
A Comparative Study of Bing Web N-gram Language
Models for Web Search and Natural Language Processing

Jianfeng Gao, Patrick Nguyen, Xiaolong Li, Chris Thrasher, Mu Li, Kuansan Wang

Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
{jfgao; panguyen; xiaolli; cthrash; muli; kuansanw}@microsoft.com

ABSTRACT
This paper presents a comparative study of the recently re-

leased Microsoft Web N-gram Language Models (MWNLM)1
on three web search and natural language processing tasks:
search query spelling correction, query reformulation, and sta-
tistical machine translation. MWNLM, as well as the corre-
sponding web services, called Microsoft Web N-gram Services,
are much more accessible and easier to use than the previously
released text corpora used for large language model training,
including the LDC English Gigaword corpus and the Google
Web 1T N-gram corpus, because the Microsoft Web N-gram
Services provide the access to the smoothed n-gram probabili-
ties based on a set of language models trained from the differ-
ent text fields from the web documents as well as search que-
ries. Our results show that MWNLM outperform the n-gram
models trained on the Gigaword corpus and the Google Web
1T N-gram corpus on all the three tasks. In particular, the sig-
nificant improvements on search query spelling correction and
search query reformulation, resulting from MWNLM, demon-
strate the benefit of training multiple language models on dif-
ferent portions of web data and search queries in a principled
way with zero count cutoff.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval;

General Terms
Experimentation, Measurement

Keywords

Language Model, N-gram, Spelling Correction, Query Refor-
mulation, Statistical Machine Translation

1 An earlier version of MWNLM is described in Huang et al.
[10]. This paper provides updated information regarding the
most recent development of MWNLM.

1. INTRODUCTION

The goal of a statistical language model (LM) is to predict the
probability of a word string. This is fundamental to a wide va-
riety of web search and natural language processing (NLP)
applications. The technique that is still dominating the research
communities is the n-gram model, thanks to its simplicity and
effectiveness. Let

 denote a string of L words
over a fixed vocabulary. An n-gram language model assigns a
probability to

 according to

 ∏ (|

)

 ∏ (|
)

 (1)

where the approximation is based on a Markov assumption
that each word depends only upon the immediately preceding
n-1 words.

N-gram models have been extensively studied in both the
research communities and the industry from different perspec-
tives for decades. While the people in the research communities,
such as natural language processing, speech and information
retrieval, try to figure out a richer and smarter model via better
smoothing [6] or capturing more linguistic structures [5]; indus-
try people recently found that simply using more data is far
more effective [e.g., 2]. For example, the Google machine trans-
lation group trades the mathematical soundness to the scalabil-
ity of LMs, and use the n-gram models that are not properly
normalized but can be efficiently trained on very large amounts
of text corpora [2].

In this paper we strike a better balance between the mathe-
matical soundness and scalability, and demonstrate that it is
possible to scale the n-gram LMs without scarifying their nice
probabilistic properties. We present a distributed LM platform,
based on which a set of web scale smoothed LMs are trained on
different portions of web document fields, such as body text,
title text and anchor text, as well as search queries. We have
also developed web services, called Microsoft Web N-gram
Services [13], to make these models accessible to the research
communities. We demonstrate the effectiveness of these web
scale n-gram LMs and the use of the services through three web
search and NLP applications: search query spelling correction,
query reformulation, and statistical machine translation. We
show that in comparison with other text corpora previously
released for large LM training, including the LDC English Gi-
gaword corpus and the Google Web 1T N-gram corpus,
MWNLM, as well as the corresponding web services, are much
easier to use because users can access the smoothed probability

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
SIGIR'10, July 19-23, 2010, Geneva, Swizerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07…$10.00.

of any word string directly without wondering how to train the
LMs from the large amounts of text, an engineering intensive
task by itself. We also show that MWNLM outperform the n-
gram models trained on Gigaword corpus and Google Web 1T
N-gram corpus on all the three tasks. In particular, the signifi-
cant improvements on search query spelling correction and
query reformulation, resulting from MWNLM, demonstrate the
benefit of training multiple LMs on different portions of web
data and search queries in a principled way without count cut-
off.

2. MICROSOFT WEB N-GRAM
SERVICES

This section first describes the Microsoft Web n-gram LM col-
lection, and then presents a distributed n-gram LM platform
based on which these LMs are built, and finally describes the
Microsoft Web N-gram services.

2.1 Web N-gram LM collection

Table 1 summarizes the data sets and Web scale n-gram LMs
used in this study. The collection is built from high quality Eng-
lish Web documents containing trillions of tokens, served by a
popular commercial search engine. The collection consists of
several data sets built from different Web sources, including
the different text fields from the Web documents (i.e., body,
title, and anchor texts) and search query logs. The raw texts
extracted from these different sources were pre-processed in
the following manner: texts are tokenized based on white-space
and upper case letters are converted to lower case. Numbers
are retained, and no stemming/inflection is performed. The n-
gram LMs are word-based backoff models, where the n-gram
probabilities are estimated using Maximum Likelihood Estima-
tion (MLE) with smoothing. Specifically, for a trigram model,
the smoothed probability is computed as

 | (2)

{

 ()

if

 | otherwise

where is the raw count of the n-gram in the training corpus
and is a normalization factor. is a discount function for
smoothing. We use modified absolute discounting as the dis-
count function [12], whose parameters can be efficiently esti-
mated and performance converges to that of more elaborate

state-of-the-art techniques like Kneser-Ney smoothing in large
scale data [14].

The quality of n-gram LMs depends on the order of the
model, the size of the training data, and more importantly how
well the training data match the test data. Figure 1 illustrates
the perplexity results of the four LMs trained on different data
sources tested on a random sample of 733,147 queries from the
search engine’s May 2009 query log. The results suggest several
conclusions. First, higher order LMs in general produce lower
perplexities, especially when moving beyond unigram models.
Second, as expected, the query LMs are most predictive for the
test queries, though they are from independent query log snap-
shots. Third, it is interesting to notice that although the body
LMs are trained on much larger amounts of data than the title
and anchor LMs, the former lead to much higher perplexity
values, indicating that both title and anchor texts are quantita-
tively much more similar to queries than body texts.

As are in many applications of LMs, the perplexity measure
is not the ultimate metric for applications. In other words,
models with lower perplexities do not necessarily lead to a
better performance. However, the perplexity analysis is still
informative in that higher perplexity models can seldom out-
perform the lower perplexity ones, as we will show in Section
4.

2.2 Distributed N-gram LM platform

The platform is developed on a distributed computing system
designed for storing and analyzing massive data sets, running
on large clusters consisting of hundreds of commodity servers
connected via high-bandwidth network.

We use the SCOPE (Structured Computations Optimized
for Parallel Execution) programming model [3] to train the Web
scale n-gram LMs shown in Table 1. The SCOPE scripting lan-
guage resembles SQL which many programmers are familiar
with. It also supports C# expressions so that users can easily
plug-in customized C# classes. SCOPE supports writing a pro-
gram using a series of simple data transformations so that users
can simply write a script to process data in a serial manner
without wondering how to achieve parallelism while the
SCOPE compiler and optimizer are responsible for translating
the script into an efficient, parallel execution plan. We illustrate
the usage of SCOPE for building LMs using the following ex-

Dataset Body Anchor Title Query

Total tokens 1.3T 11.0B 257.2B 28.1B

Unigrams 1.2B 60.3M 150M 251.5M

Bigrams 11.7B 464.1M 1.1B 1.3B

Trigrams 60.0B 1.4B 3.1B 3.1B

4-grams 148.5B 2.3B 5.1B 4.6B

5-grams 238.0B N/A N/A N/A

Size on disk# 15.8TB 183GB 395GB 393GB
N-gram entries as well as other statistics and model param-
eters are stored.
Table 1: Statistics of the Microsoft Web n-gram LMs collec-
tion (count cutoff = 0 for all models).

Figure 1. Perplexity results on test queries, using n-gram LMs
with different orders, derived from different data sources.

ample of counting 5-grams from the body text of English Web
pages. The flowchart is shown in Figure 2.

The program is written in SCOPE as a step-by- step of com-
putation, where a command takes the output of the previous
command as its input.

ParsedDoc=SELECT docId, TokenizedDoc

FROM @”/shares/…/EN_Body.txt”

USING DefaultTextExtractor;

NGram=PROCESS ParsedDoc

PRODUCE NGram, NGcount

USING NGramCountProcessor(-stream TokenizedDoc

-order 5 –bufferSize 20000000);

NGramCount=REDUCE NGram

ON NGram

PRODUCE NGram, NGcount

USING NGramCountReducer;

OUTPUT TO @”Body-5-gram-count.txt”;

The first SCOPE command is a SELECT statement that ex-
tracts parsed Wed body text. The second command uses a
build-in Processor (NGramCountProcessor) to map the parsed
documents into separate n-grams together with their counts. It
generates a local hash at each node (i.e., a core in a multi-core
server) to store the (n-gram, count) pairs. The third command
(REDUCE) aggregates counts from different nodes according to
the key (n-gram string). The final command (OUTPUT) writes
out the resulting to a data file.

The smoothing method can be implemented similarly by
implementing the customized smoothing Processor/Reducer.
They can be imported from the existing C# codes (e.g., devel-
oped for building LMs in a single machine) with minor chang-
es.

2.3 Microsoft Web N-Gram Services

The Microsoft Web N-Gram Services is a data service for
providing smoothed LM probability information. Requests are
serviced using SOAP over HTTP. The detailed service descrip-
tion can be found at http://web-
ngram.research.microsoft.com/Lookup.svc/mex?wsdl. During

the public beta period, the service is open to accredited colleges
and universities.

The data is originally collected in the datacenters of Mi-
crosoft Bing. Counts of word sequences are collected for each
stream (body, title, and anchor) and from these counts
smoothed word probabilities are computed, as described in
Sections 2.1 and 2.2. From the lexicon a hash is created; this
hash maps word strings to word IDs. For every word n-gram,
two values are maintained: the conditional probability, and the
backoff parameter. These values are stored in a binary search
tree. The trees are distributed over multiple machines, so as to
serve as much of this information from RAM as possible.

To access the service, users must first request an access to-
ken from Microsoft by sending mail to
webngram@microsoft.com. The token is simply a GUID. Once
a token is obtained, users can get joint or conditional probabil-
ity value of words in a phrase. The application also provides a
batch mode where multiple phrases can be submitted at once,
returning an array of probability values. The probability values
are single-precision floating point values in base-10 log.

3. PREVIOUS WORK

This section does not intend to provide a comprehensive sur-
vey of the previous work on large LMs for web search and NLP.
Instead, we will briefly describe two of the previously released
datasets that have been widely used for LM training: LDC Eng-
lish Gigaword corpus and the Google Web 1T N-gram corpus.
We will compare MWNLM with the LMs trained on the two
corpora in our experiments in Section 4.

The English Gigaword corpus was produced by Linguistic
Data Consortium (LDC) in 2008 [12]. This is a comprehensive
archive of newswire text data in English that has been acquired
over several years by LDC. For comparison, we built n-gram
models, referred to as GW models afterwards, as follows. The
corpus is tokenized following the Penn Treebank tokenization.
After tokenization, the corpus contains about 4.2 billion tokens.
The sentence boundaries are marked with two separate tokens
<S> and </S>. We then build a vocabulary with 1M high fre-
quent words extracted from the corpus. All n-gram (n = 1 to 5)
probabilities are computed via MLE with modified absolute
discounting and count cutoff 1 for all n-grams (n = 2 to 4), using
the public toolkit MSRLM [14]. The statistics of the Gigaword
models are shown in Table 3.

The Google Web 1T data set [1], contributed by Google Inc.,
contains English word n-grams (n = 1 to 5) and their observed
frequency counts calculated over 1 trillion words from web
page text collected by Google in January 2006. The text was
tokenized following the Penn Treebank tokenization, except
that hyphenated words, dates, email addresses and URLs are
kept as single tokens. The sentence boundaries are marked with

Recursive

Reducer

Node 1 Node 2 Node N…...

…...

Output

Web Pages

Parsing

Counting

Local

Hash

Tokenize

Web Pages

Parsing

Counting

Local

Hash

Tokenize

Web Pages

Parsing

Counting

Local

Hash

Tokenize

Figure 2. Distributed 5-gram counting.

Dataset Number

Total tokens 4.2 B

Unigrams 1 M

Bigrams 60 M

Trigrams 246 M

4-grams 447 M

5-grams 558 M

Table 2: Statistics of the LDC English Gigaword corpus.

http://web-ngram.research.microsoft.com/Lookup.svc/mex?wsdl
http://web-ngram.research.microsoft.com/Lookup.svc/mex?wsdl
mailto:webngram@microsoft.com

<S> and </S>. Words that occurred fewer than 200 times were
replaced with the special token <UNK>. Table 4 shows the data
sizes of the Web 1T corpus. The n-grams themselves must ap-
pear at least 40 times to be included in the corpus. In this study,
we build LMs from the Web 1T corpus using MLE with the
dubbed Stupid Backoff smoothing method proposed by Brants

et al. [2] such that in Equation (2) is no longer a normalization
factor computed so that the sum of the probabilities is 1, but a

predefined constant, i.e., = 0.4 for all orders in all our experi-
ments. As a result, the LMs can be trained much more efficient-
ly than other state-of-the-art smoothing methods such as
Kneser-Ney smoothing in the MapReduced environment, but
the LMs are no longer statistic models, thus lose all of the nice
probabilistic properties.

4. EVALUATIONS

We follow the re-ranking experimental paradigm to evaluate
the performance of different LMs on three web search and NLP
tasks: query spelling correction, query reformulation, and Chi-
nese to English statistical machine translation. In each of these
tasks, we assume that for each test sample, (i.e., an input query
in the first two tasks, and a Chinese sentence in the third task)
we have been given a list of candidates, generated using a base-
line system. Then the candidates are re-ranked using the log
probabilities produced by LMs. We compare the effectiveness
of different LMs using application-specific measures. We also
use t-test to test the statistical significance of different LMs. A
significant difference should be read as significant at the 95%
level. In what follows, we describe for each evaluation the base-
line system, the measure, and the re-ranking results.

4.1 Query Spelling Correction

Search queries present a particular challenge for traditional
spelling correction methods that are based on dictionaries be-
cause query language is changing constantly, and many search
query terms, such as names and proper nouns, are not well-
established in the language and are not included in any dic-
tionaries. Therefore recent research has been focused on infer-
ring knowledge about spellings and word usage in search que-
ries from large amounts of web data and search logs. In addi-
tion, there are many real-word errors in search queries, whose
correction depends to a large degree upon the use of local con-
text, such as the n-gram features captured by n-gram LMs.

This makes the query spelling correction task an ideal test
bed to evaluate the effectiveness of MWNLM, which are
trained on web data and search queries. In our experiments, we
used the baseline system described in Gao et al. [9] to produce
for each input query 20-best candidate corrections, which are
found with small edit distance, similar morphology or alterna-
tive word breaking. We then use the LMs to re-rank these

spelling candidates, and consider the top-ranked candidate as
the correction generated by the system.

The evaluation is performed on a data set containing 15,657
queries sampled from one year’s worth of query logs from a
commercial search engine. The spelling of each query is
manually judged and corrected by four independent anno-
tators. 2,960 queries are judged as misspelled and are cor-
rected. The average length of queries in the data set is 2.7
words. The spelling correction results are evaluated using the
following three metrics.

 Accuracy: The number of correct outputs generated by the
system divided by the total number of queries in the test
set.

 Precision: The number of correct spelling corrections for
misspelled queries generated by the system divided by the
total number of corrections generated by the system.

 Recall: The number of correct spelling corrections for mis-
spelled queries generated by the system divided by the to-
tal number of misspelled queries in the test set.

Table 4 summarizes the re-ranking results. We see that (1)
MWNLM significantly outperform the Google and Gigaword
LMs in terms of accuracy. (2) Among MWNLM, the title LM is
slightly better than the others because title words are mostly
correctly spelled and form a similar vocabulary to that of query
words, as discussed in Section 2.1. (3) The Google model
achieves the best precision because the model is trained on n-
grams with very high count cutoff and most misspelled query
terms have lower frequency than their correctly spelled coun-
terparts, and thus lead to lower n-grams. However, MWNLMs
beat the Google LM with a substantial marge in recall, due to
the zero count off. (4) The Gigaword LM, which is trained on
newswire corpus, can hardly capture any spelling mistakes in
search queries because of the language discrepancy between
newswire and search queries. The language discrepancy can
also be verified by its high OOV rate, i.e., a lot of query terms,
either correctly spelled or misspelled, simply do not occur (at
least not often enough) in the newswire corpus, and thus are
excluded in the dictionary.

4.2 Query Reformulation

Query reformulation can be considered as a generalization of
the query spelling correction task. Given an input query, we
seek for more effective variants that lead to better web search
results via paraphrasing, segmentation, stemming, and query
expansion, etc. For example, one possible variant of an input
query “heroic acts” is “heroic actions” or “heroic act”. We use
Normalized Discounted Cumulative Gain scores at position 5
(NDCG@5) [11] to measure retrieval effectiveness.

Dataset Number Size on disk (MB)

Total tokens 1 T N/A

Unigrams 13.6 M 185

Bigrams 314.8 M 5,213

Trigrams 977.1 M 19,979

4-grams 1.3 B 32,041

5-grams 1.2 B 33,679

Table 3: Statistics of the Google Web 1T n-gram data collec-
tion.

System Accuracy Precision Recall OOV
rate

1 MWNLM (query) 82.53 53.30 10.90 0.13

2 MWNLM (body) 83.83 62.04 18.55 0.18

3 MWNLM (title) 84.86 68.04 23.95 0.69

4 MWNLM (anchor) 83.59 57.55 19.80 0.77

5 Google 81.91 79.52 2.28 6.53

6 GW model 81.55 60.01 0.10 18.27

Table 4. Summary of spelling correction results. All LMs are tri-
gram models.

We perform the evaluation using a set of 11,006 queries
randomly sampled from one year’s worth of query logs from a
commercial search engine. For each original query, 30 candi-
date suggestions are generated by expanding one of its query
terms using the OR operator. For example, given an input que-
ry “heroic acts”, we expand “acts” to “actions” by forming a
suggestion “heroic OR(acts actions)”. We perform query refor-
mulation via query expansion rather than query substitution, in
which case the suggestion of “heroic acts” would be “heroic
actions”, is due to the fact that in our experiments query expan-
sion always outperforms query substitution. Our finding is
consistent with reported results [e.g., 7].

Then, we use a LM to re-rank the candidate suggestions in
their substitution form, assuming that a good query substitution
often leads to a good query expansion. At query time, for each
query q, the top m candidate suggestions in their expansion form
ranked by the LM (in their substitution counterparts) are used to
retrieval web documents using a commercial search engine
(e.g., Bing in our experiments). The retrieved documents are
then manually labeled on a 5-level relevance scale, 0 to 4, with
4 as the most relevant. NDCG scores are finally computed on
labeled query-document pairs retrieved by the candidate sug-
gestion. Following Dang and Croft [7], we record the best
NDCG@5 obtained by these m candidates as the NDCG@5 of
the substitute solution for q. We varied m from 1 to 10 in our
experiments.

The main results are shown in Table 5 and Figure 3. We see
that the trend is similar to that of the spelling correction results
in Table 4. All MWNLM are in a near statistical tie for the first
place. The Google model underperforms slightly MWNLM due
to its high count cutoff. There is a significant gap between the
Gigaword model versus other web scale LMs due to its high
OOV rate and the significantly smaller amount of training data.

System News
(691)

Web
(666)

All
(1357)

OOV
rate

1 MWNLM (query 4-gram) 27.11 15.18 21.97 0.02

2 MWNLM (body 5-gram) 28.28 15.37 22.74 0.01

3 MWNLM (title 4-gram) 27.32 15.29 22.15 0.04

4 MWNLM (anchor 4-gram) 27.52 15.38 22.30 0.21

5 Google (5-gram) 27.97 15.59 22.64 0.84

6 Gigaword (5-gram) 27.47 15.14 22.16 3.45

Table 6. Summary of machine translation results on the 2008 NIST
C2E Open MT Evaluation test set, reported in BLEU scores (%).

4.3 Machine Translation

Given a source-language (e.g., Chinese) sentence, the goal of
machine translation is to automatically produce a target-
language (e.g., English) translation.

This section evaluates the use of different LMs for machine
translation on the Chinese-to-English (C2E) test in the con-
strained training track of the 2008 NIST Open MT Evaluation
[15]. The test set contains 1,357 Chinese sentences, including
691 sentences of newswire and 667 sentences of the web data
genre. Each sentence has four reference translations manually
generated. In our experiments, we first generated for each Chi-
nese sentence in the test set 100 best candidate translations us-
ing a baseline system. Then we used a 5-gram LM to re-rank
the 100-best list. The re-ranking results were evaluated using
top-1 translation BLEU scores [16].

The baseline system we used to produce 100-best candidate
translations is our implementation of the hierarchical phrase-
based system, described by Chiang [4], one of the state-of-the-
art machine translation systems. It uses a statistical phrase-
based translation model that uses hierarchical phrases. The
model is a synchronous context-free grammar and it is learned
from parallel data without any syntactic information.

The results are summarized in Table 5. Unlike the results in
the search query spelling correction and reformulation tasks,
difference among different LMs on the MT task is not substan-
tial, although the Microsoft body LM still outperforms the
Google and Gigaword models on the News and All corpora
with a small but statistically significant margin. The Gigaword
model, in spite of its much higher OOV, only slightly underper-
forms the best models on different portions of the test set.

5. Conclusion

This paper reports the recent development of Microsoft Web N-
gram Language Models, as well as the corresponding Microsoft
Web N-gram services. The services provide the research com-
munities the access to a set of web scale n-gram language mod-
els that are trained on different portions of web data and search
queries using a principled manner with zero count cutoffs. We
demonstrate the effectiveness of MWNLM on three web search
and NLP applications. We sincerely invite our colleagues in the
research communities to exploit the web scale LMs for interest-
ing applications using the services we are providing. We will
continue the development and upgrade of MWNLM based on
what we learned from your feedback.

System NDCG@5 (%) OOV rate (%)

1 MWNLM (query) 62.09 0.02

2 MWNLM (body) 62.16 0.03

3 MWNLM (title) 62.10 0.16

4 MWNLM (anchor) 62.11 0.69

5 Google 61.98 0.74

6 Gigaword 61.38 9.46

Table 5. Query expansion results (NDCG@5). All LMs are trigram
models.

Figure 3. Query expansion results (NDCG@5). All LMs are trigram
models

0.590

0.595

0.600

0.605

0.610

0.615

0.620

0.625

0.630

1 2 3 4 5 6 7 8 9 10

N
D

C
G

@
5

m

Google
GW
BWNLM(anchort)
BWNLM(body)
BWNLM(query)
BWNLM(title)

Google
GW
MWNLM(anchor)
MWNLM(body)
MWNLM(query)
MWNLM(title)

REFERENCES

[1] Brants, T., and Franz, A. 2006. Web 1T 5-gram corpus ver-
sion 1.1. Technical report, Google Research.

[2] Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. 2007.
Large language models in machine translation. In EMNLP-
CoNLL, pp. 858 - 867.

[3] Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D.,
Weaver, S., and Zhou, J. 2008. SCOPE: easy and efficient
parallel processing f massive data sets. In Proceedings of the
VLDB Endowment, pp. 1265-1276.

[4] Chiang, D. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

[5] Charniak, E. 2001. Immediate-head parsing for language
models. In ACL/EACL, pp. 124-131.

[6] Chen, S. F., and Goodman, J. 1999. An empirical study of
smoothing techniques for language modeling. Computer
Speech and Language, 13(10):359-394.

[7] Dang, V., and Croft, W. B. 2010. Query reformulation us-
ing anchor text. In Proc. WSDM’10.

[8] Gao, J., Goodman, J., and Miao, J. 2001. The use of cluster-
ing techniques for language modelling -application to
Asian languages. Computational Linguistics and Chinese Lan-
guage Processing, 6(1):27–60, 2001.

[9] Gao, J., Li, X., Micol, D., Quirk, C., and Sun, X. 2010. A
large scale ranker-based system for search query spelling
correction. In Proc. COLING 2010.

[10] Huang, J., Gao, J., Miao, J., Li, X., Wang, K., and Behr, F.
2010. Exploring web scale language models for search que-
ry processing. In Proc. WWW 2010.

[11] Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods
for retrieving highly relevant documents. In SIGIR, pp. 41-
48.

[12] LDC English Gigaword Fourth Edition. 2009.
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?ca
talogId=LDC2009T13

[13] Microsoft web n-gram services. 2010.
http://research.microsoft.com/web-ngram

[14] Nguyen, P., Gao, J., and Mahajan, M. 2007. MSRLM: a
scalable language modeling toolkit. Technical report TR-
2007-144, Microsoft Research.

[15] NIST. 2008. The 2008 NIST Open Machine Translation
Evaluation. www.nist.gov/speech/tests/mt/2008/doc/

[16] Papineni, K., Roukos, S., Ward, T., and Zhu, W-J. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. of ACL, pp. 311–318.

[17] Wang, K. and Li, X. 2009. Efficacy of a constantly adaptive
language model technique for web-scale applications. In
Proc. ICASSP-2009, Taipei, Taiwan, 4733-4736.

http://www.nist.gov/speech/tests/mt/2008/doc/

