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ABSTRACT
Web search queries without hyperlink clicks are often re-
ferred to as abandoned queries. Understanding the reasons
for abandonment is crucial for search engines in evaluat-
ing their performance. Abandonment can be categorized as
good or bad depending on whether user information need-
s are satisfied by result page content. Previous research
has sought to understand abandonment rationales via us-
er surveys, or has developed models to predict those ra-
tionales using behavioral patterns. However, these models
ignore important contextual factors such as the relationship
between the abandoned query and prior abandonment in-
stances. We propose more advanced methods for model-
ing and predicting abandonment rationales using contextu-
al information from user search sessions by analyzing search
engine logs, and discover dependencies between abandoned
queries and user behaviors. We leverage these dependen-
cy signals to build a sequential classifier using a structured
learning framework designed to handle such signals. Our ex-
perimental results show that our approach is 22% more ac-
curate than the state-of-the-art abandonment-rationale clas-
sifier. Going beyond prediction, we leverage the prediction
results to significantly improve relevance using instances of
predicted good and bad abandonment.

Keywords
Web search abandonment; Structured learning; User behav-
ior analysis

1. INTRODUCTION
It is well-known that search engines leverage user feed-

back to improve result relevance [17]. Beyond explicitly
asking human assessors to annotate the relevance of docu-
ments with respect to queries, an alternative, more scalable
approach is to use implicit feedback from searchers to learn
document preferences. User clicks are among the most effec-
tive signals to learn ranking functions [17], with the assump-
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tion that clicked documents are often more relevant than
non-clicked ones. However, when presented with a search
engine result page (SERP), users may elect not to click a
result hyperlink. We refer to this scenario as search aban-

donment. User studies have analyzed the rationales for a-
bandonment and the associated search behaviors [19, 22, 23,
11, 28]. These studies revealed two primary abandonment
rationales: (1) bad abandonment indicating user frustration
and dissatisfaction, and (2) good abandonment suggesting
satisfaction without needing to click. Good abandonmen-
t is not uncommon in modern search engines, where direct
answers such as weather and stock quotes are returned for
queries with explicit intent. In addition, text from result
snippets can also satisfy users’ information needs directly
[15, 21].

Accurately categorizing abandoned queries into good and
bad abandonment can be critical for search engine relevance
improvement, search success estimation [13, 14], as well as
helping other decision-making tasks such as online experi-
mentation (e.g., A/B testing). In this paper, we extend pre-
vious work in the area of abandonment classification/prediction
[11], where the task is to predict the rationale for an observed
abandonment instance. In particular, we explore the use of
contextual information in search sessions to improve predic-
tion accuracy. From user study data collected through an
in-situ survey, we observed several key dependencies between
abandoned queries within search sessions. Consequently, we
elect to approach this problem using a structured learning
framework, which can capture interactions between queries,
as well as leveraging both query and session-level features
for predicting abandonment rationales.

Specifically, this paper makes the following contributions:

1. We study user behavior associated with abandonment
in a large-scale data set of logged search behavior. We ex-
amine both query-level and session-level behaviors, and the
relationship between the abandoned queries and other activ-
ities in the full search session. We discover several key char-
acteristics that distinguish bad abandonment from good a-
bandonment, including query/session length and inter-query
time. More importantly, we also discover that adjacent a-
bandoned queries tend to share the same rationale.

2. Inspired by these characteristics, we model the a-
bandonment prediction problem using a structured learn-
ing framework. We propose a set of joint-label/observation
features to help fully capture dependencies between aban-
donment instances within the same search session. The new



framework more accurately predicts abandonment rationales
than state-of-the-art classifiers [11].

3. We further leverage the prediction framework to im-
prove search engine relevance. We propose a variant of click-
through rate that consider abandonment rationale, and pro-
pose a new way to extract pair-wise click preference data for
training a new ranker. Experiments show that these using
enhancements as features can improve ranking performance.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work on Web search abandonment;
Section 3 introduces the user survey data used in this study;
Section 4 details the user behavior analysis from search en-
gine logs; Section 5 presents our structured learning frame-
work for abandonment prediction; Section 6 shows the em-
pirical study, and Section 7 concludes with future work.

2. RELATED WORK
Traditionally, search-result clicks have been treated as

positive signals from which search engines can learn to es-
timate query-document relevance [17]. In the absence of
clicks, it is difficult to explain whether SERP content was
relevant and satisfied the searcher. In such cases, researchers
often resort to editorial judging to gather feedback regarding
abandonment rationales. Li et al. [19] explored the concept
of good abandonment to distinguish between good and bad
abandonment instances. In their definition, good abandon-
ment describes a situation where a query was successfully
addressed by the SERP without requiring clicks or query re-
formulations. They analyzed such scenarios on both desktop
and mobile devices in three geographic locales, by randomly
sampling a small number of queries from search engine logs,
and applied their own judgment criteria to categorize each
query into one of the two cases. They showed that good
abandonment is more common and more likely on mobile
devices. The authors also discovered that the type of aban-
donment varies significantly by locale and modality. Thuma
et al. [24] showed that those who were accustomed to find-
ing answers quickly tended to abandon their searches faster
if they were dissatisfied. Chuklin and Serdyukov examined
various aspects of abandonment, including its relationship
with query extensions [9], and correlations between aban-
donment and editorial judgments [8]. Most relevant to our
work, Chuklin and Serdyukov also developed models to pre-
dict good abandonment using topical, linguistic, and historic
features [10]. However, they did not use session interactions
or in-situ judgments from abandoning searchers, as we do
here. This meant that they could only predict “potentially
good” abandonment.

Rather than gathering third-party assessments of aban-
donment rationales, Stamou et al. [22] employed a small
number of participants to complete an external survey for
each query they performed on a single day. In their study,
13% of queries had no clicks, categorized as either unin-

tentional such as no search results retrieved and search got
interrupted, or intentional such as spelling check or exam-
ining the retrieved snippets to understand the query. In a
follow-up study, the same authors recruited six participants,
who each installed a browser plug-in to record search activ-
ity and elicited abandonment rationales via a survey [23].
They found that 27% of queries were abandoned, and ratio-
nales were split evenly between good and bad. In another
small-scale study, Koumpouri et al. [18] studied SERP in-

teractions and found that total dwell time/scrolling time,
and copying caption text all correlated with satisfaction.

Diriye et al. [11] conducted a much larger user study of
928 searchers and analyzed their search behavior over a one-
month period. They deployed a Web browser plug-in to each
participant that displayed a survey whenever a user aban-
doned a query. The survey asked participants whether their
information need was met by the abandoned SERP. Their
definition of abandonment was similar to Li et al. [19], with
some important differences such as using a timeout of 30
minutes as one of the abandonment criteria, instead of a
24-hour period from Li and colleagues. Diriye et al. found
that 41% of abandonments were bad, 32% abandonments
were good, with the remaining 27% associated with alter-
nate reasons such as choosing a better query before con-
sidering the returned SERP. They developed a classifier to
predict abandonment rationale by generating features from
sessions, queries and documents and classify the data into
four categories: SAT, DSAT, Unintentional, and Other.

As an alternative to running a user study, abandonmen-
t rationales can be estimated from logged behavioral da-
ta. Castillo et al. [5] sought to improve the accuracy of
click-based metrics by identifying truly bad abandonments.
The authors developed a method to automatically assess
each searcher in terms of their tenacity, i.e., how likely they
were to abandon a query without trying hard enough be-
fore they really failed. They then picked a set of tenacious
users and measured the relative abandonment ratio between
queries with direct answers and queries without. For the
task of identifying bad abandonment, their method demon-
strated over 80% precision for weather and reference queries.
Chilton et al. [7] used searchers’ repeat search behavior to
understand SERP relevance sans interaction behavior such
as clicks. The authors focused on direct answers such as
flight status, stock, and weather. They showed that certain
types of good answers can compensate for missing clicks and
still satisfy users’ information needs. Following this work,
Bernstein et al. [3] combined log mining with paid crowd-
sourcing to aggregate direct answers for tail queries.

Huang et al. [15] proposed to leverage mouse cursor move-
ments as an implicit signal to improve search relevance in the
absence of user clicks. They reported a gaze-tracking study
in which they demonstrated that cursor position is closely
related to eye gaze on SERPs. To improve search quality,
the authors gathered relevance labels for 1200 query-URL
pairs and estimated the correlation between the labels and
cursor features. When a query has no clicks, hover features
show a fair correlation with human labels. The authors al-
so leveraged cursor features such as movement speed and
trail length to distinguish good and bad abandonment, and
highlighted some interesting trends (e.g., when answers were
present, users moved their mouse cursor more slowly).

Sakai et al. [21] labeled good abandonment as direc-
t information access. They also defined immediate infor-
mation access as situations where searchers can locate, for
example, the result snippet quickly from the SERP. The
authors proposed a new way of evaluating direct and im-

mediate information access using methods similar to multi-
document summarization or question-answering evaluation-
s. They considered the rank position of the snippet matches
during evaluation and showed that their measure can cor-
rectly reward systems that quickly return relevant snippets.



Our research extends previous work in a number of ways.
First, we characterize key aspects of abandonment behavior
within search sessions, especially the close relationship be-
tween adjacent abandonment instances. Second, we apply a
structured learning framework, which is more sophisticated
than the standard learning methods applied to this prob-
lem thus far. This allows us to capture key dependencies
between abandonment instances hitherto ignored in aban-
donment modeling. Importantly, our analysis is performed
using in-situ judgments from abandoning searchers, allow-
ing us to more accurately model the abandonment process.
Finally, we apply our predictions in a retrieval setting and
show that we can significantly improve search relevance by
directly modeling abandonment using our framework.

Previous work has thoroughly studied the problem of mod-
eling search satisfaction at the session or task level [13, 14,
1]. Our work is related to this line of research because we
use the entire session to provide context for every abandon-
ment instance. However, our work also differs since we do
not predict satisfaction at the session level; rather we do so
for every abandoned query.

3. DATA DESCRIPTION
This section introduces the data set used in this study. We

first describe the data collection process and then present
some basic statistics of the data.

3.1 Data Collection Process
The data used were graciously provided by Diriye and col-

leagues, the authors of a prior investigation on search aban-
donment [11]. In that study the authors developed a Web
browser plug-in that displayed a survey in a popup window
to the searcher asking for an explanation whenever SERP a-
bandonment was detected on the Bing search engine. Diriye
et al. deployed the plug-in within Microsoft Corporation,
where it was installed by employees who agreed to provide
data on the URLs they visited and provide labels explaining
the rationale for the abandonment when it occurred. The
plug-in captured participant responses to questions in the
popup as well as Web interaction data (including clicks and
cursor movements using the methodology described in [4])
and SERP contents (including the top 10 results and pres-
ence/absence of direct answers). In the remainder of this
section, we focus on two aspects of the data important to
our current study: (1) how abandonment was defined (i.e.,
when the popup survey should be shown to searchers), and
(2) what information was collected by the popup. We refer
the reader to [11] for specific details, but provide an overview
here for completeness.

Abandonment in the data that we received was defined
as a situation when the SERP was displayed and the fol-
lowing two conditions were met: (1) no hyperlink clicks on
results, advertisements, or direct answers, and (2) a trigger
event occurs. For (2), in addition to defining what counts
as abandonment, Diriye et al. also defined the point in time
that the determination of no clicks (condition 1) should be
made. The authors defined a number of abandonment trig-
gers comprising one the following actions: manual re-query,
browser tab closure, manual URL entry, click related search
or spelling suggestion, change search scope, or timeout. Af-
ter these two criteria were met, a popup survey was shown
asking that respondents indicate their abandonment ratio-
nale. The survey captured four reasons: (1) SAT: Satisfied

with the content of the SERP; (2) DSAT: Dissatisfied with
the results presented; (3) Interrupted or Unimportant: The
user was interrupted in their search task (leading to a time-
out or other action), or the abandonment was unintentional
(e.g., closed browser accidentally), or (4) Other: Any rea-
son beyond what was captured in 1-3, with the rationale
recorded directly in free text. For SAT, the popup also cap-
tured whether participant satisfaction was related to direct
answers on the SERP, the captions of the search results, or
other SERP content.

To prevent the popup from appearing too often, Diriye
et al.: (1) employed a trigger control mechanism that sup-
pressed the popup for 50% of all SERP abandonments on a
per user basis, and (2) imposed a popup limit of 10 times
per day per user. This has implications for the current study
since although we record all instances of abandonment, we
do not have the abandonment rationales for all of them.

3.2 Data Statistics
We now briefly describe the data set. The authors in [11]

gathered a total of 7,419 labeled abandonment instances1

from 928 participants. They also recorded participants‘ click
and browse activities, totaling of 739,505 URLs and 39,606
queries. After filtering irrelevant queries (e.g., “test”), the
resultant data set contained the following distribution of a-
bandonment instances: 3,104 SATs, 2,524 DSATs, 501 In-
terrupted or Unimportant, and 1077 Other. On average, a
user contributed 7.4 labels, while the most productive user
labeled 174 queries. We sorted the queries by their frequen-
cies and noted that (1) top-ranked good abandonment were
mostly stock or weather related (e.g., “nok”, “boston weath-
er”), and (2) bad abandoned queries were more diverse, but
in general longer than good abandoned queries (e.g., “per-
centage nfl games predicted winner percentage”). In the next
section, we analyze user behavior surrounding abandonment
at the query and session level.

4. USER BEHAVIOR ANALYSIS
In this section, we examine the search abandonment be-

havior and investigate the behavioral patterns associated
with abandonment in satisfaction or dissatisfaction. The
main focus of this section is to understand the differences
between good and bad abandonment in a qualitative way.
Since abandonment is directly related to user satisfaction,
we will be using good abandonment and SAT, bad aban-
donment and DSAT, interchangeably.

4.1 Query-level abandonment behavior
As we discussed in Section 3, the labels of our data are

gathered at the query level, i.e. if a query does not have any
hyperlink result click on its SERP (i.e., the query is aban-
doned), a popup may be shown and the searcher is asked
to provide the abandonment rationale. We first investigate
the differences between good and bad abandonment on the
query level, beginning with some query characteristics.

The box plots in Figure 1(a) show the differences in query
lengths (in terms) of good (SAT) abandoned queries and bad

1The authors in [11] reported using 1,799 labels collected
over a 30-day period. However, they continued to collect
data beyond the 30 days used in their original study. Our
data set is substantially larger since it included abandon-
ment instances collected during this additional time.
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Figure 1: Box plots of (a) query lengths (i.e. num-
ber of terms) and (b) time to next query of bad
abandoned queries and good abandoned queries.

(DSAT) abandoned queries. Although both types of aban-
doned queries do not have hyperlink clicks, from Figure 1(a),
we see that good abandoned queries are on average short-
er than bad abandoned queries with statistical significance
(mean query length: SAT=2.42, DSAT=3.01; t(2996.0) =
−9.65; p-value < 2.2e − 16), which is consistent with pri-
or work [1]. Since it is well-known that query length is an
effective indicator of query difficulty, Figure 1(a) suggests
that DSAT abandonments are associated with more difficult
queries than those abandoned with SAT.

We find that query length is not the only feature that dif-
fers significantly between good and bad abandonment. Fig-
ure 1(b) shows the difference of time to next query of these
two types of abandonment. The difference there is even more
pronounced. For bad abandoned queries, the median time to
next query is 0.3 minutes; and for good abandoned queries,
the median is 10.07 minutes (t(2866.4) = 19.03 with p-value
< 2.2e − 16). A short time interval (e.g., under 5 minutes)
between two consecutive queries may imply dissatisfaction
the first query and the subsequent reformulation of a simi-
lar search intent. Figure 1(b) illustrates that bad abandoned
queries are more likely to be followed by reformulation than
good abandoned queries, and examining if an abandoned
query is followed by a reformulation is a very effective way
in identifying user satisfaction (and this was also shown in
the analysis of features in the classifier developed by [11]).

4.2 Session-level Abandonment Behavior
In addition to considering abandonment at the individu-

al query level, we also seek to understand how abandoned
queries correlate with other closely related queries and the a-
bandonment behavior within search sessions. We use search
sessions identified using a 30-minute inactivity timeout [11].

From our recorded search log, we collect all sessions that
contain at least one labeled abandonment query, 2,483 such
sessions in total. Among these sessions, 446 sessions are
single-query sessions. 74.9% are abandonment queries la-
beled as SAT, and only 25.1% of them are labeled as DSAT.

Furthermore, for sessions with multiple queries, we find
DSAT abandonment queries are more likely before the last
query in a session (i.e., 84.8% of DSAT abandonments hap-
pen before the last queries of sessions versus 15.2% DSAT
abandoned queries which are the last queries of sessions).
Comparing with DSAT abandoned queries, SAT abandoned
queries are less likely to occur before the last queries of ses-
sions (60.3%) and more likely to be the last queries of ses-

DSAT SAT

17.6%

82.4% 81.9%

18.9%

Figure 2: The transition probability between aban-
donment labels within the same session.

sions (39.7%). Both facts regarding abandoned queries in
single-query sessions and multiple-query sessions are consis-
tent with Figure 1(b), i.e. DSAT abandoned queries are
more likely to be followed by reformulations and thus are
more likely to co-exist with other queries and be followed by
other queries in the same sessions.

The findings of the analysis presented thus far consistent-
ly show that bad abandoned queries are more likely to be
followed by reformulations, while good abandoned queries
are more likely to be either the single query of a session or
the last query of a session. Now we further examine the cas-
es when there multiple labeled abandoned queries appear in
the same search sessions. Specifically, we want to under-
stand the likelihood of observing a session with both DSAT
and SAT abandonment and understand the transitions be-
tween the two rationales in the same session.

The transition between labeled abandonment query pair
is defined as follows: if two labeled abandoned queries q1
and q2 are in the same session and there is no other la-
beled abandoned query between them (non-labeled query is
permitted), then the transition between this query pair is
TL1L2

, where L1 and L2 are the SAT or DSAT labels of q1
and q2. From our data, we observe 268 cases of transition
from DSAT to DSAT, 177 transitions from SAT to SAT,
57 transitions from DSAT to SAT, and 39 transitions from
SAT to DSAT. The transition probabilities are illustrated
in Figure 2. This means that good abandoned queries tend
to co-exist in a session and same is true for bad abandoned
queries. Conversely, it is much less likely for both SAT and
DSAT abandoned queries to be observed in the same session.

We notice that usually when good abandoned queries co-
occur in sessions, they are mostly related to simple facts.
For example, a query “9 litres in quarts” (labeled as SAT)
is followed by another query “9 litres in gallons”, which is
followed by a third query “how many quarts in a gallon?”
(labeled as SAT), all in the same session. In contrast, D-
SAT abandoned queries of the same sessions are more likely
to be reformulations of a single search intent. For example,
in one session we observe “texas mom death brain” (no la-
bel), “texas mom brain injury” (no label), “texas mom head
injury” (labeled as DSAT) and “texas mom football death”
(labeled as DSAT), and the queries labeled as bad abandon-
ment clearly have the same search intent.

Finally, we examine the difficulty of sessions that are aban-
doned due to satisfaction or dissatisfaction. For this purpose
we use the value of the last abandonment label as a session
label, and the number of queries in a session to estimate ses-
sion difficulty, i.e., the amount of effort that a user expends.

Figure 3 shows the difference of sessions abandoned with
SAT or DSAT in terms of the numbers of queries in these
sessions. We observe that users tend to spend less effort
in sessions that are abandoned with SAT than those aban-
doned with DSAT (means are SAT=2.26 and DSAT=2.93;
t(314.3) = −2.37; p-value = 0.018). Even if we exclude
single-query sessions (because we have already shown that
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Figure 3: Box plots of query numbers in sessions
abandoned with DSAT and SAT. A session is aban-
doned with DSAT if its last query is a DSAT aban-
doned query, and a session is abandoned with SAT
if its last query is a SAT abandoned query.

single-query sessions are more likely to have SAT abandoned
queries), SAT abandoned sessions still trend shorter than D-
SAT abandoned ones (mean number of queries SAT=3.84;
DSAT=4.76; t(172.0) = −1.84; p-value = 0.067).

The results presented in this section provide some valuable
insights about the abandonment process, in particular the
observed dependencies between an abandonment instance
and the session within which it occurs. Structured learn-
ing has been shown to be particularly useful at handling
sequences where there are such dependencies [25, 2]. For
this reason, we developed a structured learning framework
for modeling abandonment. The findings of the analysis
presented in this section helped inform the need for that
framework and the design of some of the features it uses.
Before proceeding, it is worth noting that in this analysis,
we reported results using sessions, while we also performed
similar analysis based on tasks [20]. The results from tasks
were quite similar to sessions. Due to space, we will focus
our analysis on sessions in this paper.

5. STRUCTURED LEARNING FOR ABAN-
DONMENT PREDICTION

We can model our abandonment prediction task as struc-
tured learning, where each label of the abandoned query can
be chosen from a finite set, while there exists strong depen-
dencies among the labels within each session. We leverage
the linear structural Support Vector Machines (SVM) algo-
rithm, shown to outperform other structured output predic-
tion algorithms such as conditional random fields (CRF),
for sequential labeling [25]. In particular, we extend the
structural SVM which is isomorphic to a linear chain Hid-
den Markov Model (HMM), by incorporating not only the
label transition probability but also the features that can
depend on any arbitrary pairs of labels. We first review the
structural SVM algorithm and then discuss our extension.

5.1 Preliminary
In label sequence tagging, each input x = (x1, ...,xm) is

a sequence of feature vectors xi ∈ R
n, associated with a

sequence of labels y = (y1, ..., ym), where yi ∈ {1, ..., k}
is chosen from a finite set of predefined categories, e.g.,
Y = {N,NP, V...} for natural language parsing. The goal of
linear structured SVM is to learn a discriminant function F ,
parameterized by w, where the features are the combined
representation of both inputs and outputs Ψ(x,y),

F (x,y;w) = 〈w,Ψ(x,y)〉 . (1)

To derive a maximum margin formulation, we first define
the margin of a training example xi as

γi = F (xi, yi;w)− max
y∈Y6=yi

F (xi, y;w), (2)

so that the objective becomes to select w with ||w|| ≤ 1
that maximizes mini γi. By allowing errors in the training
set, a set of slack variables ξ is used along with the dual to
optimize a soft-margin problem:

min
w,ξ

1

2
||w||2 +

C

n

n
∑

i

ξi,

s.t.∀i, ξi ≥ 0,

∀i,∀y ∈ Y 6= yi : γi ≥ 1− ξi, (3)

where γi is the margin defined in eq. (2), and C > 0 is the
parameter that balances the trade-off between two terms.

The combined feature representation Ψ(x,y) for sequence
tagging contains both the emission features and the his-
togram of label transition. The emission feature is defined
as, for each xi and yi

Ψemission(xi, yi) = (0, ...0, xi, 0, ...0)
′ (4)

where the feature vector xi is placed in the j’s position for
yi = j. The combined feature then becomes

Ψ(x,y) =
m
∑

i=1















Ψemission(xi, yi)
[yi = 1][yi−1 = 1]
[yi = 1][yi−1 = 2]

.

.
[yi = k][yi−1 = k]















, (5)

where [P ] is the indicator function for the predicate P . The
biggest challenge in optimizing this maximum margin frame-
work is the large number of linear constraints, which is
n|Y| − n for n training examples with the label space |Y|.
Consequently, standard quadratic programming solvers are
unable to handle such a large search space. Efficient learning
algorithms have been developed to address this issue, such
as cutting-plane methods [25] and dual coordinate descent
(DCD) methods [26]. So far, DCD is the fastest implemen-
tation so we decided to use this for our problem, which has
more advanced features and thus even larger feature space.

5.2 Extending Structured SVM
A limitation of the above framework is the simplified fea-

ture representation for label dependencies. As can be seen
from eq. (5), the dependency feature is only available in the
format of label transition histograms, e.g., [yi = j][yi−1 = k].
This may not be an issue when the label space |Y| = k is
large and the length of the training sequence |x| = m is suf-
ficient to capture the strong dependencies between different
labels. Nevertheless, in our scenario of abandonment ratio-
nale prediction, the label space is quite small: either 0 or 1,
and the length of training sequence is often not as adequate
as in other applications such as NLP tagging.

Therefore, we propose to extend the previous structured
SVM framework by considering more label dependency fea-
tures, which include the feature vector x along with two ad-
jacent labels yi and yi−1. These so-called joint-label/observation
features have a general form of

fs(x, yi, yi−1) = [yi = j][yi−1 = k]ψs(x, i− 1, i)

j, k ∈ Y, ψs(·)→ R, s ∈ S (6)



where ψs(·) maps a certain sequence between i− 1 and i of
x into a value, and S denotes the set of all such functions.

We use a specific example to illustrate eq. (6) in the a-
bandonment scenario: let us denote ψs(x, i − 1, i) the total
query dwell time between i − 1 and i, while [yi = 0] and
[yi−1 = 0] means whether both queries are bad abandon-
ments. In this setting, we implicitly assume that if a us-
er abandoned a query with dissatisfaction, there is a high
chance that the user would abandon another one in a short
period of time, which is also a bad abandonment. Another
example of such a function could be the query similarities of
all queries between i− 1 and i.

We want to clarify the notation in particular the subscript-
s i − 1 and i here. Unlike the traditional sequence labeling
tasks where yi and yi−1 are always assumed to be adjacen-
t, in our scenario, there could exist several queries between
yi and yi−1. Recall that labels are assigned to abandoned
queries only. For those queries with clicks in a user search
session, no labels are assigned to them. An example is illus-
trated in Figure 4, which shows five queries in a user session
with two abandoned queries xj and xl, where the two adja-
cent training labels yj and yl are separated by three queries.
The joint-label/observation function of these two labels are
therefore defined between the three feature vectors xj, xk

and xl.
Table 1 lists all these features. Since many feature values

are not nominal, e.g., dwell time of queries in seconds, it is
often suggested to discretize them into several nominal bins,
each of which takes value from either 0 or 1. Thus, for each
of these features, we choose to separate them into 4 to 5 bins
according to the distribution of their histograms.

With the enhanced features, we can re-write the combined
feature representation as

Ψ(x,y) =
m
∑

i=1
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Therefore, the inner product between two sequences can
be calculated as

〈

Ψ(x,y),Ψ(x′,y′)
〉

=
∑

i,ii

[yi = y′ii][yi−1 = y′ii−1]

+
∑

i,ii

[yi = y′ii]
〈

Ψemission(xi, yi),Ψemission(x
′
ii, y

′
ii)

〉

+
∑

i,ii,s

[yi = y′ii]
〈

fs(xi, yi, yi−1)), fs(x
′
ii, yii, yii−1)

〉

(8)

At training stage, we need to solve the inference prob-
lem to predict the optimal structure ŷ for an input x with
ground-truth label y:

ŷ← arg max
ŷ∈Y(x)

(

∆(y, ŷ) +wT (Ψ(x,y)−Ψ(x, ŷ))
)

(9)

where ∆(y, ŷ) defines the loss of the two sequences, e.g.,
zero-one loss for classification or inverse loss for natural lan-
guage parsing [25], and Ψ(x,y) is the enhanced feature rep-
resentation in eq. (7). Given the large number of linear

xi xj xk

Yj Yl

X

Y

f(Xi, Yi)

f(Yi, Yj)

xl xm

Figure 4: Illustration of our extended structured
model. In traditional models, each instance x cor-
responds to a label y, while in our model, only a-
bandoned instances have labels. Traditional models
often have two types of features, f(xi, yi) the emis-
sion features and f(yi, yj) the label transition fea-
tures. Our model extends it by also considering
joint-label/observation features f(x, yi, yj).

constraints, we employee a Viterbi decoding method to effi-
ciently find the optimal sequence. To solve the actual train-
ing problem as shown in eq. (3), we use a dual coordinate
descent (DCD) algorithm which considers the square hinge
loss function. For details, readers are referred to [26, 6].

5.3 Feature Set
We now discuss the feature set used for prediction. In the

previous section, we presented the structural features used
for SVM in Table 1, which correspond to those f(x, yi, yj)
features in Figure 4. We have also shown the transition
features f(yi, yj) as the histogram count in eq. (7). This
leaves only the set of emission features, or f(x, yi), to be de-
fined. In our study, we divide those features into three main
categories, (i) query, (ii) SERP, and (iii) session features.

Query Features: We extract features for each query and
its interaction with the immediate preceding and succeed-
ing queries in the session. These features include the query
length in terms of characters and tokens, whether the query
is the first/last/only query in the session, whether the query
is a URL-type query, and whether the current query is a
reformulation of the previous query, or the next query is
a reformulation of the current one. To determine this, we
calculate the Levenshtein distance between two queries af-
ter removing stop words. The similarity of two queries are
calculated by dividing the Levenshtein distance by the max-
imum query length. We use a threshold of 0.5 to determine
whether a reformulation exists.

SERP Features: We also include the SERP features
for the current query and for the immediately preceding
and succeeding queries. Note that the current target query
has no clicks, however its neighborhood queries may contain
clicks, as shown in Figure 4. The SERP features reflec-
t these situations by considering the previous/next query’s
click count and click position. We also consider the presence
of answers on the SERP by adding two answer features: the
total number of answers shown and whether the SERP con-
tains one or more good answers in the top region. We man-
ually define a white list of good answers which have high
probability of satisfying a user’s intent without the need for
clicks. These good answers include weather, dictionary def-
initions, and currency conversion.

Session Features: Following the definition used in [11],
a search session starts with a query, and terminates with a
30-minute inactivity timeout. Session features contain the
overall summary of a search session, including its entry point



fs(x, yi, yj) Explanation Discretization Bins
NQ = |i− j| Total number of queries between i and j 0, (0, 2], (2, 4], > 4

DT =
∑j

k=i
DT (xk) Total dwell time of all queries between i and j ≤ 10, (10, 30], (30, 60], > 60

Ans =
∑j

k=i
Ans(xk) Total answers shown on SERP between i and j 0, (0, 3], (3, 5], (5, 10], > 10

Click =
∑j

k=i
Click(xk) Total clicked URLs between i and j 0, (0, 3], (3, 5], (5, 10], > 10

SameQ = [Q(xi) = Q(xj)] Whether the two abandoned queries are identical /
ReformQ = [reform(Q(xi), Q(xj))] Whether one query is a reformulation of the other /

Max-Sim = maxk,t∈[i,j] Sim(Q(xk), Q(xt)) Max query similarity of any query pair in [i, j] 0, (0, 0.25], (0.25, 0.5], (0.5, 1]
Min-Sim = mink,t∈[i,j] Sim(Q(xk), Q(xt)) Min query similarity of any query pair in [i, j] 0, (0, 0.25], (0.25, 0.5], (0.5, 1]

Table 1: List of joint-label/observation features used in our framework. Numeric features are discretized into
several nominal bins for ease of learning and inference.

(e.g., search homepage or browser search bar), browser type
(e.g., Firefox, Chrome), the total session length in terms
of queries or total query dwell time , the total number of
abandoned queries, and so on. Table 2 lists all features.

Note that in the work of Diriye et al. [11], the authors
included many historical features such as overall query fre-
quency, which relies on the access of a long-period of search
logs and thus not immediately available from the current
user session. In practice, calculating and maintaining these
features are quite difficult and time-consuming, and thus
not desirable as features that are easy to extract. Besides,
considering potential applications of this research, e.g., on-
line abandonment prediction for unseen (new) queries, or as
a metric for online A/B experimentation, we have exclud-
ed these features from our framework. Later we show that
even without these features, our framework still significantly
outperforms the previous model [11].

6. EMPIRICAL ANALYSIS
This section discusses experimental results on both aban-

donment prediction and its application to improve the search
quality of ranking functions.

6.1 Data Preparation and Evaluation Metrics
From the total 7,419 instances, we selected 5,628 instances

that belong to either SAT (good abandonment) or DSAT
(bad abandonment) for our prediction task, excluding the
other classes where the rationale was unrelated. This left us
with 3,104 SAT and 2,524 DSAT cases, which we consider a
fairly even distribution (meaning that did not to artificially
rebalance the dataset). For learning, we treat SAT as pos-
itive class (+1) and DSAT as negative class (-1). For each
instance, we extract the 28 emission and session features
shown in Table 2, as well as 12 structured features (some of
which are shown in Table 1). This leads to 28 features for
the baseline binary classifier which we shall discuss shortly,
and 216 features for our structured learning framework.

To evaluate the performance of predictions, we measure
both the precision and recall for both classes. We report
the F1 score that considers both metrics which is defined as
F1 = 2 · precision·recall

precision+recall
. We also measure the accuracy of

the prediction, defined as Accuracy = 1− misclassified

all
.

6.2 Methods Compared
We compare with the boosted decision tree classifier (B-

DT) [12] which has shown superior prediction performance
for binary classification in many tasks. In [11], the authors

reported that BDT performed best of all classifiers they
tried. So we consider BDT a strong baseline for this study.
BDT has three parameters to tune: the number of leaf node
L, the shrinkage parameter η and the number of iterations
M . In our experiments, we tried both L = 2 and L = 10.
The other two parameters are selected via cross-validation.
In particular, we set the maximum value of M = 1000 and
perform early termination if we observe that the accuracy
of the validation set no longer improves.

To evaluate whether the proposed joint-label/observation
features in Table 1 work, we also compare with a structured
SVM framework that has only the emission features and the
histogram of state transitions, i.e., Ψ(x,y) in eq. (5). We
name this baseline SSVM-Basic and our method with the
entire feature space as SSVM-Advance.

6.3 Results and Explanations
In the learning procedure, we randomly split the 5,628 in-

stances into training and test data with a 1:1 ratio, grouped
by user sessions. We repeat the experiments 10 times for
each algorithm and report the average performance. For
SSVM, we further split the training data into validation and
training and used two-fold cross validation to determine the
balancing parameter C. It emerged that the optimal val-
ue of C for both models are fairly small — C = 0.15 for
SSVM-Basic and C = 0.2 for SSVM-Advance.

Table 3 lists summarizes the prediction performance. Both
SSVM framework significantly outperformed the baseline B-
DT method. In particular, our best SSVM-Advance mod-
el improved accuracy by over 22% relative to the strong
baseline BDT method. Even without the advanced joint-
label/observation features, we see that SSVM-Basic still out-
performed BDT significantly with the addition of the label
transition features. It confirmed that the structural depen-
dencies between abandoned labels within sessions are truly
helpful for prediction. Most noticeably, we see that the per-
formance of the DSAT class benefits more from the struc-
tured learning framework. In the baseline BDT method,
the classifier did much worse on DSAT than SAT. With
the introduction of structured features, both SSVM mod-
els had better predictive power for DSAT than SAT class.
Paired t-test results indicated that both SSVM’s perfor-
mance improvements were statistically significant with p-
value < 0.0001. Note that improving the accuracy on DSAT
queries has a profound impact on search engine relevance. A
recent study2 shows that the majority of user search tasks

2http://www.experian.com/hitwise/press-release-
experianhitwise-reports-google-share-of-searche.html



Query Features SERP Features Session Features
Query Length (Char/Token) [All] Answer Count [All] SessionEntryPoint

Query Dwell Time [All] HasGoodAnswers [All] UserBrowserType
Is First/Last/Only/Url Query [All] QueryClickCnt [Prev/Next] Session Length (Query/Time)
IsNonAlphaNumericQuery [All] QueryClickPosition [Prev/Next] Total Abandoned Query
IsReformulation [Prev/Next]

Table 2: List of all emission features and session-level features. The emission features can be further divided
into query features and SERP features. Note here [All] indicates that the feature is available for the current,
previous and next query, while [Prev/Next] means the feature can only be calculated from the immediate
preceding and succeeding queries.

are satisfied (over 80%). This class imbalance also affects
previous studies [1, 14], which report high accuracy in SAT
prediction but poor performance in DSAT prediction. We
believe that our research is a big step forward in addressing
this important issue.

Note that our baseline BDT performed slightly worse than
the reported number of Section 6.7 in [11] in terms of F0.5

score (0.7520 vs. 0.7847). One reason could be that their
data set was much smaller (1,799 instances) than ours (5,628
instances) and may have had a different distribution. How-
ever, our SSVM-Basic still outperformed their number no-
ticeably in F0.5 score (0.8237 vs. 0.7847), so did the best
SSVM-Advance model (F0.5 = 0.9045).

Recall that at the end of Section 4 we mentioned that a
task-based study was also conducted. In our experiments,
we also trained a BDT using the task definition adopted by
Liao et al. [20]. The accuracy of the task-segmented baseline
was 0.7185, slightly worse than session baseline. We there-
fore believe that a more sophisticated segmentation method
does not necessarily improve the prediction performance,
and continue our experiments with only session-based seg-
mentation.

In comparing between two SSVM models, we still observe
a substantial performance improvement. Since it is not quite
straightforward to aggregate the feature weights for individ-
ual features in the structured learning framework, we choose
two methods to compare the structured features. In the first
method, we add individual features in Table 1 to the SSVM-
Basic model and compare the model performance. In the
second method, we train the SSVM-Advance model with all
structured features except for the one to evaluate.

Table 4 lists the model accuracy of individual features.
We observe that in both models, the SameQ feature is most
important, followed by the ReformQ feature. At the same
time, NQ and DT perform quite similarly, where both fea-
tures measure the gap between two abandonments. Overall,
the Min-Sim feature seems to be least effective, only adding
marginal improvement to both models.

Since the structured features need at least two labels in
each training sequence to take effect, we break down the
predictive performance by the length of training sequences.
Table 5 lists the accuracy results, where for example 2(867)
means a total of 867 training sequences with two abandon-
ment labels. Note that the actual user search sessions can be
arbitrarily long including many clicked queries. We observe
that when the length of the training sequences increases,
both SSVM-Basic and SSVM-Advance improve their per-
formance gradually. Meanwhile, BDT exhibited similar per-
formance regardless of session length. This result again con-

Accuracy SAT F1-score DSAT F1-score
BDT [12] 0.7195 0.7545 0.6729

SSVM-Basic 0.8238 0.8174 0.8396
SSVM-Advance 0.8774 0.8639 0.8885

Table 3: Binary Prediction performance of accura-
cy and F1 score for SAT and SAT classes. Both
structured SVM models substantially outperformed
a strong baseline. Our models improve a lot on the
DSAT class, see text for details.

SSVM-Basic SSVM-Advance
P lus Without

NQ 0.8378 0.8672
DT 0.8321 0.8671
Ans 0.8316 0.8696
Click 0.832 0.8689
SameQ 0.8476 0.8548
ReformQ 0.8392 0.8613
Max-Sim 0.8311 0.8698
Min-Sim 0.8275 0.8705

Table 4: The performance of individual structural
features in terms of Accuracy. The second colum-
n means the model plus that feature, higher means
better. The third column means the model with-
out that feature, so lower means the feature is more
important. Top three features are highlighted.

firms the importance of structured features in abandonment
prediction given the high label dependency between queries.

To better understand feature performance among differ-
ent label transition scenarios, in Figure 5, we plot the fea-
ture weights of several structural features. Recall that each
of these features is divided into four features during fea-
ture construction according to the label transitions [yi =
(0, 1)][yi−1 = (0, 1)]. In (a), the label transition weights of y
indicate that it is indeed that transition to the same class is
much more likely than to the opposite class, which confirms
our discovery of label dependency in the user behavior anal-
ysis presented earlier. Similarly, (b), (c) and (d) lists feature
weights of the three most important structural features. It
can be seen, for example, from the SameQ feature, similar
queries are more likely to share the same abandonment label.
Interestingly, from the DT feature, we see that all weight-
s are positive except for the self-transition between DT−.



BDT SSVM-Basic SSVM-Advance
2(867) 0.7085 0.7903 0.8579
3(238) 0.7096 0.8195 0.8692
4(88) 0.7155 0.8309 0.8942
5(30) 0.7146 0.8303 0.8867
>5(34) 0.7157 0.8312 0.8893

Table 5: Accuracy result broken down by the length
of training sequences. Numbers in parentheses are
the total number of sessions with that length.
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Figure 5: Feature weights of four transition features.
Transition to the same class often has higher weight.

This indicates that when the query dwell time increases, it
is more likely that users are satisfied by the current SERP
and thus causes the current query to be good abandonmen-
t. It is also less likely (−0.13) that a bad abandonment
will occur again after the user has expended more effort in
examining the new SERP of the next query.

6.4 Application on Ranking Improvement
We further seek to use the prediction results to improve

search quality. Specifically, we contribute a new Clickthrough-
Rate (CTR) feature from good abandoned queries. We also
propose to use bad abandonment as a signal to extract pref-
erence data to enhance the training data used by search
engine ranking algorithms.

New CTR Feature: by definition, CTR is calculated
by, for each query-document pair, the total number of clicks
divided by the total number of impressions, i.e., how many
times the document was shown for that particular query. In
the case of abandonment, users perform no click on any doc-
ument, therefore the impression number increases but click
number remains the same. However, for good abandoned
queries, this calculation is inaccurate since the user’s infor-
mation need is satisfied. We therefore propose to subtract
the estimated number of good abandoned query impressions
from all impression to get a more accurate CTR, i.e.,

New-CTR(Q,U) =
Clicks(Q,U)

Impressions(Q,U)−GoodAbandonment(Q)

New Click Preference Data: search engines often learn
the ranking functions from user preference data. It has been
shown that pair-wise learning frameworks (e.g., RankSVM
[16], LambdaMART [27]) consistently outperform point-wise
learning methods (e.g., ordinal regression). Pair-wise train-
ing data is often constructed by comparing the relevance of
two documents returned for the same query. The learning
algorithms then take these preferences and try to learn an

optimal ranking function by minimizing a cost function, e.g.,
pair-wise loss [16, 27].

In the case of bad abandonment, a user was dissatisfied
with all results. If the user kept reformulating the query
and finally clicked one of the results, we can infer an implicit
preference from this scenario. To be concrete, given a no-
click query Qa which we labeled as bad abandonment, we
examine the subsequent queries in the same session. If a

query Qb has a click U
(c)
b and we think Qb is a reformulation

of Qa (using the same criteria as described in Section 5.3, we
construct a set of pair-wise preference data from the session

as S = {(U
(c)
b , U

(i)
a )}, where U

(i)
a is a no-click document for

query Qa. Each pair in S indicates a preference relationship

of U
(c)
b ≻ U

(i)
a .

6.4.1 Generating Data for Ranking
We study the impact of the new features from a log anal-

ysis perspective using the logs of the Microsoft Bing search
engine gathered from December 2012 and April 2013 from
the U.S. search market. To form a baseline training file, we
first randomly sampled 12,000 queries from the logs during
that time. We then extracted 10 to 20 documents for each
query and asked human assessors to annotate their query
relevance on the following five-point scale: Perfect (5), Ex-
cellent (4), Good (3), Fair (2), and Bad (1). Each query-
document pair was judged by multiple assessors so its final
label was determined by a majority vote. We further ex-
tracted 400 ranking features for each pair, including some
frequently used features such as BM25 and TF.IDF. Giv-
en this feature set and the relevance judgments, we use the
LambdaMART [27] algorithm to train a ranker.

To generate the new CTR feature, we ran our predictor on
the logs of the same time period. Among the 12,000 queries,
3,765 queries had one or more good abandonment labels. On
the other hand, we also discovered that 265,872 sessions had
one or more bad abandonment followed by a reformulation.
To prevent generating too much training data, we limit the
number of training pairs in each session to be three, i.e., top-
3 returned documents for the bad abandonment and the first
clicked document by the reformulation. We further require a
pair to appear at least five times in the logs to be considered
in training. We generated 35,742 new training instances.

6.4.2 Ranking Performance
For training and testing, we randomly split the original

12,000 queries into five parts for five-fold cross validation.
We use 4/5 for training and 1/5 for testing. The number of
leaf nodes is set to be 10 for LambdaMART. The learning
rate is set to be 0.1. The maximum training iterations is
limited to be 100. We repeat the experiment five times and
report on the average performance.

Table 6 lists the performance in terms of average NDCG
at the third rank position (NDCG@3) scores and standard
deviation. We see that the new CTR feature indeed captures
the document relevance more accurately by improving the
NDCG score for 0.4% over the old CTR feature and 1.3%
over the baseline. On the other hand, we also tested the
performance of adding different portion of the new training
data to the original training data. The results clearly in-
dicate that new training data is helpful. In particular, the
performance improvement becomes statistically significant
after adding 80% or more new training data. The best per-
formance is achieved by combining the new CTR feature and



Test Set NDCG@3
Baseline 0.6073± 0.045

Baseline + Old CTR 0.6092 ± 0.052
Baseline + New CTR 0.6135± 0.059

Baseline + New Data (20%) 0.6143± 0.028
Baseline + New Data (40%) 0.6167± 0.003
Baseline + New Data (60%) 0.6179± 0.064
Baseline + New Data (80%) 0.6198± 0.076
Baseline + New Data (100%) 0.6201± 0.088

Baseline + New (CTR + Data) (100%) 0.6274± 0.065

Table 6: Ranking performance of the new CTR fea-
ture and new training instances from the outcome
of abandonment prediction. Bolded results are sta-
tistical significant.

the new training data, which achieves 0.6274 NDCG score –
an improvement of over 2% in absolute percentage.

7. CONCLUSIONS AND FUTURE WORK
Web search abandonment occurs frequently but is not ful-

ly understood. Through analysis of logs from a large-scale
user study, we discovered several characteristics of abandon-
ment, namely: (1) bad abandoned queries are longer than
good abandoned queries, (2) query dwell time of bad aban-
donment is less than good abandonment, (3) session length
given good abandonment is shorter than bad abandonment,
and most importantly (4) bad abandonment is more likely
to lead to another bad abandonment in the same session
(same applies to good abandonment). Based on these char-
acteristics, we proposed a structured learning framework to
model abandonment using emission features and structured
features. Experimental results demonstrated a significan-
t improvement of our framework over the state-of-the-art
boosted decision tree method presented in earlier work [11].

We leveraged our model to improve search relevance by
devising more reliable CTRs and improving the quality of
training data. We found strong relevance gains from apply-
ing our model to enhance result ranking.

Future work will extend our research to predict abandon-
ment rationales for individual users by considering factors
such as user expertise and tenacity. We will also improve
our prediction performance, and pursue the application of
our model for tasks such as metric development and real-
time searcher assistance.
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