
The Unthinkable:
Automated Theorem Provers

For (Tracing) Just-in-Time Compilers

Nikolai Tillmann Michał Moskal Wolfram Schulte Herman Venter Manuel Fahndrich
Microsoft Research, Redmond WA, USA

{nikolait,micmo,schulte,hermanv,maf}@microsoft.com

Abstract
Tracing just-in-time compilers (TJITs) determine frequently
executed traces (hot paths and loops) at run time. These
traces are then analyzed and optimized, and finally special-
ized machine code is generated. Up to now, TJITs employed
standard compiler construction algorithms to analyze and
optimize traces. We propose to leverage automated theorem
provers to optimize traces at run time.

1. Introduction
Tracing just-in-time compilers (TJITs) determine frequently
executed traces (hot paths and loops) at run time. These
traces are then further analyzed and optimized, and finally
specialized machine code is generated.

Traces contain guards that check whether a later execu-
tion will actually follow along the sequence of instructions
originally recorded in the trace. For example, an if-statement
in the program code gives rise to a guard, that will en-
code whether the recorded trace follows the then or the else
branch. The guards are preserved in the specialized machine
code generated for the optimized trace; when the guard con-
dition does not hold later on, execution would transfer back
from the optimized trace code to the original unoptimized
code. If such a trace exit is taken frequently for a particu-
lar guard, a dedicated trace starting from that guard might
be recorded. The result is a trace tree [4] where guards can
have traces attached to it. The only control-flow join point is
in the case of loops at the end of a trace that goes back to the
loop head. Figure 1 illustrates the structure of trace trees, as
they are implemented in our TJIT system SPUR [2].

Tracing at run time enables optimizations that cannot be
performed ahead of time. For example, tracing performs in-
lining of method calls, including virtual calls, which give
rise to a guard that ensures the virtual method table lookup
yields the inlined method. As a result, traces spanning mul-
tiple inlined virtual method calls often contain redundant
computations and guards. Eliminating this redundancy is the
goal of trace analysis and optimizations.

t0 := a.len

i < t0

t1 := a.len

i < t1

t2 := a[i]

t2 > 0

t3 := p + 1

t4 := i + 1

t5 := i + 1

i := t4
p := t3

i := t5
p := p

for (i=0; i < a.len; i++) if (a[i] > 0) p++;

loop-guard

trace-exit

bounds-guard

if-guard

Figure 1. SPUR trace tree in SSA form with two traces for
the loop for (i=0; i<a.len; ++i) { if (a[i]>0) p++; }

Up to now, TJITs employed standard compiler construc-
tion algorithms to analyze and optimize traces, often trying
to balance the efficiency of the analysis with the efficiency of
the resulting code, in order to achieve overall optimal perfor-
mance. Consider a system where the unoptimized code qual-
ity is already reasonable, e.g., by always employing a base-
line JIT instead of an interpreter, and where spare processing
power is available on separate cores. Then, once traces have
been recorded, a TJIT can perform expensive optimizations
in parallel to the ongoing program execution.

We propose to leverage automated theorem provers to op-
timize traces at run time. In particular, Satisfiability Modulo
Theories (SMT) solvers check satisfiability of formulas us-
ing decision procedures for theories such as equality, unin-
terpreted functions, arrays, and bitvector arithmetic. These
theories are well suited to encode the semantics of the in-
structions of typical execution environments, and thus SMT
solvers are often used in software and hardware verification,
as well as in automatic test case generation.

SMT solvers based on DPLL(T) [5] architecture (i.e., all
of them as of now) maintain a stack of asserted constraints.
This stack is often exposed (e.g., in the recent SMT-LIB 2.0

standard [1]), so one can assert some constraints and pop
them later. In between, one can check if a formula logically
follows in the current context (by checking satisfiability of
its negation). This perfectly matches the typical behavior of
a trace tree analysis or optimization, which usually visits the
trace tree in a depth-first manner.

2. Trace tree optimizations with SMT solver
The basic idea is to visit paths of a previously recorded
trace tree in a depth-first manner, performing symbolic exe-
cution [6] along each path, pushing and popping constraints
to the SMT solver to perform backtracking. Whenever an
instruction is visited, its semantics are mapped to the corre-
sponding theories of the SMT solver. For example, an in-
struction t3:=p+1 that adds one to a 32-bit p and stores
the result in a local variable gives rise to an expression
bvadd(p, 1:bv32) in the theory of bitvectors in the SMT
solver; whenever the local variable t3 is used in the fol-
lowing, the expression bvadd(p, 1:bv32) is used in the SMT
solver. The implicit heap is made explicit, e.g., an instruc-
tion t1 := a.len that reads field len of the object pointed to
by a is modeled in the theory of arrays with the expression
read(hlen, a) where hlen represents a mathematical map of
object reference to values for the field len. An instruction
that writes to a field of an object, e.g., x.f := y, gives rise
to a new heap h′

f represented by write(hf, x, y). Whenever
a guard is visited, its condition is asserted as a fact to the
SMT solver. When backtracking later to start the analysis of
another trace, all previously asserted guards up to the back-
tracking point are popped off the stack of the solver.

Forward guard elimination. Before asserting the next
guard condition, a solver query can be performed to check if
the next guard condition follows from earlier asserted con-
ditions. If so, the next guard can never fail, and can be re-
moved.

Redundant-store elimination. For every write-operation
(including to local variables), a solver query can be per-
formed, checking whether the written value is guaranteed
to be equal to the value that would be retrieved by a read-
operation at the place of the write-operation. For exam-
ple, for the write-operation x.f := y, the query would be
read(hf, x) = y. If so, the write-operation can be removed.

Common-subexpression elimination modulo theories and
asserted guards, including alias-analysis and redundant-
load elimination. For every expression that is constructed
in the course of symbolic execution, queries can be per-
formed to check whether that expression is guaranteed to
be equal to any expression which was constructed earlier
along the same path. As an optimization, the model of the
currently asserted constraints can be obtained. Only pairs of
expressions with the same value in that model need to be
considered. If an earlier equivalent expression is found, all
references to the later expression can be replaced by the ear-

lier equivalent expression, and the redundant later expression
can be removed.

Speculative guard strengthening If a later guard is not
implied by an earlier guard, it might still be the case that
the later guard implies an earlier guard. This is not detected
by the forward guard elimination described above. One ap-
proach to eliminate the implied guard in this scenario is to
move the later guard before the earlier guard, so that for-
ward guard elimination can remove it. Moving up a guard
in this way is a speculative optimization, as it might cause
execution to leave the trace earlier than it normally would.
However, if done properly it does not change the semantics
of the program, as it simply means that execution may leave
the trace a bit early, and continue in unoptimized code. A
guard can be moved up over the preceding instruction if the
result or side effects of the preceding instruction do not af-
fect the guard condition. By making side effects on the heap
explicit this can be decided by a solver query.

3. Discussion and future work
The optimizations above rely only on the solver being sound,
i.e., on the solver never claiming a satisfiable formula to be
unsatisfiable. However, most SMT solvers are also complete
for the fragment we need, and so is our encoding. Thus, the
SMT solver is an ultimate oracle: if it determines that, e.g.,
a guard cannot be eliminated, then there exists an input on
which the guard will fail. Thus, we employ the strongest pos-
sible version of this (conservative) optimization. In practice,
we might want to limit the solver’s running time, thus mak-
ing it incomplete.

We are in the process of implementing trace tree opti-
mizations such as the ones described above in our tracing
JIT compiler SPUR [2] using Z3 [3] as the SMT solver, and
expect to have results by the time of the conference.

References
[1] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard:

Version 2.0, 2010. Available at www.SMT-LIB.org.

[2] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,
W. Schulte, N. Tillmann, and H. Venter. SPUR: A Trace-Based
JIT Compiler for CIL. Technical Report MSR-TR-2010-27,
Microsoft Research, 2010.

[3] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

[4] A. Gal and M. Franz. Incremental dynamic code generation
with trace trees. Technical Report ICS-TR-06-16, University
of California, Irvine, 2006.

[5] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. DPLL(T): Fast Decision Procedures. In CAV’04,
volume 3114 of LNCS, pages 175–188. Springer, 2004.

[6] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

