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ABSTRACT

Dwell time on Web pages has been extensively used for vari-
ous information retrieval tasks. However, some basic yet im-
portant questions have not been sufficiently addressed, e.g.,
what distribution is appropriate to model the distribution of
dwell times on a Web page, and furthermore, what the dis-
tribution tells us about the underlying browsing behaviors.
In this paper, we draw an analogy between abandoning a
page during Web browsing and a system failure in reliabil-
ity analysis, and propose to model the dwell time using the
Weibull distribution. Using this distribution provides bet-
ter goodness-of-fit to real world data, and it uncovers some
interesting patterns of user browsing behaviors not previ-
ously reported. For example, our analysis reveals that Web
browsing in general exhibits a significant “negative aging”
phenomenon, which means that some initial screening has
to be passed before a page is examined in detail, giving rise
to the browsing behavior that we call “screen-and-glean.” In
addition, we demonstrate that dwell time distributions can
be reasonably predicted purely based on low-level page fea-
tures, which broadens the possible applications of this study
to situations where log data may be unavailable.

Categories and Subject Descriptors

H.1.2 [Information Systems]: Models and Principles –
User/Machine Systems

General Terms

Algorithms, Measurement, Human Factors
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1. INTRODUCTION
Real-world information retrieval (IR) heavily relies on ef-

fective usage of implicit feedback, which comes in various
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forms such as document clickthrough, viewing, scrolling,
and bookmarking. Many researchers have studied the cor-
relations between implicit feedback and document relevance
(e.g., [6, 21, 5, 10]), and revealed that document dwell time
(i.e., the length of time a user spends on a document), is gen-
erally the most significant indicator of document relevance
besides clickthrough, although the extent of the relationship
may vary depending on the information seeking task [14, 15].
Because of the correlation between dwell time and document
relevance, dwell time has been successfully used in various
applications, such as learning to rank [2, 3], query expan-
sion [5], and inferring query-independent page importance
[19]. Specifically, Agichtein et al. [2, 3] demonstrate that
user browsing features, a major component of which is Web
page dwell time, significantly improve the retrieval perfor-
mance of a competitive search engine, even with the presence
of other important features such as BM25 and search-result
clickthrough. Although post-query browsing is intuitively
more relevant to IR than general browsing, general browsing
is still an important component in information seeking [20,
25]. Indeed, some of aforementioned studies (e.g., [19]) and
real-world search engines also leverage the general browsing
activities for improved efficacy and coverage.

Although dwell time has been extensively studied, some
important questions have not been sufficiently addressed.
For example, what distribution is appropriate to model the
dwell time t on aWeb page1 d across all visits, i.e., what does
Pr(t∣d) look like? Furthermore, how does the distribution
depend on the features of d? And finally, what does the
distribution tell us about users’ general browsing behaviors?
These questions are not only interesting in themselves, but
are also useful for various IR applications, as we now explain.

First, accurately modeling Pr(t∣d) would enable the con-
struction of generative models involving dwell time for Web
text analysis. For example, when dwell time is properly
modeled, topic discovery can be guided by considering both
Pr(t∣d) and content. Second, Pr(t∣d) can readily answer
questions such as “what is the probability that a user will
stay longer than t1 on the page?” (answer: Pr(t ≥ t1∣d))
or “what is the expected remaining time that a user will
spend on a page that he has dwelled on for t1?” (answer:
E(t∣t ≥ t1, d)). Answers to such questions could help pub-
lishers optimize advertising and content placement. Third,
understanding Pr(t∣d) would help us gain insights into user
browsing behaviors that can help inform the design of search

1We use page, Web page, URL and document interchange-
ably in this paper



and advertising technologies, as we will explain later in the
paper.

Precise modeling of dwell time is not straightforward since
duration on a Web page depends on many factors, some of
which may not even be fully captured by log data (e.g., the
mood of the user). In addition, the distribution family may
vary with different information seeking tasks in different set-
tings (e.g., time of day). As the first step towards precise
modeling of dwell time, we choose to model the overall dis-
tribution of user dwells on each Web page, which we believe
will help us better understand the dwell time distributions
in general across all users.

In this paper, we draw an analogy between abandoning a
page during Web browsing and a system failure in reliabil-
ity analysis, and use Weibull analysis techniques which are
commonly used in reliability engineering [1] to characterize
general browsing behaviors. Furthermore, we demonstrate
that it is possible to predict the dwell time distribution based
on page-level features. We make the following contributions
in this study:

∙ Weibull analysis of Web dwell time data: To the
best of our knowledge, this is the first time an analogy
has been drawn between abandoning a Webpage and
a system failure, which leads to a principled way of
analyzing dwell time data. The same or similar analo-
gies can be made for other kinds of temporal data on
the Web (e.g., time-to-first-click on search result pages
and session length).

∙ Discoveries about user browsing behaviors: Our
analysis leads to some interesting new insights regard-
ing users’ Web browsing behaviors. Specifically, we
find that Web browsing exhibits a significant “negative
aging” phenomenon (i.e., the rate of Web page aban-
donment decreases over time), and that this effect is
stronger for less entertaining pages. These discover-
ies, together with the application of Weibull analysis
to a new domain, enhance our understanding of user
browsing behaviors.

∙ Predicting dwell time distribution: We demon-
strate that the dwell time distribution (in Weibull para-
metric form) can be effectively predicted from low-level
page features. Not only does this broaden the applica-
bility of dwell time data, but it also reveals what page
features correlate with the dwell time distribution.

The remainder of this paper is organized as follows. We
first discuss the related work in Section 2, and then examine
the goodness-of-fit of the Weibull distribution in Section 3.
We present the Weibull analysis results in Section 4, and
elaborate on the predictive model in Section 5. With ex-
tensions and future work discussed in Section 6, Section 7
concludes this study.

2. RELATED WORK
This paper is related to work on implicit feedback within

IR. Research on implicit feedback has sought to address the
high cost of soliciting explicit feedback from users by un-
obtrusively observing their natural interactions and build-
ing models for activities such as query expansion and user
profiling [17]. Although implicit feedback may be less ac-
curate than explicit feedback [22], it is available in signif-
icantly greater quantity than explicit feedback. Implicit

measures include document retention (e.g., printing, sav-
ing, bookmarking) and document interaction (e.g., view-
ing, scrolling, dwell time) [21, 6, 14]. Morita and Shinoda
[21] measured the relationship between dwell time, saving,
following-up and copying of a document and users’ explicit
ratings, and showed that there was a relationship between
dwell time and interest, but no relationship between inter-
est and any other measures. Claypool et al. [6] examined
mouse clicks, scrolling, dwell time, and requested explicit
ratings, and found that dwell time and the amount of mouse
scrolling had a strong positive correlation with explicit rat-
ings. Studies by Kelly and Belkin [14, 15] further found that
special attention is needed to interpret dwell time as rele-
vance because of the implications of different tasks. On the
application side, besides being incorporated into learning to
rank for Web IR [2, 3, 19], dwell time is also widely used in
other information seeking tasks (e.g., [16, 5]). In this paper,
we do not focus on particular search and retrieval tasks as
done in most previous work, but instead try to model the
dwell time distribution across all users engaged in general
Web browsing.

This work is also related to online user behavior model-
ing, which has been attracting significant attention in recent
years (e.g., [24, 25, 9]). There are two main complementary
approaches to uncovering user behavior models: one based
on controlled user studies (e.g., [12, 13, 24]), and the other
based on large-scale log analysis (e.g., [25, 9, 26, 4, 19]). This
work falls into the second category, and is mostly related to
BrowseRank [19], which tries to infer a query-independent
score for each page from page dwell time in general browsing.
In particular, BrowseRank assumes (mainly for tractability)
that the dwell time for a given page follows an exponential
distribution. In this paper, we show that the Weibull dis-
tribution is more versatile than the exponential distribution
used in [19]; it better fits the real-world dwell time data and
provides insights on browsing behaviors.

This work also relates to research on Weibull analysis,
which has been extensively and successfully applied in nearly
all scientific disciplines, such as biological, demographical,
reliability sciences (c.f. [1, 23]). This paper therefore adds a
new application area to the rich literature of Weibull analy-
sis, and meanwhile introduces a disciplined method for an-
alyzing temporal data on the Web, e.g., time-to-first-click
on search result pages and the session length in time, in
addition to the page dwell time as studied here.

3. MODEL FITTING AND COMPARISON
In this section, we fit the dwell time data with exponen-

tial and Weibull distributions (Section 3.2), and compare
their goodness-of-fit in Section 3.3. The data used for this
comparison and throughout the paper are discussed in Sec-
tion 3.1.

3.1 Experimental Data
We collected two-weeks of log data from a popular Web

browser plug-in operating in the English (US) market, which
records the searches and browsed pages for opted-in users.
The log data is organized in sessions, each of which is defined
as a series of Web page visits that extends until either the
browser is closed or a period of 30-minutes of inactivity.
Based on the visit time of consecutive page visits within
sessions, the dwell time of each page visit is calculated. We
do this for all pages apart from the last page in the session,
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Figure 1: Example Weibull Distributions

which is then discarded from the analysis because we do
not have a succeeding page visit from which to calculate its
dwell time. For accurate parameter estimation, only pages
with 10,000 or more visits are used. This results in a set
of 205,873 URLs, each of which is accompanied by at least
10,000 dwell time observations.

3.2 Model Fitting with Maximum Likelihood
The probability density function (PDF) of Weibull distri-

bution is given by

f(t∣k, �) =
k

�

( t

�

)k−1

exp
{

−
( t

�

)k
}

t ≥ 0, (1)

with E(t∣�, k) = �Γ(1+1/k). � and k are the scale and shape
parameters, respectively. Figure 1 plots the PDFs of some
typical parameterizations, which exemplify the versatility of
the Weibull distribution, and how parameters � and k affect
the scale and shape of the distribution, respectively.

When k = 1, the Weibull distribution reduces to the ex-
ponential distribution with PDF

f(t∣�) =
1

�
exp

{

−
t

�

}

t ≥ 0

and E(t∣�) = �.
Given a sample of n observed dwell time for a page, {ti}

n
i=1,

we choose to fit the model through maximum likelihood es-
timation (MLE), and denote the fitted model with Weibull
by MW and that with exponential by ME . While fittingME

is as simple as

�̂ =

∑

n

i=1 ti

n
, (2)

fitting MW is nontrivial because the MLE of (�, k) has no
closed form. Instead, we need to use an iterative approach
proposed in [7]. For completeness, we briefly outline the
estimation.

Given the likelihood function as

L(t1, t2, ⋅ ⋅ ⋅ , tn∣k, �) =

n
∏

i=1

k

�
(
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�
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�
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we set the partial derivative w.r.t. � and k to 0, i.e.,
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k
−nln(�)+

n
∑

i=1

ln(ti)−
n
∑

i=1

(
ti
�
)kln(

ti
�
) = 0, (3)

∂ln(L)

∂�
= −

kn

�
+

n
∑

i=1

k
tki

�k+1
= 0. (4)

Eqn 4 gives

�k =

∑

n

i=1 t
k
i

n
, (5)

which, once plugged into Eqn 3, renders

n
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which only involves k and can be solved through Newton-
Raphson iterations. Specifically, let

g(k) =

n
∑

i=1

tki + k

∑

n

i=1 t
k

i

∑

n

i=1 ln(ti)

n
− k

n
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tki ln(ti),

then

g′(k) =

∑

n

i=1 ln(ti)

n
(

n
∑

i=1

tki +k

n
∑

i=1

tki ln(ti))−k

n
∑

i=1

tki ln
2(ti).

Then the MLE of k, denoted by k̂, is obtained by

k̂(m+1) ← k̂(m) −
g(k(m))

g′(k(m))
m = 1, 2, ⋅ ⋅ ⋅

We terminate the iterations when the change of k is less
than 10−6. Once k̂ is obtained, �̂ immediately follows from
Eqn 5. We try initial value k(1) = 0.1, 1, 10, and choose the
final (�̂, k̂) with the largest likelihood. Readers interested
in a thorough treatment of parameter estimations (besides
MLE) for Weibull distributions are referred to [23]. The
above estimation can be trivially parallelized across URLs
for distributed computing, which affords Web-scale dwell
time data analysis.

3.3 Goodness-of-fit Comparison
We use the log-likelihood (LL) and the Kolmogorov-Smirnov

distance (KS-distance) [8] to evaluate the goodness-of-fit of
MW and ME . In general, a better fit corresponds to a bigger
LL and/or a smaller KS-distance.

The KS-distance as defined below

KS(F ∗, S) = supx∣F
∗(x)− S(x)∣ (7)

is the test statistic for Kolmogorov goodness-of-fit test, which
tests whether a random sample X1, X2, ⋅ ⋅ ⋅ , Xn, whose em-
pirical cumulative distribution function (eCDF) is described
by S(x), comes from a completely specified hypothesis dis-
tribution whose cumulative distribution function (CDF) is
given by F ∗(x).

Because the exponential distribution is a special case of
the Weibull distribution, MW is guaranteed to be no worse
than ME if fitted and evaluated on the same dataset. To be
fair, the dwell time observations for each page are randomly
split into training and testing portions with a ratio of 4:1.
In other words, the data are split within the dwell time
observations for each page rather than across pages. MW

and ME are fit using the training portion and evaluated on
the testing portion for each page. LL and KS-distance on
the testing portion are used to determine which model wins.
The number of pages on which a model wins are listed in
Table 1, which clearly shows the superiority of MW to ME.
Specifically, MW outperforms ME on more than 85% of the
pages in terms of both metrics, and a sign test for each result
gives a p-value that is very close to zero.



Log-Likelihood KS-distance

MW Wins 176,242 178,892

ME Wins 29,631 26,981

Table 1: Comparison of Goodness-of-Fit

4. WEIBULL ANALYSIS OF DWELL TIME
In this section, we discuss the implications of a fitted

Weibull distribution for understanding user browsing behav-
iors (Section 4.2). We first provide a brief introduction to
Weibull analysis in Section 4.1.

4.1 A Primer on Weibull Analysis
Weibull analysis dates back to 1937 when Waloddi Weibull

invented the Weibull distribution. It has been successfully
applied to nearly all scientific disciplines, such as biological,
environmental, health, physical and social sciences, but, to
the best of our knowledge, not in the Web data analysis
domain. By fitting time-to-failure data to Weibull distri-
butions, Weibull analysis enables principled failure interpre-
tation, risk assessment, failure forecasting, and planning of
corrective actions. Since a full introduction to Weibull anal-
ysis is neither realistic nor necessary here, we will highlight
those aspects that pertain to our analysis and referring in-
terested readers to [23] and [1] for a thorough treatment of
Weibull analysis and applications.

The most popular characteristic function of a Weibull dis-
tribution is the Hazard function, which is defined as

ℎt(x) = lim
�→0

Pr(x ≤ t < x+ �∣t ≥ x)

�
.

If an item that has survived time x is called an x-survivor,
the hazard function gives the probability that an x-survivor
fails immediately at time x, and it is also known as the
instantaneous failure rate or the hazard rate. Usually, the
hazard rate is interpreted as the amount of risk associated
with an x-survivor at time x in reliability study and as the
force of mortality in demography and actuarial science.

The hazard function of a Weibull distribution is given by

ℎt(x) =
k

�k
xk−1, (8)

whose first-order derivative is

ℎ′

t(x) =
k

�

k − 1

�

(x

�

)k−2

. (9)

When k ∈ (0, 1), the first-order derivative, ℎ′

t(x), is less
than 0, so the hazard rate monotonically decreases w.r.t. x.
This phenomenon is often termed “negative aging,” which
means that the longer one survives, the less likely it would
fail instantaneously. Since the hazard rate is high at the
onset, it is also called the “infant mortality” phenomenon.
In abstract terms, negative aging means that a screening is
taken place at the early stage so that weak items with hid-
den defects are sorted out while leaving robust and healthy
ones in the population, or as Lehman [18] suggests “So once
the obstacle of early youth have been hurdled, life can con-
tinue almost indefinitely.” We will reveal the implication of
negative aging for Web browsing in Section 4.2.

In contrast, k > 1 corresponds to the “positive aging” phe-
nomenon, which means that the longer one survives, the
more likely it fails instantaneously. Finally, k = 1 results
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Figure 3: Distributions of the Fitted � and k Values

in a constant hazard function, indicating a constant failure
rate, which is the physical model of the exponential distri-
bution.

The hazard functions of some example Weibull distribu-
tions are plotted in Figure 2, which illustrates different types
of aging. Note that when k ∈ (0, 1), we see negative aging,
or a decrease in the failure rate over time. In the context
of Web browsing this would mean a decrease in Web page
abandonment rate over time. Conversely, when k > 0, we
see positive aging, or an increase in the failure rate over
time.

4.2 Weibull Analysis on Dwell Time
Using the data set as described in Section 3.1, we now ex-

amine the fitted � and k values on the training portion for
each page. Figure 3 plots the empirical cumulative distri-
bution function (eCDF) for the fitted � and k values. Fig-
ure 3(a) shows the eCDF for the scale parameter � of the es-
timated dwell time distribution. We see that the dwell time
is no more than 70 seconds on 80% of the 205,873 pages,
which gives us an overall estimate of the dwell time scales
across pages. Figure 3(b) shows the eCDF for the shape
parameter, k. We see that k is less than 1 on 98.5% pages.
Recalling that k < 1 indicates a negative aging effect. Thus,
Figure 3(b) suggests that Web browsing exhibits a strong
“negative aging” phenomenon, that is, some “screening” is
carried out at the early stage of browsing a page, and the
rate of subsequent abandonment decreases over time.

This discovery agrees well with the intuition about how a
user browses a page: upon landing on a Web page, the user
would first skim through the page, assessing the potential
benefit of further reading, before delving into it and gleaning
needed information. During the screening, the probability
of abandoning the page is high (i.e., a high hazard rate),
but once the page survives the screening (e.g., is regarded



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

Ent
er

ta
in
m

en
t

C
om

pu
te

rs

R
ec

re
at

io
n

R
el
at

io
ns

hi
ps

Fin
an

ci
al

Tra
ve

l

Soc
ie
ty

Sci
en

ce

Edu
ca

tio
n

Veh
ic
le
s

Pr(Category | k < 1)
Pr(Category | k > 1)

(a) Pr(Category ∣ k < 1) vs. Pr(Category ∣ k > 1)

0

0.5

1

1.5

k

Edu
ca

tio
n

Fin
an

ci
al

Sci
en

ce

C
om

pu
te

rs

Soc
ie
ty

R
ec

re
at

io
n

Ent
er

ta
in
m

en
t

Tra
ve

l

R
el
at

io
ns

hi
ps

Veh
ic
le
s

(b) Pr(k∣Category)

Figure 4: Relationship between Categories and Aging Effect as Characterized by k

as useful by the user), the abandonment rate decreases. We
therefore suspect that users do in general adopt a “screen-
and-glean” type browsing behavior, which gives rise to the
dwell time distribution showing the observed negative aging
effect.

We now examine whether and how the “negative aging”
phenomenon relates to the topic of the page, as defined by
category membership, i.e., do people impose equal screen-
ing on pages of different categories? For this purpose, we
employed a proprietary document classifier that assigned
each page into one of 23 top-level categories in a taxonomy
similar to dmoz2. The categorization succeeded on 136,395
pages. We then analyzed how category information relates
to the aging effect from two complementary aspects: first,
we compare Pr(Category∣k < 1) with Pr(Category∣k > 1),
and second, we examine Pr(k∣Category) for different cate-
gories. In order to have sufficient data in each category, only
the top-10 categories were retained, which included 106,169
(77.8%) pages.

Figure 4(a) compares the category distributions for Web
pages with k < 1 and k > 1. We show the category distri-
butions for each of these two types of pages. We see that
Entertainment, Recreation, Relationships, Travel and Vehi-

cles have a proportionally greater presence when k > 1 than
when k < 1 (recall the sets of pages with k > 1 and k < 1
are highly imbalanced). Thus pages exhibiting positive ag-
ing (k > 1) are more likely to fall into these categories,
which we can characterize as more entertaining, than those
showing negative aging effect. Conversely, we see that the
presence of Computers and Education is stronger in k < 1
than k > 1, indicating that people are more likely to screen
pages in these two categories before examining them in more
details. This observation leads to a hypothesis that nega-
tive aging is more common on less-entertaining pages than
on fun pages, which in turn suggests that people tend to
screen less-entertaining pages more harshly.

Figure 4(b) shows boxplots of Pr(k∣Category) for the 10
categories. The line in the middle of each box is the median

2http://www.dmoz.org/

of the data, and the lower and upper lines of the box repre-
sent the 25tℎ and 75tℎ percentiles of the data, respectively.
The categories are ordered in ascending order of the me-
dian values from left to right, which median value of 0.6506
for Education and a median value of 0.7979 for Vehicles.
Again, we observe that less-entertaining categories appear
on the left of the figure, supporting the hypothesis that less-
entertaining pages may be more harshly screened.

5. PREDICTING DWELL TIME

DISTRIBUTION
In this section, we investigate the feasibility of predicting

dwell time distribution from page-level features. A success-
ful prediction from page features will not only enable third-
parties without access to browsing logs to use dwell time
information, but will also provide us with an opportunity to
identify page features that are most related to dwell time
distributions. We describe the experimental setup and page
features in Section 5.1, report on the prediction results in
Section 5.2, and inspect the learned model in Section 5.3.

5.1 Experimental Setup
We randomly sampled 5000 pages from the set of pages

whose test KS-distance is less than 0.05 from the ex-
periments in Section 3.3. By choosing pages with a
high goodness-of-fit to the Weibull distribution (small KS-
distance), we can provide good training examples to the clas-
sifier. For each sampled page, the � and k values fitted on
the training portion of data are taken as the learning la-
bels. In order to extract page features, we crawled these
pages using a dynamic crawler, which employs an Internet
Explorer object to execute all dynamic components (e.g.,
flash, javascript, etc.) and download the final rendered page.
Pages containing the term“login”are excluded because these
login pages are usually automatically loaded through a time-
out redirection. This, together with failed crawling, gave us
a set of 4,771 pages, which are randomly partitioned into
training, validation and testing sets with a ratio of 7:1:2.

Since we want to inspect the learned model we use Mul-



Feature Description

PageSize Size (in bytes) of the rendered page
PageHeight Height of the rendered page
PageWidth Width of the rendered page
DownloadCount Number of total downloaded URLs
DownloadTime Time to download all URLs
SecDownloadCount Number of secondary URLs
SecDownloadTime Time to download secondary URLs
ParseTime Time to parse all URLs
RenderTime Time to layout and render the page

Table 2: Details of Dynamic Features

tiple Additive Regression Trees (MART) [11], which pro-
vide good interpretability and high accuracy. We used the
validation set to locate the optimal parameters, which in-
clude the maximum number (L) of leaf nodes of the base
learner tree and the shrinkage parameter (v). We varied
L ∈ {2, 3, 4, 6, 11, 21, 25}, v ∈ {1, 2−1, 2−2, ⋅ ⋅ ⋅ , 2−6}, and
recorded the number (m) of iterations that achieved the
minimum error. The tuple (L, v,m) that achieved the low-
est error on the validation set was used in the final testing
phase.

We constructed the following three sets of features, ranked
in ascending order based on their closeness to what users
would actually experience when viewing that page in a Web
browser:

∙ HtmlTag: The frequency of each of the 93 HTML
tags (obtained from http://www.quackit.com/html/

tags/) is taken as an independent feature, comprising
the first set. These features represent the underlying
elements that are determinants of page formatting and
layout but are not visible to users.

∙ Content: We leverage the “6of12 list” of the English
words, which contains 32,153 most commonly used En-
glish words that“approximates the common core of the
vocabulary of American English.”3 The top-1000 most
frequent terms that appear in the training set of pages,
together with one more dimension about the document
length, are taken as the second set of features. They
correspond to the most frequent words users would see.
The value of each feature, except the document length,
is the word frequency in each page.

∙ Dynamic: We also recorded nine measures during the
dynamic crawling of each page. The dynamic crawler
first downloads the backbone page, parses it, down-
loads any secondary URLs (e.g., javascript, flash, im-
age, etc.) if any, calculates the page layout, and finally
renders the page. The nine features based on these
measures are listed in Table 2. Because the crawler ex-
ecutes the scripts and renders the page, these features
are meant to closely estimate users’ browsing experi-
ence with the page.

We intentionally chose not to include advanced features
such as PageRank, number of inlinks and any log-based fea-
tures in the feature set, because these features are generally
not available to researchers outside search engine companies.
By restricting to page-level features, anyone can crawl the
page, construct the features, reproduce the result, and more
importantly, utilize the predictive model to asses dwell time
for any pages that can be downloaded.

3http://wordlist.sourceforge.net/

5.2 Prediction Results
In order to determine how different sets of features in-

teract, we tested seven feature configurations as listed in
Table 3. Also listed in the table are the optimal parameters
determined by the validation set. In particular, the MART
parameters for predicting � and k are denoted by �(⋅) and
k(⋅), respectively.

Log-likelihood (LL) and KS-distance are again used as the
evaluation metrics. For each test page, we evaluate the LL
and KS-distance on the test portion data with the predicted
� and k values, and compare it with the baseline model,
which returns the mean value (�̄, k̄) across all training pages,
which resembles, and is stronger than, the exponential model
(c.f. Eq. 2).

Results are presented in Table 3, in which “Predict Win”
means that the predictive model achieves a higher LL (or a
smaller KS-distance) than the baseline model. As the two
metrics give very similar results, we will focus on the result
based on LL in the following.

First, we see that the prediction model outperforms the
baseline method on all seven configurations with statisti-
cal significance. Sign tests for ℋ0 : predict ≤ baseline all
return p-values that are very close to zero for the seven con-
figurations. This result shows that low-level page features
do carry some prediction power that can be leveraged for
effective dwell time prediction.

Second, HtmlTag is as effective as Dynamic when used in-
dividually, and when combined, they bring further improve-
ment. This observation indicates that the nine Dynamic fea-
tures are as predictive as the 93 HtmlTag features, and their
prediction power is complementary. Conversely, Content in
itself outperforms Content+Dynamic, and adding HtmlTag

to Content only provides some marginal improvement.
Finally, the best performance is actually achieved by

Content+Dynamic. This is reasonable in that Dynamic repre-
sents what users would experience immediately after clicking
through to a page while Content corresponds to what con-
tent users would see once the page is loaded. Note that
adding HtmlTag does not provide much benefit. Given the
promising results from Content+Dynamic and the fact that
only the top-1,000 frequent words are used in Content, we ex-
pect further improvements from better feature engineering,
for example, by choosing words with high inverse document
frequencies rather than simply the most frequent ones, or by
including the number of graphics or tables in the page. We
will explore how to fully utilize the content together with
other kinds of features in future work. For now, let us in-
spect the learned models to understand what page features
are the most useful for dwell time prediction.

5.3 Feature Importance
By virtue of the interpretability of MART, we could es-

timate the importance of each feature and sort them in
descending order of the estimated importance. Figure 5
depicts the six most important features for predicting �
and k respectively under each configuration. The figure for
“HtmlTag+Content” is dropped due to space constraints.

Figure 5(a) shows that Html tags about scripts and links
are the most important (“<!--” is for comments in Html).
In Figure 5(b), it is unsurprising to see that the document
length is the most relevant feature, followed by words related
to pornography, games and news. This looks reasonable as
the dwell times for those topics are likely very different, since



Training & Validation Test by Log-Likelihood Test by KS-Distance

Features �(L) �(v) �(m) k(L) k(v) k(m) Predict Win Baseline Win Predict Win Baseline Win

HtmlTag 25 2−6 113 25 2−4 244 654 301 684 271

Content 25 2−5 67 25 2−3 159 702 253 727 228

Dynamic 25 2−6 124 6 2−2 186 653 302 685 270

HtmlTag+Content 25 2−6 126 21 2−3 199 706 249 724 231

HtmlTag+Dynamic 25 2−5 65 25 2−3 120 669 286 701 254

Content+Dynamic 25 2−6 123 25 2−4 195 724 231 727 228

HtmlTag+Content+Dynamic 25 2−6 133 21 2−4 198 717 238 725 230

Table 3: Prediction Efficacy with Different Feature Configurations
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Figure 5: Feature Importance in Different Feature Configurations

users may interact with pages on these topics in different
ways. Similarly, in Figure 5(c) we see that the height of the
rendered page is the top feature for �, followed by the page
size and width. Interestingly, the time to parse the page
is the most relevant feature for predicting k in Figure 5(c).
This may suggest when parsing takes a comparably long
time, the page will have a lower chance to survive users’
screening. Finally, for the remaining three figures involving
feature combinations, we see that Dynamic, although only
comprising nine features, always appears near the top. This
confirms our belief that the nine dynamic features are strong
predictors; but because of the limited number of features,
complementary support from Content is necessary for the
best performance.

6. DISCUSSION AND FUTURE WORK
This paper presents the first step in Weibull analysis of

Web page dwell time data, which can be extended in both

breadth and depth. In breadth, there are many characteris-
tic functions/quantities for Weibull analysis besides the haz-
ard function, e.g., the cumulative hazard rate function and
the mean residual life, each of which has a natural correspon-
dence to interesting aspects of Web browsing. In depth, it
is interesting to investigate how sophisticated models (e.g.,
mixture of Weibulls) would bring better goodness-of-fit and
more insights into understanding user browsing behaviors.

The predictive models as presented here demonstrate the
possibility of predicting Web page dwell time distributions.
While better feature engineering and algorithm improve-
ments would likely further improve performance, the current
approach has an inherent shortcoming: it predicts � and k
separately whereas it is their combination that determines
the goodness-of-fit of the predicted model. So instead of
predicting � and k separately, a more principled approach
could be to optimize the likelihood directly, which would
Likely provide a much better goodness-of-fit.



The Weibull analysis in this paper reveals some implica-
tions for understanding the browsing behaviors of all users.
Alternatively, the user population can be partitioned along
explicit dimensions such as time-of-day and geographical
locations or implicit dimensions such as user intent and
domain expertise estimates. For the latter, we can par-
tition the dwell time based on how users reach the page,
e.g., through a search clickthrough, an advertisement click-
through, or a link from a general Web page. In this way, we
would gain more detailed understanding of user browsing
dwell time in different scenarios.

7. CONCLUSION
This paper has drawn an analogy between abandoning a

browsed page and the failure of a system, and presented
the first Weibull analysis on Web page dwell time data.
We found that general Web surfing exhibits a significant
“negative aging” phenomenon, suggesting that users adopt
a “screen-and-glean” browsing behavior where they vet the
page prior to more detailed examination. This study brings
a new approach to analyzing implicit feedback involving
dwell time, complementing previously conducted user stud-
ies in that area. We have proposed some directions for
building more sophisticated dwell time models and presented
some implications for understanding user browsing behavior.
Future work will build on our application of Weibull analysis,
as well as the numerous successes of it in other application
domains, to improve search and advertising.
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