Crom.rewriteCG(g) for each
closure-generating function g. Future versions of Crom
will use lexical analysis to perform this rewriting auto-
matically.

5.2 Committing Speculative State
Committing a speculative context is straightforward.

First, Crom updates the DOM tree root in the non-
speculative context, making it point to the DOM tree
in the committing speculation’s hidden iframe. Next,
Crom updates the heap state. A for-in loop enu-
merates the heap roots in specContext and assigns
them to the corresponding properties in the real global
name space; this moves both updated and newly created
roots into place. Finally, Crom iterates through the list
of global properties deleted by the speculative execution
and removes them from the real global name space.

5.3 AJAX Caching
To support the caching of AJAX results,

client-side programs call the Crom methods
Crom.cacheAdd(key, AJAXresult) and
Crom.cacheGet(key). These methods allow
applications to associate AJAX results with arbitrary
cache identifiers. Like the regular browser cache,
Crom’s AJAX cache is accessible to speculative and
non-speculative code. For example, in the modified
Decimail client, the event handler for the “fetch new
message” operation is broken into two functions,
downloadMessage() and markMessageRead().
downloadMessage() is read-only on the server
side, but it modifies client-side state, e.g., a JavaScript
array that contains metadata for each fetched message.
Thus, when the Decimail client speculates on a message
fetch, it rewrites downloadMessage()’s call tree
and runs it in a speculative context. The speculative
downloadMessage() looks for the message in
Crom’s cache and does not find it. It fetches the new
email using AJAX and inserts it into Crom’s cache.
Later, when the user actually triggers the “fetch new
message” handler, downloadMessage() runs in

non-speculative mode and finds the requested email in
the cache. Decimail then calls markMessageRead()
to inform the server of the user’s action.

5.4 Speculative Uploads
An upload form typically consists of a file input text

box and an enclosing submit form. After the user types
a file name into the text box, the input element generates
an onchange event. However, the file is not uploaded
to the server until the user triggers the onsubmit event
of the enclosing form, typically by clicking a button in-
side the form. At this point, the application’s onsubmit
handler is called to validate the file name. Unless this
handler returns false, the browser POSTs the form to
the server and sends the server’s HTTP response to the
target of the form. By default, the target is the current
window; this causes the browser to overwrite the current
page with the server’s response.

Crom implements speculative uploads with a client/
server protocol. On the client, the developer specifies
which file input should be made speculative by call-
ing Crom.prePost(fileInput,callback). In-
side prePost(), Crom saves a reference to any user-
specified onsubmit form-validation handler, since
Crom will supply its own onsubmit handler shortly.
Crom installs an onchange event handler for the file
input which will be called when the user selects a file to
upload. The handler creates a cloned version of the up-
load form in a new invisible iframe, with all file inputs
removed except the one representing the file to specula-
tively upload. If the application’s original onsubmit
validator succeeds, Crom’s onchange handler POSTs
the speculative form to a server URL that only ac-
cepts speculative file uploads. Crom’s server component
caches the uploaded file and its name, and the client com-
ponent records that the upload succeeded.
Crom.prePost() also installs an onsubmit han-

dler that lets Crom introspect the form before a real
click would POST it. If Crom finds a file that has al-
ready been cached at the server, Crom replaces the as-
sociated file input with an ordinary text input having the
value ALREADY SENT:filename. Upon receipt, Crom’s
server component inserts the cached file data before pass-
ing the form to the application’s server-side component.

The interface given above is least invasive to the ap-
plication, but a speculation-aware application can pro-
vide upload progress feedback to the user by registering
a progress callback with Crom. Crom invokes this han-
dler in the real domain when the speculative upload com-
pletes, allowing the application to update its GUI.

5.5 Optimizations
To conclude this section, we describe three techniques

for reducing speculative cloning overheads.
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5.5.1 Lazy Cloning
For complex web sites, eager cloning of the entire ap-

plication heap may be unacceptably slow. Thus, Crom
offers a lazy cloning mode in which objects are only
copied when a speculative execution is about to access
them. Since this set of objects is typically much smaller
than the set of all heap objects, lazy cloning can produce
significant savings.

In lazy mode, Crom initially copies only the DOM
tree and the heap variables referenced by DOM nodes.
As the speculative computation proceeds, Crom dynam-
ically rewrites functions as before. However, object
cloning is now performed as a side effect of the rewriting
process. Crom’s lexical analysis identifies which vari-
able names refer to locals, globals, and function param-
eters. Locals do not need cloning. Strictly speaking,
Crom only needs to clone globals that are written by a
speculative execution; reads can be satisfied by the non-
speculative objects. However, a global that is read at one
point in a call chain may be passed between functions as
a parameter and later written. To avoid the bookkeeping
needed to track these flows, Crom sacrifices performance
for implementation simplicity and clones a global vari-
able whenever a function reads or writes it. The function
is then rewritten using the techniques already described.
Function parameters need not be cloned as such—if they
represent globals, they will be cloned by the ancestor in
the call chain that first referenced them.

Lazy cloning may introduce problems at commit time.
Suppose that global objects named X and Y have prop-
erties X.P and Y.P that refer to the same underlying
object obj. If a speculative call chain writes to X.P,
Crom will deep-copy X, cloning obj via X.P. The spec-
ulation will write to the new clone obj’. If the call
chain never accesses Y, Y will not be cloned since it is
not reachable from the object tree rooted at X. Later, if
the speculation commits, Crom will set the real global X
to specContext.X, ensuring that the real X.P points
to obj’. However, Y.P will refer to the original (and
now stale) obj.

In practice, we have found that such stale references
arise infrequently in well-designed, modular code. For
example, the autocompletion widget is a stand-alone
piece of JavaScript code. When a developer inserts a
speculative version of it into an enclosing web page,
the widget will not be referenced by other heap vari-
ables, and running in lazy mode as described will not
cause stale child references. Regardless, to guarantee
correctness at commit time, Crom provides a checked
lazy mode. Before Crom issues any speculative computa-
tions, it traverses every JavaScript object reachable from
the heap roots or the DOM tree, and annotates each ob-
ject with parents, a list of parent pointers. A parent
pointer identifies the parent object and the property name

by which the parent references the child. Crom copies
parents by reference when cloning an object. When

a lazy speculation commits, Crom uses the parents
list to update stale child references in the original heap.

Crom also has an unchecked lazy mode in which Crom
clones lazily but assumes that stale child references never
occur, thereby avoiding the construction and the check-
ing of the parent map. For applications with an extremely
large number of objects and/or a highly convoluted ob-
ject graph, unchecked lazy mode may be the only cloning
technique that provides adequate performance. We re-
turn to this issue in the evaluation section. For now,
we make three observations. First, our experience has
been that the majority of event handlers will run safely
in unchecked mode without modification. Second, Crom
provides an interactive execution mode that allows devel-
opers to explicitly verify whether their speculative event
handlers are safe to run in unchecked lazy mode. Dur-
ing speculative commits in interactive mode, Crom re-
ports which committing objects have parents that were
not lazily cloned and thus would point to stale children
post-commit. Crom automatically determines the object
tree roots that the programmer must explicitly reference
in the event handler to ensure that the appropriate ob-
jects are cloned. The programmer can then perform this
simple refactoring to make the handler safe to run in
unchecked lazy mode.

Third, and most importantly, Section 6 shows that
most of Crom’s benefits arise from speculatively warm-
ing the browser cache. Committing speculative DOM
nodes and heap objects can mask some computational
latency, but network fetch penalties are often much
worse. Thus, if speculating in checked lazy mode is
too slow, or checked mode refactoring is too painful, an
application can pass a flag (not shown in Figure 1) to
Crom.makeSpeculative() which instructs Crom
to discard speculative contexts after the associated ex-
ecutions have terminated. In this manner, applications
can use unchecked lazy speculations solely to warm the
browser cache, forgoing complications due to commit is-
sues, but deriving most of the speculation benefit.

5.5.2 Speculation Zones
An event handler typically modifies a small frac-

tion of the total application heap. Similarly, it of-
ten touches a small fraction of the total DOM tree.
Lazy cloning exploits the first observation, and spec-
ulation zones exploit the second. An application
may provide an optional DOMsubtree parameter to
Crom.makeSpeculative() that specifies the root
of the DOM subtree that an event handler modifies. At
speculation time, Crom will only clone the DOM nodes
associated with this branch of the tree. At commit time,
Crom will splice in the speculative DOM branch but
leave the rest of the DOM tree undisturbed.
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Speculation zones are useful when an event handler
is tightly bound to a particular part of the visual dis-
play. For example, the autocompletion widget in Fig-
ure 3 only modifies the <div> tag that will hold the
fetched search results. Speculation zones are also useful
when the DOM tree contains rich objects whose inter-
nal state is opaque to the native cloneNode() method.
Examples of such objects are Flash movies and Java ap-
plets. When cloneNode() is invoked upon such an
object, the returned clone is “reset” to the initial state of
the source object; for example, a Flash movie is rewound
to its first frame. Since it is difficult for JavaScript code
to reason about the state of such objects, applications
can use speculation zones to “speculate around” these
opaque parts of the DOM tree.

5.5.3 Context Pools

Crom hides speculative computations within the
“think time” of a user. The shorter the think time, the
faster Crom must launch speculations to reduce user-
perceived fetch latencies. For example, time pressure
is comparatively high for the autocompletion widget
(§4.1.1) since a fast typist may generate her search string
quickly.

To reduce the synchronous overhead of is-
suing new speculations, applications can call
Crom.createContextPool(N, stateSketch,
DOMsubtree). This method generates and caches N
clones of the current browser environment, tagging each
with the sketch value generated when stateSketch
is passed the current browser context.

Using context pools, the entire cost of eager cloning
or the initial cost of lazy cloning is paid in advance. At
speculation time, Crom finds an unused context that is
tagged with the application’s current sketch. Crom im-
mediately specializes it using a mutator and issues the
new speculation.

5.6 Limitations and Future Work
Many of the limitations of the current Crom proto-

type arise from the fact that the client-side portion runs
as slow JavaScript code instead of fast C++ code inside
the browser. For example, we pursued the optimiza-
tions described in Section 5.5 after discovering that in
many cases, copying the entire browser context using
JavaScript code would result in unacceptably slow per-
formance. Ideally, browsers would natively support con-
text cloning, and applications could always use checked
mode speculations without fear of excessive CPU usage.

Speculative fetches compete with non-speculative
fetches for bandwidth. A native implementation of
Crom could measure the traffic across multiple flows
and prioritize non-speculative fetches over speculative
ones. Our JavaScript implementation cannot mea-

sure such browser-wide network statistics. However,
developers can use Crom.maxSpeculations(N)
to place an upper limit on the number of spec-
ulations that can be triggered by a single call to
Crom.forceSpeculations().

As mentioned in Section 5.5.2, opaque browser ob-
jects like applets and Flash applications cannot be intro-
spected by JavaScript code. Our JavaScript Crom library
can only clone them in a crude fashion by recreating their
HTML tags (and thereby reinitializing the clones to a vir-
gin state). In practice, we expect most applications to
avoid this issue by using speculation zones. However,
some applications might benefit from the ability to clone
rich objects in more sophisticated ways. An in-browser
implementation of Crom could do this, but we leave an
exploration of these mechanisms for future work.

The parsing engine for our client-side rewriter is fairly
unsophisticated. Implemented with regular expressions,
it is sufficient for analyzing the real applications de-
scribed in the next section. However, it does not parse
the complete JavaScript grammar. Future versions of the
client-side library will use an ANTLR-driven parser [18].
An in-browser implementation could obviously reuse the
browser’s native parsing infrastructure.

6 Evaluation
Ideally, we would evaluate Crom by taking a preexist-

ing application that has custom speculation code, replac-
ing that code with Crom calls, and comparing the perfor-
mance of the two versions. Unfortunately, custom specu-
lation code is often tightly integrated with the rest of the
application’s code base, making it difficult to remove the
code in a principled way and provide a fair comparison
with Crom’s speculation API. Thus, our evaluation ex-
plores the performance of the real applications from Sec-
tion 4 that we modified to use the Crom API. We show
that Crom’s computational overheads are hideable within
user think time, and that Crom can reduce user-perceived
fetch latencies by an order of magnitude under realistic
network conditions.

Our Crom prototype has been tested most extensively
on the Firefox 3.5 browser. Its core functionality has also
been tested on IE7 and Safari 4.0. However, we are still
fixing compatibility issues with the latter set of browsers,
so this section only contains Firefox results.

6.1 Performance of Modified Applications
To test the speculative autocompletion widget and tab

manager, we downloaded real web pages onto our lo-
cal web server; Figure 7 lists the pages that we exam-
ined. We inserted the Crom library and the speculative
applications into the pages, then loaded the pages using
a browser to test their performance. Decimail is a stand-
alone application, so we tested it by itself, i.e., we did not
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Web site Primitives Objects Functions DOM
nodes

Google 16 5 31 77
Gmail-o 2574 622 6 66
Gmail-i 0 0 3 1999
ESPN 1053 414 596 1422

YouTube 329 119 894 823
Live 49 8 80 184

Yahoo 150 26 51 694
MySpace 1447 236 904 499

eBay 826 589 1360 633
MSN 227 87 210 932

Amazon 13112 2895 1145 3003
CNN 859 129 588 1733

Figure 7: The types of JavaScript variables in several
popular web pages. Gmail-o refers to Gmail’s outer con-
trol frame and Gmail-i refers to the inner frame which
displays the inbox message list.
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Figure 8: Latency reductions using Crom’s AJAX cache.

embed it within an enclosing web page. Stripped of com-
ments and extraneous whitespace, Crom’s JavaScript
code added 65 KB to each application’s download size.
All experiments ran on an HP xw4600 workstation with
a dual-core 3GHz CPU and 4 GB of RAM. Web con-
tent was fetched from a custom localhost web server that
introduced tunable fetch delays. This allowed us to mea-
sure Crom’s latency-hiding benefits as a function of the
fetch penalty. All experiments represent the average of
10 trials. Standard deviations were less than 6% in all
cases.

6.1.1 Decimail Client

The modified Decimail client [5] used Crom’s AJAX
cache to store results from speculative mail fetches. Run-
ning in unchecked lazy mode, Decimail’s cloning and
rewriting overheads were less than 5 ms per fetch, so we
elide further discussion of them. Figure 8 shows the ben-
efit of finding a requested message in the Crom cache in-
stead of having to fetch it synchronously. Unsurprisingly,
a cache hit took no more than 3 ms to serve, whereas the
cache miss penalty was the fetch latency to the server.
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Figure 9: Tab manager pre- and post-commit overheads
(checked mode costs in grey).
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Figure 10: User-perceived latencies for tab manager.

6.1.2 Tab Manager

Figure 9 depicts the speculative overheads in the tab
manager application [12]. In this experiment, the tab
manager was embedded within the ESPN front page.
Clicking the “make new tab” button generated an AJAX
request for a web page. Once fetched, the page was ren-
dered inside a <div> tag; this tag was a child of the en-
closing <div> tree controlled by the tab manager. Crom
used this enclosing tag as the speculation zone. We con-
figured the tab manager to speculatively fetch the CNN
home page, a complex page with over 1700 DOM nodes.

Figure 9 breaks the speculation overheads into pre-
commit costs (the left side of the dotted line) and during-
commit costs (the right side of the line). The black bars
represent the overheads for unchecked lazy mode. The
grey bars represent the additional costs that would arise
from running lazy cloning in checked mode.

Unchecked lazy mode: When speculating in
unchecked lazy mode, aggregate pre-commit spec-
ulation costs were low, totalling 24 ms. Copying the
speculated-upon DOM tree was fast (1 ms), since the
speculation zone consisted of a small <div> tree of
depth 3. Walking the cloned DOM tree and copying
event handlers and user-defined objects took only 7 ms.
There was no mutator to rewrite, but Crom did have to
rewrite an event handler call tree with a maximum depth
of 4. Figure 9 breaks the rewriting cost into two parts.
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The first part represents the cost of lexical analysis,
source code modification, and calling eval() on the
modified source. The second part represents the cost
of copying heap objects during the rewriting process.
Both costs were less than 10 ms each since the call chain
touched a minority of the total page state.

At commit time, there were no stale child references
to fix since Crom was running in unchecked mode. Com-
mitting speculative heap objects took less than 1 ms,
since Crom merely had to make global variables in the
real domain point to speculative object trees. Over 99%
of the commit overhead was generated by the splice of
the speculative DOM subtree into the non-speculative
one. Although the splice was handled by native code,
it required a screen redraw, since the formerly invisible
CNN context was now visible. Screen redraws are one
of the most computationally intensive browser activities.
However, Crom avoided the additional (and more expen-
sive) reflow cost, since the layout for the CNN content
was determined during the speculative execution. Since
even non-speculative computations must pay the redraw
cost upon updating the screen, Crom added less than 1
ms to the inherent cost of displaying the new content.

Checked lazy mode: In this mode, Crom built a par-
ent map before issuing any speculations and checked for
stale object references at commit time. The grey bars in
Figure 9 depict these costs, which must be paid in ad-
dition to the rewriting and cloning costs in black. Con-
structing the parent mapping took 158 ms, leading to an
overall pre-commit cost of 182 ms. Although the map-
ping cost is amortizable across multiple speculations,
an aggregate CPU overhead of 182 ms pushes against
the limits of acceptability. The current implementation
of Crom does not stage its pre-commit operations, i.e.,
Crom holds the processor for the entire duration of the
cloning, rewriting, and parent mapping process. De-
pending on the application, a pre-commit overhead of
182 ms may interfere with foreground, non-speculative
JavaScript that needs CPU cycles. Recent versions of
Firefox provide a JavaScript yield statement for im-
plementing generators; future versions of Crom may be
able to stage pre-commit costs using such generators.

When committing a checked-mode speculation, Crom
must patch stale object references. In this experiment,
the cost was only 5 ms. As explained in Section 6.2.4,
the patching overhead is proportional to the number of
objects cloned, which is typically much smaller than the
total number of objects in the application.

User-perceived benefits: To keep the GUI responsive,
long redraws in Firefox are split into a synchronous part
and several asynchronous ones. The commit-time black
bar in Figure 9 only captures the synchronous cost. Fig-
ure 10 quantifies the end-to-end user-perceived latency
reduction that is enabled by speculative prefetching and
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Figure 11: Autocompleter pre- and post-commit costs
(checked-mode costs in grey).
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Figure 12: User-perceived latencies for autocompleter.

pre-layout. The injected web server latency varies on
the x-axis, and the y-axis provides the delay between
the start of the page load and the final screen repaint;
repaint activity was detected using the custom Firefox
event MozAfterPaint.

Figure 10 shows that speculative execution can dra-
matically reduce user-perceived latencies. For exam-
ple, with a 300 ms fetch penalty, Crom needed 399 ms
to complete the page load, whereas a non-speculative
synchronous load with a cold cache required 3,427 ms.
Speculatively prefetching the data but discarding the lay-
out (i.e., not committing the speculative context) re-
quired 1,302 ms of user-perceived load time. The load
penalty relative to the full speculative case arose from
two sources: recalculating the layout, and for some ob-
jects, waiting for the server to respond to cache validation
messages. Such messages are not generated when a pre-
computed DOM subtree is inserted into the foreground
DOM tree.

6.1.3 Autocompletion Widget

To evaluate the speculation overheads for the auto-
completer [21], we embedded it inside the Amazon front
page, simulating a new search box for the page. When
the user hit the widget’s “submit” button, the widget used
AJAX to fetch and display content associated with the
user’s search terms. The autocompleter speculated after
the user had typed two letters, and we limited the number
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of speculations to three. To provide a comparison with
the tab manager experiment, the widget always fetched
the CNN front page. Crom ran in lazy mode with a spec-
ulation zone consisting of the <div> tag that would dis-
play the fetched content.

Figure 11 depicts the speculation overheads. Examin-
ing the overheads from left to right, we see that copying
the DOM tree, the event handlers, and the user objects
was extremely fast. This is because the autocompleter
used a speculation zone that limited the DOM copying
to a single div subtree. The mutator function was also
very simple, so rewriting it was cheap. However, rewrit-
ing the event handler call tree was not cheap due to high
cloning costs. The JavaScript objects that implemented
the autocompletion logic were fairly complex, and copy-
ing the whole set took 33 ms. Since the autocompleter
issued three speculations, this object set had to be copied
three times.

In unchecked lazy mode, the total pre-commit specu-
lation cost was 114 ms, not counting the 22 ms needed to
preemptively create three speculative domains (see Sec-
tion 5.5.3 for details). Creating a parent mapping would
add 379 ms, making the total pre-commit overhead a
prohibitive 493 ms. Thus, the autocompleter requires
unchecked lazy mode to make Crom’s speculations fea-
sible.

Commit costs were similar for the tab manager and the
autocompletion widget. As Figure 12 shows, the reduc-
tion in user-perceived latency was equally dramatic.

6.2 Exploring Speculation Costs
The previous section showed that Crom’s overheads

are low when using unchecked lazy cloning and specula-
tion zones. In this section, we examine the costs of full
heap and checked lazy speculation, as well as the cost
of copying the entire DOM tree. These types of spec-
ulation require the least effort from the web developer,
since there is no need to identify speculable DOM sub-
trees or perform checked-mode refactoring. We believe
that these activities are fairly straightforward for well-
designed code. Unfortunately, poorly written JavaScript
code abounds, and even good developers may generate
tangled code when working on a constantly evolving web
page. Thus, it is important to understand when checked
mode or full copy speculation is feasible when the Crom
API is not natively implemented by the browser.

6.2.1 Copying the Full Application Heap

Figure 7 describes the JavaScript environment for sev-
eral popular web sites2. As expected, there is wide vari-
ation across sites. Figure 13 shows the time needed by

2Figure 7 provides a lower bound on the number of variables in each
site; Crom cannot discover objects which are only reachable by object
trees rooted in DOM 2 handler state.
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Figure 13: Copying the full application heap.
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Figure 14: Copying the full DOM tree.

Firefox to copy the full application heap in these sites.
For many sites, the one-time copy overhead was low. For
example, in a fairly complex site like MSN, the copy cost
was 94 ms. However, this is a per-speculation cost, since
each speculative execution needs a private copy of the
heap. The larger the cost, the fewer speculations can be
issued in a window of a few hundred milliseconds.

For more complex sites like Amazon, YouTube, and
MySpace, full heap copying was prohibitively expen-
sive, mainly due to the overhead of function cloning.
This overhead was proportional to both the number
and the complexity of the functions. So, even though
MySpace and YouTube had a similar number of
functions (904 versus 894), it took 452 ms to clone
MySpace’s heap, but 11 seconds to clone YouTube’s
heap. The high cloning overhead for YouTube is a
consequence of its sophisticated JavaScript functional-
ity: it contains over 200K of code for manipulating Flash
movies, performing click analytics, and managing adver-
tisements. For sites like this, full heap copying is com-
pletely infeasible, making lazy cloning a prerequisite for
high-performance speculation.

6.2.2 Copying the Full DOM Tree

To copy the DOM tree (or a branch of the tree), Crom
first calls cloneNode(true) on the root of the tree.
Then, Crom traverses the cloned tree and the base tree in
parallel, reference-copying the event handlers and deep-
copying the user-defined objects belonging to the non-
speculative DOM nodes. Figure 14 shows the relative
costs of these two steps. Since cloneNode() is imple-
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Figure 15: Creating a parent map.

mented in native code, the first step was very fast. The
second step was more onerous since it was implemented
by non-native Crom code. The aggregate copy cost rep-
resents a per-speculation overhead, since each specula-
tive computation must possess a private copy of the tree.
Amazon had the highest copy overhead (247 ms), but
40% of the remaining websites had copy penalties above
100 ms. Thus, we expect that most speculative web sites
will avoid full DOM copying and use speculation zones.

6.2.3 Creating the Parent Map
Figure 15 shows the cost of creating a parent map

in various web sites. The overhead is split into two
parts: the cost of traversing the DOM tree, and the
cost of walking the object forest rooted in the applica-
tion heap. Traversing the DOM tree was much faster
than traversing the application heap. Whereas Crom
could get a list of all DOM nodes using the native code
document.getElementByTagName("*"), it had
to walk the application heap using a user-level breadth-
first traversal.

Creating a parent map and updating stale references is
unnecessary if Crom copies the entire application heap.
However, given the choice between unchecked execution
with full heap copying, and checked execution with lazy
copying, many applications will prefer the latter. This
is because the overhead of parent mapping is amortiz-
able across multiple speculations, whereas full heap copy
costs cannot be shared. Comparing Figures 13 and 15 re-
veals that for sites with small enough heaps to make full
heap copying reasonable, creating the parent map is of-
ten no more expensive than a single full heap copy; thus,
when issuing multiple speculations, lazy copying quickly
repays the initial parent mapping overhead.

6.2.4 Committing a Speculative Domain
Committing a speculative context requires three ac-

tions. First, the speculative DOM tree must be spliced
into the real DOM tree. Second, the cloned object trees
from the application heap must be inserted into the real
global name space. Third, if Crom is running in checked
mode, the non-speculative parents of speculative objects
must have their child references patched.
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Figure 16: Committing a full DOM tree.

Repairing the heap name space is essentially free—for
each reference to an object tree root, Crom just makes it
point to the speculative copy of the root object. The time
required for parent patching is O(SP ), where S is the
number of speculatively cloned objects and P is the av-
erage number of parents per object. S is typically much
smaller than the total number of objects, so in our expe-
rience, fixing stale child references takes no more than
20 ms.

Splicing the speculative DOM tree into the real one
is handled by native code. However, the splice may be
the slowest step of the commit if the speculative tree is
large. In these situations, the browser is forced to re-
render large regions of the display, a computationally in-
tensive task. Figure 16 shows the splice costs in the ab-
sence of speculation zones, i.e., when the entire DOM
tree is copied and then reinserted. With the exception
of CNN, each splice took less than 75 ms. Regardless,
DOM splicing is a cost that must be paid by both specu-
lative and non-speculative code, and even checked com-
mits add little overhead to the fundamental cost of updat-
ing the browser display.

7 Related Work
File systems often use prefetching to hide disk and

network latency [13, 19], and many of these techniques
can be applied to the web domain. Empirical studies
show that over half of all web objects can be effec-
tively prefetched, doubling the latency reductions avail-
able from caching alone [14]. Various academic and
commercial projects have tried to exploit this opportu-
nity [4, 15, 20]. For example, Padmanabhan’s algo-
rithm uses server-collected access statistics to generate
prefetching hints for clients [17]. The current draft of the
HTML 5 protocol allows such hints to be specified using
a new “prefetch” attribute for <link> tags [23]. The
Fasterfox extension for Firefox automatically prefetches
statically referenced content in a page [10]. All of these
approaches are limited to prefetching across static con-
tent graphs. In contrast, Crom allows prefetching in web
pages with interactive client-side code and dynamic con-
tent.
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Speculative execution has been used to drive prefetch-
ing in file systems [1, 8] and parallel computation sys-
tems [2]. In these environments, a process is speculated
forward, possibly on incorrect data, to discover what I/O
requests may appear in the future. The sole purpose of
speculative execution is to warm the cache; other side ef-
fects are discarded. In contrast, Crom speculates on user
activity rather than the results of I/O operations. When
appropriate, Crom can also commit speculative contexts
to hide computational latencies associated with screen
redraws.

The Speculator Linux kernel [16] supports speculative
execution in distributed file systems. A client-side file
system process speculates on the results of remote oper-
ations and continues to execute until it tries to generate
an externally visible output like a network packet. The
process is blocked until its speculative input dependen-
cies are definitively resolved. At that point, the process
is either marked as non-speculative or rolled back to a
checkpoint. Unlike Speculator, Crom has a server-side
component which allows speculations to externalize net-
work activity. However, Crom requires applications to
be modified, whereas Speculator only modifies the OS
kernel.

8 Conclusion
In this paper, we describe why speculative execu-

tion is a natural optimization technique for rich web
applications. We introduce a high-level API through
which applications can express speculative intent, and a
JavaScript implementation of this API that runs on un-
modified browsers. This implementation, called Crom,
automatically converts event handlers to speculative ver-
sions and runs them in isolated browser contexts, caching
both the fetched data and the screen layout for that data.
Experiments show that Crom-enabled applications can
reduce user-perceived delays by an order of magnitude,
greatly improving the browsing experience. By abstract-
ing away the programmatic details of speculative execu-
tion, Crom successfully lowers the barrier to producing
rich, low-latency web applications.
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