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ABSTRACT
Much work has attempted to model a user’s click-through
behavior by mining the click logs. The task is not trivial
due to the well-known position bias problem. Some break-
throughs have been made: two newly proposed click models,
DBN and CCM, addressed this problem and improved doc-
ument relevance estimation. However, to further improve
the estimation, we need a model that can capture more so-
phisticated user behaviors. In particular, after clicking a
search result, a user’s behavior (such as the dwell time on
the clicked document, and whether there are further clicks
on the clicked document) can be highly indicative of the
relevance of the document. Unfortunately, such measures
have not been incorporated in previous click models. In
this paper, we introduce a novel click model, called the
post-click click model (PCC), which provides an unbiased
estimation of document relevance through leveraging both
click behaviors on the search page and post-click behaviors
beyond the search page. The PCC model is based on the
Bayesian approach, and because of its incremental nature,
it is highly scalable to large scale and constantly growing
log data. Extensive experimental results illustrate that the
proposed method significantly outperforms the state of the
art methods merely relying on click logs.

1. INTRODUCTION
It is one of the most important as well as challenging tasks

to develop an ideal ranking function for commercial search
engine. Most of existing works depend on manually labeled
data, where professional editors provide the relevance rat-
ings between a query and its related documents. According
to manually labeled data, machine learning algorithms [5,
10, 13] are used to automatically optimize the ranking func-
tion and maximize user satisfaction. However, the labeled
data is very expensive to be generated and is difficult to keep
up with the trend over time. For example, given a query“SI-
GIR”, a search engine is expected to return the most up-to-
date site such as the SIGIR 2010 website to users, instead
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of SIGIR 2009. Thus, it is very difficult to maintain the
relevance labels up to date.

Compared with manually labeled data, terabytes of im-
plicit user clicks are recorded by commercial search engines
every day, which implies that a large scale of click-through
data can be collected at a very low cost and it usually reveals
the latest tendency of the Internet users. User preference on
search results is encoded into user clicks, as such, the click
logs provide a highly complementary information to manu-
ally labeled data. Many studies have attempted to discover
the underlying user preferences from the click-through logs
and then learn a ranking function, or regard the click logs
as a complementary data source to overcome shortcomings
in manually labeled data. Following the pioneered works by
Joachims et al.[14] that automatically generated the prefer-
ences from the click logs to train a ranking function, many
interesting works have been proposed to estimate the docu-
ment relevance from user clicks, including [1, 2, 3, 6, 18].

Previous works have noticed that the main difficulty in
estimating the relevance from click data comes from the
so-called position bias: a document appearing in a higher
position is more likely to attract user clicks even though it
is irrelevant. Recently, Richardson et al.[19] suggested to
reward the document relevance at a lower position by mul-
tiplying a factor and this idea was later formalized as the
examination hypothsis [8] and the position model [7], which
indicates the user will click a document only after examining
it. Craswell et al. [8] extended the examination hypothesis
and proposed the cascade model by assuming that the user
will scan search results from top to bottom. Furthermore,
Dupret and Piwowarski[9] included the positional distance
into the proposed UBM model. Guo et al.[11] proposed the
CCM model and Chappell and Zhang[7] proposed the DBN
model that generalizes the cascade model by introducing
that the conditional probability of examining the current
document is related to the relevance of the document at the
previous position.

Despite their successes in solving the position-bias prob-
lem, previous works mainly investigate user behaviors on the
search page, without considering user subsequent behaviors
after a click. Nevertheless, as pointed in the DBN model, a
click only represents user is attracted by the search snippet,
rather than indicates the clicked document is relevant or
user is satisfied with the document. Although there is a cor-
relation between clicks and document relevance, they often
differ with each other in many cases. For example, given two
documents with similar clicks, if users often dwell longer to
read the first document while close the second document im-
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Figure 1: The average dwell time on three levels of
relevance rating.

mediately, it is likely that users feel satisfied with the first
document while disappointed with the second one. Obvi-
ously, the relevance difference between these two documents
can be discovered from user post-click behaviors, such as the
dwell time on the clicked document. As shown in Figure 1,
we calculate the average dwell time on three relevance levels
in a manually labeled data set1 It is clear that there is a
strong correlation between the dwell time and the relevance
rating, which validates the importance of incorporating user
post-click behaviors to build a better click model.

User subsequent behaviors after a click have been studied
for evaluating and improving the quality of the results re-
turned by search engine. Sculley et al.[20] attempted to pre-
dict the bounce rates and Attenberg et al.[4] attempted to
predict expected on-site actions in sponsored search. Agichtein
et al.[2] optimized the ranking function through including
some features extracted from post-click behaviors. Post-
click behaviors can act as an effective measure of user sat-
isfaction, thus, are very useful to improve the ranking func-
tion. However, there are few works investigate how to in-
tegrate both click behaviors and post-click behaviors into a
click model.

In this paper, we propose a novel click model, called post-
clicked click model (PCC), to provide an unbiased estima-
tion of the relevance from both clicks and post-click behav-
iors. In order to overcome the position bias in clicks, the
PCC model follows the assumptions in the DBN model [7]
that distinguishes the concepts of the perceived relevance
and the actual relevance. It assumes that the probability
that user clicks on a document after examination is deter-
mined by the perceived relevance, while the probability that
user examines the next document after a click is determined
by the actual relevance of the previous document. Different
from DBN, the post-click behaviors are used to estimate the
user satisfaction in the PCC model. Some measures such as
the user dwell time on the clicked page, whether user has the
next click, etc are extracted from the post-click behaviors,
and used as features that are shared across queries in the
PCC model.

The PCC model is based on the Bayesian framework that
is both scalable and incremental to handle the computa-
tional challenges in the large scale and constantly growing
log data. The parameters for the posterior distribution can
be updated in a closed form equation. We conduct exten-
sive experimental studies on the data set with 54931 distinct

1The data set information is introduced in Section 4.

queries and 140 million click sessions. Manually labeled data
is used as the ground truth to evaluate the PCC model. The
experimental results demonstrate that the PCC model sig-
nificantly outperform two state of the art methods such as
the DBN and CCM models that do not take post-click be-
haviors into account. Because the PCC model can provide
much more number of accurate preference data complemen-
tary to manually labeled data, the ranking function trained
on the relevance labels from both the PCC model and man-
ually labeled data can produce better NDCG value than
merely trained on manually labeled data.

2. PRELIMINARIES
We firstly introduce some background before delving into

the algorithm details. When a user submits a query to
the search engine, the search engine returns the user some
ranked documents as search results. The user then browses
the returned documents and clicks some of them. One query
session corresponds to all the behaviors the user does under
one input query, and we assume there are M displayed doc-
uments in each query session.

2.1 Examination and Cascade Hypotheses
The studies on click model attempted to solve the click

bias problem in user implicit feedback. There are two im-
portant hypotheses, i.e., the examination hypothesis and the
cascade hypothesis, that are widely used in various click
model implementations. These two hypotheses are quite
natural to simulate user browsing habits, and our proposed
PCC model also depends on them.

We use two binary random variables Ei and Ci to repre-
sent the examination and click events of the document at
the position i (i = 1, ...,M). Ei = 1 indicates the document
at the position i is examined by the user, while Ei = 0 in-
dicates this document is not examined. Ci = 1 indicates
the user clicks the document at the position i, while Ci = 0
indicates the user does not click this document.

The examination hypothesis assumes that when a dis-
played document is clicked if and only if this document is
both examined and perceived relevant, which can be sum-
marized as follows:

P (Ci = 1 | Ei = 0) = 0 (1)

P (Ci = 1 | Ei = 1) = aui , (2)

where ui is the document at the position i, and the parame-
ter aui measures the relevance2 of the document ui indicat-
ing the conditional probability of click after examination.

The cascade hypothesis assumes that the user scans linear
to the search results, thus, a document is examined only if
all the above documents are examined. The first document
is always examined.

P (Ei+1 = 1 | Ei = 0) = 0 (3)

P (E1 = 1) = 1. (4)

2.2 DBN Click Model
Since the proposed model follows similar assumptions in

the DBN model, we briefly introduce the formulation in
DBN. A click does not necessarily indicates that the user
is satisfied with this document. Thus, the DBN model [7]

2aui is the perceived relevance in the DBN model



distinguish the document relevance as the perceived rele-
vance and the real relevance, where whether the user clicks a
document depends on its perceived relevance while whether
the user is satisfied with this document and examines the
next document depends on the real relevance. Thus, besides
the examination and the cascade hypotheses, the DBN click
model is characterized as:

P (Si = 1|Ci = 1) = sui (5)

Ci = 0 ⇒ Si = 0 (6)

Si = 1 ⇒ Ei+1 = 0 (7)

P (Ei+1 = 1|Ei = 1, Si = 0) = γ, (8)

where Si is a binary variable indicating whether the user
is satisfied with the document ui at the position i, and the
parameter sui measures the real relevance of this document.
The DBN model uses the EM algorithm to find the maxi-
mum likelihood estimation of the parameters.

2.3 Post-Click Behaviors
Behavior logs in this study are the anonymized logs pro-

vided by users who opted in through a widely-distributed
browse toolbar. These log entities include a unique anony-
mous identifier for the user, the issued query to search en-
gine, the visited document, and a timestamp for each page
view or search query.

We process behavior logs, and extract all the post-click
behaviors after there is a document click on the search page,
Thus, for each pair of query and document, several behavior
sessions from different users are extracted and the length of
each session is fixed no longer than 20 minutes. We then
define some measures extracted from the post-click sessions:

• Dwell time on the next clicked page;

• Dwell time on the clicked pages in the same domain;

• Interval time that user inputs another query ;

• Whether user has the next click on the clicked docu-
ment ;

• Whether user switches to another search engine.

For each query and document pair, we calcuate the aver-
age value of the above measures over related sessions and
the averaged values are used as features into the proposed
algorithm.

3. POST-CLICKED CLICK MODEL
We now introduce a novel model, post-clicked click model

(PCC), that leverages both click-through behaviors on the
search page and the post-click behaviors after the click.

3.1 Model
The PCC model is a generative Bayesian model and is

explained in Figure 2, where the variables inside the box are
defined at the session level, and the variables outside are
defined at the query level. The variables Ei, Ci, and Si are
defined the same as in the Section 2. Here we assume there
are n features extracted from user post-click behaviors and
fi is the feature value of the ith feature.

au ∼ N(ϕu, β
2
u), su ∼ N(θu, ρ

2
u), fi ∼ N(mi, γ

2
i ). (9)
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Figure 2: The PCC model. The variables Ci and fi
(∀i) are the observed variables given a query session.

Thus, ϕu and β2
u are the parameters of the perceive rele-

vance variable au, θu and ρ2u are the parameters of the real
relevance variable su, and mi and γ2

i are the parameters of
the ith feature variable fi.

The PCC model is characterized by the following equa-
tions:

E1 = 1 (10)

Ai = 1, Ei = 1⇔ Ci = 1 (11)

P (Ai = 1 | Ei = 1) = P (au + ε > 0) (12)

P (Si = 1 | Ci = 1) = P (su +
∑n
i=1 yu,ifi + ε > 0) (13)

Ci = 0⇒ Si = 0 (14)

Si = 1⇒ Ei+1 = 0 (15)

P (Ei+1 = 1 | Ei = 1, Si = 0) = λ (16)

Ei = 0⇒ Ei+1 = 0, (17)

where ε ∼ N(0, β2) is an error parameter and yu,i is a binary
value indicating whether we can extract the value of the
ith feature on the document u. It is possible that, for a
document u, no user has clicked this document, thus, there
is no information extracted from post-click behaviors on the
ith feature. Thus, yu,i = 0 in this case. Otherwise, yu,i = 1.

The PCC model simulates user interactions with the search
engine results. When a user examines the ith document, he
will read the title and the snippet of this document, and
whether the document attracts him depends on the per-
ceived relevance of this document aui . If the user is not
attracted by the snippet (i.e., Ai = 0), he will not click the
document which also indicates he is not satisfied with this
document (i.e., Si = 0). Thus, there is a probability λ that
the user will examine the next document at the position
i+ 1, and a probability 1− λ that the user stops his search
on this query. If the user is attracted by the snippet (i.e.,
Ai = 1), he will click and visit the document. User post-
click behaviors on the clicked document are very indicative
to infer how much the user is satisfied with this document.
If the user is satisfied (i.e., Si = 1), he will stop this search
session; Otherwise, he will either stop this search session or
examine the next document depending on the probability λ.

The equations (10) and (17) is the cascade hypothesis and
the equation (11) is the examination hypothesis. The equa-
tion (12) shows that when a user examines the document,
whether the user would click or not depends on the vari-



able aui and the error term. The equation (13) shows that
when the user clicks and visits the document, the value of
the post-click behavior features will affect whether the user
is satisfied or not. The equation (14) and (15) mean that
the user will not be satisfied if he does not click the docu-
ment, while the user will stop the search when he is satisfied.
The equation (16) shows that if user is not satisfied by the
clicked document, the probability he continues browsing the
next search results is λ while the probability he abandons
the session is 1− λ.

3.2 The Parameter Update
After observing one query session, we update the related

parameters of each document in this session. For each doc-
ument in one query session, it can be distinguished into five
cases and the parameter update for these five cases are dif-
ferent. We denote l as the last clicked position. When l = 0,
it corresponds to the session with no click, and when l > 0,
it corresponds to the session with clicks. We define two sets
of positions: A is the set of positions before the last click
and B is the set of positions after the last click. Thus, the
five cases are defined as follows:

• Case 1 : l = 0, which indicates there is no click in the
session. In this case, we update the parameters of the
kth document with the equation (23).

• Case 2 : l > 0, k ∈ A, Ck = 0, which indicates the kth
document is at the non-clicked position before the last
click. In this case, we update the parameters with the
equation (24).

• Case 3 : l > 0, k ∈ A, Ck = 1, which indicates the
kth document is at the clicked postion before the last
click. In this case, we update the parameters with the
equations (25) , (26) and (27).

• Case 4 : l > 0, k = l, Ck = 1, which indicates the kth
document is at the last clicked position. In this case,
we update the parameters with the equations (28) ,
(29) and (30).

• Case 5 : l > 0; k ∈ B, Ck = 0, which indicates the
kth document is at the position after the last click. In
this case, we update the parameters with the equation
(31).

For a fixed k(1 ≤ k ≤M), suppose x is the parameter we
want to update, we follow the equation:

p(x | C1:k) ∝ p(x)× P (C1:k | x) (18)

to get the posterior distribution. Then we approximate it
to Gaussian distribution use KL-divergence. The method to
derive the updating formula is based on the message passing
[15] and the expectation propagation[17]. Since the space
limitation, we omit the proof of these formula. For conve-
nience, we will introduce some functions that will be used
in the following update equations:

N(c) =
1

2π
e

−c2

2 ; (19)

Φ(c) =

∫ c

−∞
N(x)dx; (20)

v(c, ω) =
N(c)

Φ(c) + ω
1−ω

; (21)

w(c, ω) = v(c, ω)(v(c, ω) + c). (22)

3.2.1 Case 1:
For the kth document, the observation is A1 = 0, E1 =

1, Ci = 0, 1 ≤ i ≤ k . We update the parameters related
to the ith document. This is the update of the parameter in
the perceived relevance:

ϕuk ← ϕuk −
β2
uk
v(c,ω1,k)

(β2+β2
uk

)
1
2

β2
uk
← β2

uk
(1−

β2
uk
w(c,ω1,k)

β2+β2
uk

)

c = − ϕuk

(β2+β2
uk

)
1
2

(23)

where ω1,k is a coefficient whose value is given in Appendix.
The parameters of the features and the real relevance are
kept the same.

3.2.2 Case 2:
For the kth document, the observation is Ak = 0, Ek = 1.

Thus, we update the parameters related to the kth docu-
ment. The update of the parameter in the perceived rele-
vance is: 

ϕuk ← ϕuk −
v(c,0)β2

uk

(β2
uk

+β2)
1
2

β2
uk
← β2

uk
(1−

β2
uk
w(c,0)

β2
uk

+β2 )

c =
−ϕuk

(β2
uk

+β2)
1
2
.

(24)

The parameters of the features and the real relevance are
kept the same.

3.2.3 Case 3:
For the kth document, the observation is Ak = 1, Ek = 1

and Sk = 0. Thus, we update the parameters related to the
kth document. The update of the parameter in the perceived
relevance is:

ϕuk ← ϕuk +
v(c,0)β2

uk

(β2
uk

+β2)
1
2

β2
uk
← β2

uk
(1−

β2
uk
w(c,0)

β2
uk

+β2 )

c =
ϕuk

(β2
uk

+β2)
1
2
.

(25)

The update of the parameter in the feature is:
mi ← mi −

v(c,0)γ2i yuk,i

(
∑n

j=1 yuk,jγ
2
j+ρ

2
uk

+β2)
1
2

γ2
i ← γ2

i (1− γ2i w(c,0)yuk,i∑n
j=1 yuk,jγ

2
j+ρ

2
uk

+β2 ).

c =
−(θuk

+
∑n

j=1 yuk,jmj)

(
∑n

j=1 yuk,jγ
2
j+ρ

2
uk

+β2)
1
2

(26)

The update of the parameter in the real relevance is:
θuk ← θuk −

v(c,0)ρ2uk

(
∑n

j=1 yuk,jγ
2
j+ρ

2
uk

+β2)
1
2

ρ2uk
← ρ2uk

(1−
ρ2uk

w(c,0)∑n
j=1 yuk,jγ

2
j+ρ

2
uk

+β2 )

c =
−(θuk

+
∑n

j=1 yuk,jmj)

(
∑n

j=1 yuk,jγ
2
j+ρ

2
uk

+β2)
1
2

(27)

3.2.4 Case 4
For the last clicked document, the observation is Cl =

1, Ci = 0(i = l + 1 to M) and we update the parameters



related to the lth document. The update of the parameters
in the perceived relevance is:

ϕul ← ϕul +
v(c,0)β2

ul

(β2
ul

+β2)
1
2

β2
ul
← β2

ul
(1−

β2
ul
w(c,0)

β2
ul

+β2 )

c =
ϕul

(β2
ul

+β2)
1
2
.

(28)

The update of the parameters in the feature is:
mi ← mi +

v(c,ω2)γ
2
i

(
∑n

j=1 yul,j
γ2j+ρ

2
ul

+β2)
1
2

γ2
i ← γ2

i (1− γ2i w(c,ω2)∑n
j=1 yul,j

γ2j+ρ
2
ul

+β2 )

c =
(θul

+
∑n

j=1 yul,j
mj)

(
∑n

j=1 yul,j
γ2j+ρ

2
ul

+β2)
1
2

(29)

where ω2 is a coefficient whose value is given in Appendix.
The update of the parameters in the real relevance is:

θul ← θul +
v(c,ω2)ρ

2
ul

(
∑n

j=1 yul,j
γ2j+ρ

2
ul

+β2)
1
2

ρ2ul
← ρ2ul

(1−
ρ2ul

w(c,ω2)∑n
j=1 yul,j

γ2j+ρ
2
ul

+β2 )

c =
(θul

+
∑n

j=1 yul,j
mj)

(
∑n

j=1 yul,j
γ2j+ρ

2
ul

+β2)
1
2

(30)

3.2.5 Case 5
For the kth document, the observation is Cl = 1, Ck =

0(k = l+1 to M). Thus we update the parameter related
to the kth document. The update of the parameter in the
perceived relevance is:

ϕui ← ϕui −
β2
ui
v(c,ω3,k)

(β2+β2
ui

)
1
2

β2
ui
← β2

ui
(1−

β2
ui
w(c,ω3,k)

β2+β2
ui

)

c = − ϕui

(β2+β2
ui

)
1
2

(31)

where ω3,k is a coefficient whose value is given in Appendix.
The parameters in the features and the real relevance are
kept the same.

3.3 Algorithm
Following the above update formula, we can easily build

the PCC training algorithm as follows:
1. Initialize au, fi and su (∀u, i) to the prior distribu-

tion N(−0.5, 0.5).
2. For each session
3. If l = 0, update each document with (23)
4. Else
5. For k = 1 to M
6. If k < l , Ck = 0, update (24)
7. If k < l , Ck = 1, update (25),(26) and (27)
8. If k = l, update (28),(29) and (30)
9. If k > l, update (31)
10. Endfor
11. Endif
12. End

Given a collection of training sessions, we sequentially up-
date the parameters according to the five cases. Since the
update formula is in a closed form, the algorithm can be
trained on a large scale and constantly growing log data.
After training the PCC model, we set the user satisfaction

probability to zero, i.e., P (S = 1 | C = 1) = 0, for those
documents that have never been clicked.

The PCC model follows the assumption in DBN to dis-
tinguish the document relevance as the perceived relevance
P (A = 1|E = 1) and the real relevance P (S = 1|C = 1).
We define the document relevance inferred from the PCC
model as:

relu = P (A = 1 | E = 1)P (Su = 1 | C = 1)

= Φ(
ϕu

(β2
u + β2)

1
2

)Φ(
θu +

∑n
i=1 yu,imi

(ρ2u + β2 +
∑n
i=1 yu,iγ

2
i )

1
2

).(32)

This document relevance relu will be evaluated on the ground
truth ratings in manually labeled data.

4. EXPERIMENTAL RESULTS
In the experiment, we evaluate the document relevance

and the click perplexity inferred from the PCC model, and
the results are compared with other click models including
DBN and CCM. The experiments are organized into four
parts. In the first part, we analyze the pairwise accuracies
of the relevance among different click models. In the second
part, we use the generated relevance to rank the documents
directly and evaluate the ranking function according to the
normalized discounted cumulative gain (NDCG) [12]. In
the second part, we use the RankNet algorithm to learn a
ranking function on the preference pairs extracted from both
the click model and manually labeled data, and illustrate
the ranking improvement. Finally, we illustrate the click
perplexity among different click models.

4.1 Data Set
The click logs used to train the click models are collected

from a large commercial search engine which comprises 54,931
randomly sampled queries and about 2 million related docu-
ments from the U.S. market in English language, and the to-
tal number of search sessions from one month click-through
log is about 143 million. For each search session, we have
one input query, a list of returned documents on browsed
pages and a list of positions of the clicked documents. The
information on the click logs is summarized in Table 1.

Query Frequency ] Query ] Document ] Total Sessions
1 to 30 33,519 437,610 182,312

30 to 100 5,836 163,133 332,194
100 to 1,000 8,270 425,594 3,031,827

1,000 to 10,000 5,282 578,198 17,827,303
>10,000 2,024 401,083 121,589,355

all 54,931 2,005,618 142,962,991

Table 1: The summary of the search sessions from
one month click logs.

For each query and document pair, we collect correspond-
ing post-click sessions in 20 minutes from one month be-
havior log. We calculate the average values of five features,
as introduced in Section 2.3, from post-click behaviors and
they are used to train and evaluate the PCC model.

The manully labeled data is used as the ground truth to
evaluate the relevance from click models. In the human rele-
vance system (HRS), editors provided the relevance ratings
for 4,521 queries and 127,519 related documents. On av-
erage, 28.2 documents per query are labeled. A five grade



rating is assigned to each query and document (4: perfect,
3: excellence, 2: good, 1: fair, 0: bad ). The documents
without judgement are labeled as 0. The summary of the
HRS is introduced in Table 2.

Query Frequency ] Query ] Document
1 to 30 772 11,328

30 to 100 666 12,335
100 to 1,000 1,342 33,568

1,000 to 10,000 1,074 37,092
>10,000 662 33,196

all 4,516 127,519

Table 2: The summary of the data in human rele-
vance system (HRS).

4.2 Pairwise Accuracy
The document relevance is derived from the PCC model

according to Equation (32), and we compute the relevance
for those queries and related documents that are overlapped
with the HRS data in the experiment. Since the relevance
value is a real number between [0, 1], while the rating in
HRS, denoted as hrsu, is a discrete number from 0 to 4, it
is unable to match them directly. We evaluate the relevance
according to the pairwise accuracy based on the number of
concordances and discordances in preference pairs. Given
two documents ui and uj under the same query, the con-
cordant pair is that if hrsui > hrsuj and relui > reluj , or
if hrsui < hrsuj and relui < reluj . An discordant pair is
that if hrsui > hrsuj and relui < reluj , or if hrsui < hrsuj

and relui > reluj . This pairwise accuracy is calculated as
follows:

acc = 1− D

N
(33)

Here, D represents the number of discordant pairs and N
represents the total number of pairs generated by the click
model.

Similarly, we compute the document relevance from the
DBN and the CCM model according to the probability P (C =
1|E = 1). After training click model, we generate the pref-
erence pair with respect to each pair of documents under
the same query. However, we notice that the number of
generated preference pairs from different click models varies
significantly different. Thus, even one algorithm reaches bet-
ter accuracy than another one, since the number of prefer-
ence pairs is different, we cannot conclude which algorithm
is better. In order to provide a fair evaluation, we intro-
duce a threshold θ such that the preference pair ui > uj is
generated only when

relui − reluj > θ, (34)

where θ ≥ 0. Thus, we can generate different set of prefer-
ence pairs through setting different θ value. When we set
θ as a larger value, less number of preference pairs are gen-
erated. Moreover, since the relevance difference becomes
large, the generated preference pairs are more reliable. Ac-
cordingly, we evaluate the pairwise accuracy among differ-
ent algorithms in terms of the similar number of preference
pairs.

Figure 3 reports the result of pairwise accuracies among
three click models. For each click model, we set a series
of θ values to generate different number of preference pairs

and compute related pairwise accuracies. As θ increases,
the number of pairs decreases and the pairwise accuracy
increases correspondly. When the pair number is 1 million,
the PCC model reaches to the pairwise accuracy 82.8% while
DBN and CCM reaches to 81.7% and 78.2% respectively.
When the number of pairs is 0.5 million, PCC reaches to the
accuracy 86.3% while DBN and CCM reaches to 83.9% and
78.6% respectively. On average, the PCC model achieves
2% and 5% accuracy improvement than that of the DBN
and CCM models.
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Figure 3: The pairwise accuracy comparison among
three click models in terms of the number of prefer-
ence pairs.

4.3 Ranking by Predicted Relevance
In the part, we use the predicted relevance to rank the

documents directly. For one query and their related docu-
ments, every document is treated equally in computing the
pairwise accuracy in the above. However, the ranking eval-
uation such as NDCG often put more emphasis on the doc-
uments at top positions. As such, the relative order of the
documents with higher predicted relevance is more impor-
tant than the documents with lower relevance.

For each query, we rank the returned documents according
to the relevance value relui (∀i) and compute NDCG@1 and
NDCG@3 scores for the PCC, DBN and CCM models. The
results are shown in Figure 4 and 5, where we decompose
the NDCG score in terms of query frequency. We can see
when the query frequency is between 100 to 1000, NDCG@1
of the PCC model is 63.1%, which has 3% and 17% im-
provement than that of DBN and CCM, respectively. For
extremely low frequent queries, the NGCG@1 improvement
of the PCC model over DBN and CCM becomes less sig-
nificant. The main reason is because the post-click features
cannot be extracted for these queries and their related doc-
uments so that the post-click behaviors cannot contribute
to the click model, which proves the effectiveness of incor-
porating post-click behavior into click model.

The overall NDCG@1 for all queries is 63.2%, which has
2% and 13% improvement over DBN and CCM. We also ob-
serve very similar results in NDCG@3, which demonstrates
that the relevance inferred from PCC is consistently better
than that from DBN and CCM.

4.4 Integrating Predicted Relevance and HRS
Learning to rank is to optimize a ranking function from

a set of documents with relevance ratings. We follow the
RankNet [5] method which is a pairwise ranking algorithm
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Figure 4: The NDCG@1 comparison among three
click models in terms of query frequency.
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Figure 5: The NDCG@3 comparison among three
click models in terms of query frequency

receiving the pairwise preferences to optimize the ranking
function. For each query and document, we extract about
three hundred of features in the experiment, where the fea-
tures are similar to those defined in LETOR[16]). Since the
document relevance inferred from the PCC and DBN models
is better than that from the CCM model in the above two
experiments, we only consider the PCC and DBN models in
this part of experiment.

We partition the HRS data as described in Table 2 into
the training and testing sets. We randomly choose 3,000
queries and related 85,173 documents into the training set,
and other queries and documents are in the testing data.
There are totally about 5.1 million preference pairs gener-
ated from HRS as the training data. In addition, the click
model are trained on the click log as described in Table 1,
thus, there are about 7.4 million preference pairs generated
from the PCC and the DBN. We construct three training
sets for the RankNet: 1. only HRS; 2. PCC + HRS; 3. DBN
+ HRS, and evaluate the ranking function on the HRS test-
ing data. The results on NDCG@1 and NDCG@3 are shown
in Figure 6 and 7.

The NDCG@1 and NDCG@3 results illustrate that the
ranking function trained on the “PCC + HRS” data consis-
tently outperform the function on the “DBN + HRS” data,
while the function on the “DBN + HRS” data outperforms
the function trained only on the “HRS” data. The over-
all NDCG@1 from “PCC+HRS” is 1.9% higher than that
from “HRS”, which is a significant improvment of the rank-
ing function on such large scale training and evaluation data.
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Figure 6: The NDCG@1 results from the RankNet
algorithm on three different training sets.
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Figure 7: The NDCG@3 results from the RankNet
algorithm on three different training sets.

4.5 Click Perplexity
Click perplexity is used as an evaluation metric to eval-

uate the accuracy of the click-through rate prediction. We
assume that qji is the probability of click drived from the

click model, i.e. P (Ci = 1|Ei = 1) at the position i and Cji
is a binary value indicating the click event at the position i
on the jth session. Thus, the click perplexity at the position
i is computed as follows:

pi = 2−
1
N

∑N
n=1(C

n
i log2q

n
i +(1−Cn

i )log2(1−qni )) (35)

Thus, a smaller perplexity value indicates a better predic-
tion.

The result on click perplexity is shown in Figure 8. We
can see that the PCC model performs the best for the clicks
in the first position. As for the other positions, the click
perplexity from PCC are very similar to that from CCM. Al-
though CCM has not inferred the document relevance very
well in the above experiment, its click perplexity performs
as well as PCC. The click perplexity obtained from PCC
significantly outperforms the perplexity from DBN, which
indicates that incorporating post-click behaviors into a click
model can also produce a much better click prediction.

5. CONCLUSION AND EXTENSION
Besides user behaviors on the search result page, post-

click behaviors after leaving the search page encodes very
valuable user preference information. Different from previ-
ous works, this paper firstly investigates how to incorporate
post-click behaviors into a click model to infer the docu-
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Figure 8: The click perplexity comparisons among
three click models in terms of search position.

ment relevance. It proposes a novel PCC model by leverag-
ing both click behaviors and post-click behaviors to estimate
the degree of user satisfaction via a Bayesian approach. We
conduct extensive experiments on a large scale data set and
compare the PCC model with the state of the art works such
as DBN and CCM. The experimental results show that PCC
can consistently outperform baselines models on four differ-
ent experimental setting. It is worth noting that the update
of the PCC model is in a close form, which is capable of
processing very large scale data sequentially.

The proposed method of incorporating post-click behav-
iors in the paper is a very general solution and can be ex-
tended to other click models such as CCM, UBM, etc. In the
PCC model, the post-click behaviors are used as the features
to estimate the user satisfication on the clicked document.
However, it is not the only approach of incorporating post-
click behaviors into click model. Another possible approach
is to simulate user post-click behaviors through construct-
ing a separate user browse model and then integrate it with
the click models. We will explore these directions in future
works.
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7. APPENDIX
Since the computation of the coefficients ω1, ω2 and ω3 is

rather complicated, we move their equations into this sec-
tion:

ω1,k = 1−
λg(k − 1, 0)

(1− λ)
∑k−2
j=0 g(j, 0) + g(k − 1, 0)

ω2 = (1− λ)

M−1∑
j=l

g(j, l) + g(M, l)

ω3,k = 1−
λP (Sul = 0)g(k − 1, l)

P (Sul = 1) + P (Sul = 0)
(
(1− λ)

∑k−2
j=l g(j, l) + g(k − 1, l)

)
where

g(i, j) =

{
λi−jP (Aj+1 = 0)× · · · × P (Ai = 0) i > j
1 i 6 j


