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Abstract. Dagstuhl seminar 10381 on robust query processing (held
19.09.10 - 24.09.10) brought together a diverse set of researchers and
practitioners with a broad range of expertise for the purpose of fostering
discussion and collaboration regarding causes, opportunities, and solu-
tions for achieving robust query processing. The seminar strove to build
a unified view across the loosely-coupled system components responsible
for the various stages of database query processing. Participants were
chosen for their experience with database query processing and, where
possible, their prior work in academic research or in product development
towards robustness in database query processing. In order to pave the
way to motivate, measure, and protect future advances in robust query
processing, seminar 10381 focused on developing tests for measuring the
robustness of query processing. In these proceedings, we first review the
seminar topics, goals, and results, then present abstracts or notes of some
of the seminar break-out sessions. We also include, as an appendix, the
robust query processing reading list that was collected and distributed
to participants before the seminar began, as well as summaries of a few
of those papers that were contributed by some participants.

Keywords. Robust query processing, adaptive query optimization, query
execution, indexing, workload management, reliability, application avail-
ability

1 Motivation and Goals

In the context of data management, robustness is usually associated with recov-
ery from failure, redundancy, disaster preparedness, etc. Robust query process-
ing, on the other hand, is about robustness of performance and scalability. It is
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more than progress reporting or predictability. A system that predictably fails
or obviously performs poorly is somewhat more useful than an unpredictable
one, but it is not robust. This is comparable to an automobile that only starts
in dry weather: it is predictable but not nearly as useful or robust as a car that
starts in any weather.

Robust query processing performance has been a known problem for a long
time. It also seems common to most or all database management systems and
most or all installations. All experienced database administrators know of sudden
disruptions of data center processing due to database queries performing poorly,
including queries that had performed flawlessly or at least acceptably for days
or weeks.

Some techniques are meant to alleviate problems of poor performance, e.g.,
automatic index tuning or statistics gathered and refreshed on-demand. How-
ever, they sometime exacerbate the problem. For example, insertion of a few new
rows into a large table might trigger an automatic update of statistics, which
uses a different sample than the prior one, which leads to slightly different his-
tograms, which results in slightly different cardinality or cost estimates, which
leads to an entirely different query execution plan, which might actually perform
much worse than the prior one due to estimation errors. Such occasional "auto-
matic disasters" are difficult to spot and usually require lengthy and expensive
root cause analysis, often at an inconvenient time.

A frequent cause of unpredictable performance is that compile-time query
optimization is liable to suffer from inaccuracy in cardinality estimation or in
cost calculations. Such errors are common in queries with dozens of tables or
views, typically generated by software for business intelligence or for mapping
objects to relational databases. Estimation errors do not necessarily lead to poor
query execution plans, but they do so often and at unpredictable times.

Other sources for surprising query performance are widely fluctuating work-
loads, conflicts in concurrency control, changes in physical database design, rigid
resource management such as a fixed-size in-memory workspace for sorting, and,
of course, automatic tuning of physical database design or of server parameters
such as memory allocation for specific purposes such as sorting or index creation.

Numerous approaches and partial solutions have been proposed over the
decades, from automatic index tuning, automatic database statistics, self-correct-
ing cardinality estimation in query optimization, dynamic resource management,
adaptive workload management, and many more. Many of them are indeed prac-
tical and promising, but there is no way of comparing the value of competing
techniques (and they all compete at least for implementation engineers!) until a
useful metric for query processing robustness has been defined. Thus, defining
robustness as well as a metric for it is a crucial step towards making progress.

Such a metric can serve multiple purposes. The most mundane purpose might
be regression testing, i.e., to ensure that progress, once achieved in a code base,
is not lost in subsequent maintenance or improvement of seemingly unrelated
code or functionality. The most public purpose might be to compare competing
software packages in terms of their robustness in query processing performance



Robust Query Processing 3

and scalability as a complement to existing benchmarks that measure raw per-
formance and scalability without regard to robustness.

2 Outcome and next steps

The seminar was well attended: 34 researchers (with 16 researchers from indus-
try) from Europe, India, and North America actively explored metrics and tests
in the context of physical database design, query optimization, query execution,
and workload management. Participants investigated many approaches to mea-
suring and testing robustness without being able to unify them into a single
metric. It became clear, however, that continuous parameters such as sizes of ta-
bles and intermediate results are much more tractable than discrete parameters
such as presence or absence of specific indexes.

At this time, we are pursuing multiple steps based on this seminar. First, sev-
eral groups of participants are researching and authoring papers on robust query
processing, its causes and appropriate metrics. Second, we have been invited to
edit a special issue of a journal. Third, we have been invited to organize a panel
on robust query processing in an international database conference. Fourth, we
have applied for a follow-on seminar in Dagstuhl that will focus on continuous
parameters (such as table size), on turning discrete parameters (such as exis-
tence of a specific index) into a continuous one, and on scalability and problems
in high parallel query processing including cloud servers.

3 Working Agenda

Each day had a theme related to seminar goals, and several breakout sessions
were organized where the seminar was split in smaller groups. The topics of these
sessions were structured along the main areas of robustness in query processing:
test suite design, query optimization, query execution, physical database design,
and system context.

The goal of the first day’s breakout sessions was test suite design, i.e. which
aspects of robust query processing should be tested and which metrics are ap-
propriate. The second day’s session were devoted to robustness issues in query
optimization. Measuring the contribution of query execution and access meth-
ods to robust query processing was the goal of day 3. On the fourth day, two
topics were addressed in parallel. In the first track of sessions, robustness of
physical database design tools such as index selection tools and design advisors
was discussed. The second track of sessions addressed a broader system context
by discussing the interaction of various system components in the relationship
to robustness.

3.1 Day 1: Definitions and tests

Goals for the day:

– reach a common background and understanding,
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– establish mode & mood for collaboration,
– draft regression tests for solved and unsolved problems in robust query pro-

cessing,
– initialize possible publications.

Session 1.1: Stories from the real world

Session goals:
– initialize the seminar,
– share anecdotes and stories,
– define & scope the problem of robust query processing,
– separate solved and unsolved problems,
– define scope, outcome, and process for the seminar.

Scope: problems (not solutions), real-world importance.
Preparation: presentation slides with scope (both included & excluded topics)

– preliminary analysis of prepared anecdotes.
Discussion: what went wrong in those cases, what was the root cause, what

partial or complete solutions are known, can those solutions be automated –
what is robust query processing? – what problems have “obvious” or known
solutions, what problems remain?

Session 1.2: Regression tests

Session goal: share understanding of and appreciation for regression testing in
the context of robust query processing and good regression testing.

Scope: testing methodology.
Preparation: presentation slides with an example regression test for a robust

technique – anecdote of a failure due to lacking regression tests – example
scoring based on visualization of index nested loops join.

Discussion: what characterizes a good regression test suite (efficient, effective,
repeatable, portable...) – what is the role of regression testing in research
and development of robust query processing – if the “obvious” solutions were
implemented, how would they be protected by testing? – how to talk about
and how to visualize robustness and the lack thereof.

Session 1.3: Break out: test suite design

Session goal: design test suites, including specific SQL tables and queries, for
problems with obvious or known solutions and for unsolved problems – bro-
ken up into scans & data access, join order and join algorithms, nested iter-
ation, updates & utilities; concurrency control & multi-programming level,
etc.

Scope: tests (not solutions) for “solved” and “unsolved” problems in robust query
processing.
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Preparation: a sample test suite as SQL script – a sample paper with a specific
to-do list starting with electing a scribe & paper coordinator. Survey of
existing test suites.

Discussion: What aspects of “robust query processing” should be tested, which
metrics are appropriate for these aspects, and how can one compare metrics?
Can we extend any existing test suites to evaluate these aspects? What
should we consider when designing the test suites? (E.g., index interactions,
workload variability/volatility, accuracy of estimates, accuracy of statistics,
how to generate queries, how to generate data.)

Session 1.4: Review of test suites

Session goal: ensure a common understanding of draft test suites – focus on
tests & metrics versus techniques & solutions – refine drafts as appropriate.

Preparation: Write up characterization of each draft test suite and list sys-
tems/authors who may apply that test suite, as well as an evaluation of
target application of the test suite.

Discussion: Practical concerns and ideas about potential learnings raised by
each test suite. Evaluate each test suite in terms of how it compares to
existing test suites, what one might learn from it, why it might be difficult
to implement, how it might be difficult to interpret results, and how it might
be simplified.

3.2 Day 2: Query optimization

Goal for the day: define regression tests to protect advances & delineate limita-
tions of query optimization and its contributions to robust query processing –
initialize possible publications.

Session 2.1: Traditional query optimization

Session goals:
– ensure a shared understanding of risks in query optimization & its com-

ponents,
– identify role & risks of nested iteration,
– list problems to be solved by appropriate query optimization,
– separate metrics from techniques, “plan quality” from specific query op-

timization or query execution techniques,
– isolate & classify common assumptions.

Scope: focus on “simple” compile-time query optimization – exclude dynamic
query execution plans, user-defined functions, hints for physical database
design, etc.

Preparation: presentation slides with components of query processing, query
optimization (cardinality estimation, cost calculation, plan repertoire, plan
search & heuristics), query execution (plan distribution, pipelining & gran-
ularity, partitioning, individual algorithms, resource management), access
methods (index format, concurrency control).
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Discussion: need to test cardinality estimation, cost calculation, plan repertoire,
and plan choice independently – metrics for plan quality independent of
query optimization and query execution.

Session 2.2: Scalability

Session goal: identify risks to robustness, design tests specific to large deploy-
ments.

Scope: 1,000s of nodes, 1,000s of tables, 1,000s of users ...
Preparation: identify some issues, e.g., skew, concurrency control, workload man-

agement – prepare some presentation slide as introduction.
Discussion: forms of skew and imbalance – contributions of compile-time query

optimization.

Session 2.3: Late binding

Session goal: identify & explain existing techniques, clarify the role of cost cal-
culation, design tests.

Scope: run-time parameters, temporary tables, dynamic query execution plans,
fluctuating system load & resource contention, user-defined functions, map-
reduce, virtual & cloud deployments.

Preparation: draft a test plan for run-time parameters – prepare presentation
slides as introduction.

Discussion: issues decidable or not during compile-time query optimization –
required run-time techniques.

Session 2.4: Break out: test suite design

Session goal: design test suites, including specific SQL tables and queries, for
cardinality estimation & cost calculation, plan generation & selection, ro-
bustness in high-scale deployments, dynamic query execution plans, plans
for parallel execution, query plans with run-time parameters, specific tests
for cloud deployments...

Topics: “vanilla” queries, updates & utilities, scalability, late binding. Prepara-
tion: paper skeletons.

Session 2.5: Paper preparation

Session goal: initialize one or more publications on robust query processing and
measuring it (title, abstract, conclusions, outline).

4 Day 3: Query execution

Goals for the day:

– design regression tests to measure the contributions of query execution &
access methods to robust query processing,

– identify concepts for possible publications.
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Session 3.1: Robust execution algorithms

Session goal: list additional techniques, design tests for each of the techniques.
Scope: shared & coordinated scans, MDAM and scan versus probe, grow &

shrink memory, skew bus- ter, shared intermediate results, sorting in index-
to-index navigation, “bubblesort” for index join operations, dynamic query
execution plans, eddies...

Preparation: prepare some introduction slides for each technique.
Discussion: scope & value & promise of each technique – how to measure &

evaluate each technique – interaction of techniques, e.g., index-to-index nav-
igation & bubblesort of index joins.

Session 3.2: Challenging deployments

Session goals:
– ensure a common understanding of existing techniques,
– identify possible metrics & tests.

Scope: poor estimation (cardinality estimation, cost calculation), scalability (skew,
degree of parallelism), late binding (parameters, resources), mixed workloads
(small & large, read-only & read-write).

Preparation: slides about performance effects of wrong join method, effects of
skew, dynamic aggregation – metrics are the big open issue.

Discussion: what is required for a cloud deployment? – how can robustness
in cloud execution be measured? – is robustness monitoring another cloud
service?

Session 3.3: Excursion Walk in the woods ...

Session 3.4: Break out: test suite design

Session goal: design test suites for adaptive techniques and for their comparative
evaluation, e.g., how valuable is sorting the join sequence if index nested
loops join employs run generation & prefetch.

Preparation: paper skeletons.

Session 3.5: Paper preparation

Session goal: initialize one or more publications on robust query processing and
measuring it (title, abstract, conclusions, outline).

4.1 Day 4: Physical database design

Goal for the day: design regression tests for logical and physical database design
& required utilities.
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Session 4.1: Physical database design

Session goals:
– scope physical database design & utilities,
– identify opportunities to improve robustness by appropriate physical

database design,
– try to define metrics and tests.

Scope: Data placement (memory hierarchy), index tuning... driven by query op-
timization or query execution, required mechanisms (online, incremental...)
– continuous tuning, adaptive indexing – limitations, stability, convergence,
oscillations – are new index techniques required?

Preparation: introduction slides to physical database design & required database
utilities.

Discussion: how can indexes improve robustness – compare local versus global
indexes for robust query processing.

Session 4.2: Database utilities

Session goals:
– identify interference of utilities and query processing that lowers robust-

ness,
– identify improvements to important database utilities,
– define metrics and tests.

Scope: index operations (e.g., creation), statistics update, defragmentation, merg-
ing (partitioned B-trees), roll-in & roll-out, backup and recovery, changes in
logical database design, format changes in soft- ware updates, concurrency
control on data & schema...

Preparation: slides to define online & incremental index operations, including
“truly online” index operations based on multi-version concurrency control
in the catalog tables.

Discussion: what utilities undermine robust query processing? – how to measure
this interference.

Session 4.3: Adaptive index tuning

Session goal: ensure a common understanding of techniques and their potential
& limitations.

Scope: hints from query optimization, external monitoring, adaptive indexing
(database cracking, adaptive merging).

Preparation: prepare slides to explain techniques and differentiate their assump-
tions & values.

Discussion: index tuning by query optimization, query execution (hints embed-
ded by query optimization), or access methods (side effect of index access)
– capabilities & limitations of each approach – index removal heuristics –
partial & incremental techniques (e.g., invalidation of key ranges).
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Session 4.4: Break out: test suite design

Session goal: design test suites for database utilities and adaptive physical database
design. Preparation: paper skeletons.

Session 4.5: Paper preparation

Session goal: initialize one or more publications on robust query processing and
measuring it (title, abstract, conclusions, outline).

4.2 Day 5: System context

In parallel to Day 4; participants to choose among topics to create time for a
break-out session. Goal for the day: identify relationships and opportunities –
design regression tests for some of the adaptive mechanisms for some aspects of
system context.

Session 5.1: Resource management

Session goals:
– ensure a common understanding & appreciation of resource shaping tech-

niques,
– identify test requirements.

Scope: contention among already running queries (updates, utilities) – advan-
tages & dangers of dynamic resource management.

Preparation: presentation slides to explain.
Discussion: How much testing is required before shipping query execution with

dynamic resource management? How to minimize the test suite?

Session 5.2: Workload management

Session goal: clarify the interaction of workload management and robust query
processing.

Scope: contention between running and waiting jobs, tasks, queries, updates –
priorities, wait queues.

Preparation: presentation slides to explain.
Discussion: How can workload analysis assist in robust query processing? How

can robustness be tested?

Session 5.3: Plan management

Session goal: compare techniques from Oracle, MS, Hewlett-Packard, etc.
Scope: plan caching, persistent plans, “hand” optimization, verification of plans,

correction of plans and their cardinality estimation.
Preparation: presentation slides to explain techniques.
Discussion: what techniques are suitable for high scalability, mass deployments,

cloud deployment, etc.?



10 G. Graefe, H.A. Kuno, A.C. König, V. Markl and K-U. Sattler

Session 5.4: Configuration management

Session goal: Define regression tests to identify when a configuration change
impacts the robustness advances & limitations of core performance factors
(query optimization, query execution, physical database design). Initialize
possible publications.

Scope: setup & patches, server options & best practices.
Preparation: Collect existing practices for specifying and validating configura-

tion changes, horror sto- ries about configurations changes that impacted
query processing robustness, how do existing configuration management tools
enable correlation and root cause analysis?

Discussion: How to correlate configurations changes to measured results of test-
ing plan management, workload management, and resource management ro-
bustness?

Session 5.5: Break out: test suite design

Session goal: design test suites for database utilities and adaptive physical database
design.

Session 5.6: Paper preparation

Session goal: initialize one or more publications on robust query processing and
measuring it (title, abstract, conclusions, outline).

5 Break-out sessions

Each day featured several breakout sessions, where the seminar was split in
smaller groups. These sessions reflected each day’s theme.

The goal of the first day’s breakout sessions was test suite design, i.e. which
aspects of robust query processing should be tested and which metrics are appro-
priate. The participants proposed several test suites, e.g. a benchmark inspired
by tractor pulling in farming where the system is evaluated against an increas-
ingly complex workload, as well as a benchmark for measuring end-to-end ro-
bustness of query processors considering two sources of performance variability:
intrinsic variability reflecting the complexity of a query and extrinsic variability
reflecting changes in the environment.

The second day’s session were devoted to robustness issues in query opti-
mization. The working groups discussed various aspects to assess and control the
robustness of query optimization decisions by heuristic guidance and termina-
tion, the problem of cardinality estimation for queries with complex expressions
and appropriate metrics, as well as reasons, metrics and benchmarks for risk in
query optimization decisions.

Measuring the contribution of query execution and access methods to robust
query processing was the goal of day 3. Specific topics of working groups in this
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area were the problem of deferring optimization decisions to query execution
time by looking at concrete optimizer decisions and the spectra of interaction
between optimization and execution as well as appropriate measures.

On the fourth day, two topics were addressed in parallel. In the first track
of sessions, robustness of physical database design tools such as index selection
tools and design advisors was discussed. The working groups proposed metrics
and benchmarks allowing to evaluate robustness of these utilities. The second
track of sessions addressed a broader system context by discussing the interaction
of various system components in the relationship to robustness. A particular
result of these working groups was a mixed workload benchmark bridging the
gap between the existing single-workload suites and providing an opportunity to
assess quality of workload management components in DBMS.

5.1 Definitions and tests

Tractor Pulling

Martin Kersten, Alfons Kemper, Volker Markl, Anisoara Nica, Meikel Poess,
Kai-Uwe Sattler

Robustness of database systems under stress is hard to quantify, because there
are many factors involved. Most notably the user expectation to perform a job
within certain bounds of his expectation. The goal of this working group was to
develop a database benchmark inspired by tractor pulling in farming.

In this benchmark, the tractor pull suite is formulated to evaluate a system
systematically against an increasely complex workload in an automatic way.
The parameter space for comparison of intra- and extra-solutions is defined with
a metric based on the increasing variance in response time to enable relative
comparisons of the solutions provided with a particular focus on robustness.

Black Hat Query Optimization

Guy Lohman, Rick Cole, Surajit Chaudhuri, Harumi Kuno

Categories of robustness testing (areas where "evil" queries are needed)

1. Cardinality estimation – sensitivity of cardinality estimation accuracy to
– Correlation (Redundancy/too much information)
• Correlation within tables
• Correlation across tables (star schema skew across tables)
• Multiple join predicates

– Skew
2. Plan generation – Optimality of plans dependent on

– accuracy of cardinality estimation
– repertoire of possible plans
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– search space
3. Execution-time – Sensitivity to robust vs. non-robust execution operators

Problems in detecting / correcting:

– "Heisenbug" - when you stick probes in to measure some anomaly, it goes
away.

– Sometimes “two wrongs can make a right”, i.e., off-setting errors, so that
when one error is fixed, the other one appears.

Note: Need to balance accuracy of cardinality and cost models against cost (time,
space) of attaining increased accuracy due to overhead of meta-data collection -
e.g., actual execution counts, compile results, statistics collection - particularly
at larger scales: more tables, more data, more predicates, and more complex
queries.

Which offers more opportunity for disaster — robust query optimization or
robust query execution? Guy observes (see war story, below) that cardinality
estimation has the biggest impact, which far eclipses any other decision. This
can affect all plan generation choices, esp. join order and join method. How to
measure the next biggest opportunity after that? How to compare impact of
fragile cardinality estimates vs. fragile operator implementations?

Guy’s cardinality estimation war story: Led lecture and practical example on
"how to debug" for approx. 20 DBAs at large insurance company. Lead DBA
provided practical exercise’s problem: EXPLAINs for two single-table queries
consumed printouts 3/4 inches thick! Only difference was a single additional
predicate on the second query, but the cardinality estimate varied by 7 orders
of magnitude (database contained approx. 10M rows). Second query had one
additional predicate that was a pseudo-key (first 4 bytes of last name + first
and middle initial + zip code + last 4 bytes of Social Security Number. Since
this was completely redundant of the information in the other predicates, it
significantly underestimated the cardinality by 7 orders of magnitude (1 / #
rows), causing a terrible plan, because of the underestimate.

There are three separate levels to measure:

1. The cardinality model: Input = a query and whatever statistics (meta-data)
has been accumulated; Output = cardinality estimates.

2. The plan generation (and costing) model: Input = cardinality estimates and
meta-data; Output = plan and its estimated cost.

3. The query execution engine: Input = plan and its estimated cost; Output =
answers to query, actual cardinality and execution time (cost).

This results in three interesting tests of robustness:

1. Robustness of cardinality estimation accuracy.
2. Ability of query optimizer to produce a good (and robust) plan, given suspect

cardinality estimates.
3. Robustness of a given plan, in terms of the executor’s ability to adapt it to

run-time unknowns.



Robust Query Processing 13

Measure (Time, Space, Accuracy)
How to measure robustness of cardinality accuracy?
Measure CPU cycles to do optimization (cost to create plan)
How to measure robustness of plan?
Execution changes

– Boundaries at which small changes make big differences in performance
(buffer pool, sort heap)

– Hardware changes
– Switch workloads (varying ratio of updates) for a fixed schema
– Watching changes in behavior

We will focus on optimizer and cardinality errors. Specifically, one could measure
estimated cardinality via EXPLAIN, and by adding LEO-like counters to run-
time, measure the estimated percent of error in the cardinality estimate with |
Estimate-Actual | / Actual

Benchmarking Robustness

Goetz Graefe, Jens Dittrich, Stefan Krompass, Thomas Neumann, Harald Schoen-
ing, Ken Salem

We investigate query processors with respect to their robustness against differ-
ent ways of expressing a semantically equivalent query. Ideally, resources needed
for execution should be identical, no matter how a query is stated. For ex-
ample, SELECT 1 FROM A,B should behave the same as SELECT 1 FROM
B,A. Various test sets for different aspects of a query have been defined, and a
benchmark driver has been implemented, which allows to execute the test sets
against different query processing engines. In addition to mere execution times,
it may be worthwhile to also consider cardinality estimations (that should not
only reasonably estimate the real result size but also should be in the same or-
der of magnitude for semantically equivalent queries) and cost estimations. For
the definition of test sets, we started with single-table queries (using equivalent
expressions for simple arithmetics, for range queries, using negation etc.). As
an example, a query using “. . . where not (lshipdate ! = ‘2002–01–13’)” should be
equivalent to a query “. . . where (lshipdate = ‘2002–01–13’)”, both in result and
in behaviour. At first we did not assume access paths, then added simple and
multi-column indexes. With respect to selection from multi-column indexes, re-
strictions might apply to leading, intermediate, or trailing index fields; they may
be equality or range predicates; and there may be combinations. For example,
an index on (A, B, C) should be used for “. . . where A = 4 and B between 7 and
11” as well as “. . . where A in {4, 7, 11} and B between 7 and 11”. As a further
variable, we execute queries with literals versus queries with parameters. The
various test sets will be executed against various open and commercial query
engines.
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Measuring end to end robustness for Query Processors

Parag Agrawal, Natassa Ailamaki, Nico Bruno, Leo Giakoumakis, Jayant Har-
itsa, Stratos Idreos, Wolfgang Lehner, Neoklis Polyzotis

We propose a benchmark for measuring end to end robustness of a query proces-
sor. Usually robustness of query processing is defined as consistency, predictabil-
ity and the ability of the system to react smoothly in response to environment
changes. We refine that definition by identifying two sources of performance
variability: intrinsic variability which reflects the true complexity of the query
in the new environment, and extrinsic variability, which stems from the inability
of the system to model and adapt to changes in the environment. We believe
that robustness should only measure extrinsic variability since any system would
have to pay the cost of intrinsic variability to reflect the environment changes.
To quantify this new notion of robustness we propose to measure the divergence
(in execution time) between the plan produced by the query processor and the
ideal plan for the corresponding environment. We couple that divergence met-
ric with a performance metric and thus characterize robustness as the system’s
ability to minimize extrinsic variability. We complement that conceptual met-
ric with various efficient and pragmatic algorithms for approximating the ideal
plan, and environment changes that exercise known limitations of current query
processors.

5.2 Query Optimization

Risk Reduction in Database Query Optimizers

Jayant Haritsa, Awny Al-Omari, Nicolas Bruno, Amol Deshpande, Leo Giak-
oumakis, Wey Guy, Alfons Kemper, Wolfgang Lehner, Alkis Polyzotis, Eric Si-
mon

We have investigated and catalogued a variety of reasons due to which database
query optimizers make errors in their selectivity estimations. The estimation
errors have been transformed into a multi-dimensional space with each query
having a compile-time and a run-time location in this space. The error metric is
defined as the summation over the multi-dimensional space of the probability of
each error times the adverse impact of that error. Several variants are feasible
over this basic definition. A preliminary benchmark schema and a query have
been identified for evaluating robustness of modern optimizers.
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Robust Query Optimization: Cardinality estimation for
queries with complex (known unknown) expressions

Anisoara Nica, Goetz Graefe, Nicolas Bruno, Rick Cole, Martin Kersten, Wolf-
gang Lehner, Guy Lohman, Robert Wrembel

A cost-based query optimizer of a relational database management system
(RDBMS) uses cost estimates to compare enumerated query plans, hence re-
lies on the accuracy of the cost model to find the best execution plan for a SQL
statement. The cost model needs, among other metrics, two estimates to com-
pute the cost of partial access plans: (1) the estimated size of the intermediate
results which is based on the cardinality (i.e., the number of rows) estimations
for the partial plans; and (2) the cost estimates of physical operators (e.g., hash
joins) implemented in the execution engine of the RDBMS.

It is widely known that the cardinality estimation errors are often the cause
of inefficient query plans generated by the query optimizers. The errors in cardi-
nality estimations are largely due to (a) incorrect selectivity estimations of the
individual predicates used in the SQL statement; (b) assumptions made about
the correlations between predicates (e.g., independence assumptions); and (c) the
semantic complexity of the query expressions (e.g., recursive query expressions).

Firstly, we classified the complex expressions (’known unknown’) which can
contribute to the cardinality estimation errors. The first category is related to
selectivity estimation errors of individual predicates which includes predicates
used in WHERE and ON clauses containing user defined functions (UDFs), built-
in functions, subqueries, expressions on a derived table columns. The second
category is related to the complexity of query constructs for which the cardinality
estimation of the results is very hard to compute. This second category includes
recursive query blocks, outer joins, grouped query blocks, distinct query blocks,
nested query blocks, UNION, EXCEPT, and INTERSECT queries.

Secondly, we designed a benchmark which can be used to assess the robust-
ness of the cardinality estimation of a query optimizer. The benchmark should
include queries containing complex expressions classified above. The proposed
metrics for assessing the robustness of a query optimizer are:

(I) For the best plan generated by the query optimizer, compute, for each
physical operator, the cardinality estimation error.

Metric1 = SUM_all physical operators of the best plan
( | ’Estimated cardinality’ - ’Actual cardinality’ | / ’Actual cardinality’ ).

’Actual cardinality’ of a physical operator can be obtained by computing, in
isolation, the result of the query subexpression corresponding to the subtree of
that physical operator.

(II) Metric1 can be 0 (ideal) for the best plan. However, for many other
plans which were enumerated by the query optimizer but pruned during the
query optimization process Metric1 can be very large. Hence, a more realistic
metric is:

Metric2 = SUM_all physical operators of the enumerated plans
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( |’Estimated cardinality’ - ’Actual cardinality’ | / ’Actual cardinality’ ).
(III) For each plan enumerated by the query optimizer, obtain its runtime by

imposing that plan. ’RunTimeOpt’ = minimum runtime among all enumerated
access plans. ’RunTimeBest’ = runtime of the best plan generated by the query
optimizer

Metric3 = |RunTimeOpt - RunTimeBest| / RunTimeBest.
Last but not least, we discussed the new query landscape which contains gen-

erated queries. This new landscape includes very complex queries generated by
new types of applications such as Object Relational Mapping (ORM) applica-
tions. The generated queries bring new types of problems to the query optimizer
mainly due to the high degree of redundancy in the query semantics. As an
example, the query Q1 below is generated by an Entity Framework application
and it is semantically equivalent to the query Q2. However, many query optimiz-
ers may not have the highly sophisticated semantic transformations required to
rewrite Q1 into Q2. Our take away message is that proposed techniques dealing
with cardinality estimation computation for complex query expressions must be
extended or redesigned to take into account this new complex query landscape.

Q1 = SELECT
[Project9].[ID] AS [ID],[Project9].[C1] AS [C1],[Project9].[C2] AS [C2],
[Project9].[ID1] AS [ID1],[Project9].[SalesOrderID] AS [SalesOrderID],
[Project9].[TotalDue] AS [TotalDue]
FROM
( SELECT [Distinct1].[ID] AS [ID], 1 AS [C1],
[Project8].[ID] AS [ID1], [Project8].[SalesOrderID] AS [SalesOrderID],

[Project8].[TotalDue] AS [TotalDue], [Project8].[C1] AS [C2]
FROM

(SELECT DISTINCT [Extent1].[ID] AS [ID]
FROM [DBA].[Person] AS [Extent1]

INNER JOIN [DBA].[Sales] AS [Extent2]
ON EXISTS (SELECT cast(1 as bit) AS [C1]

FROM ( SELECT cast(1 as bit) AS X ) AS [SingleRowTable1]
LEFT OUTER JOIN (SELECT [Extent3].[ID] AS [ID]

FROM [DBA].[Person] AS [Extent3]
WHERE [Extent2].[ID] = [Extent3].[ID] )AS [Project1] ON cast(1 as bit) = cast(1 as bit)

LEFT OUTER JOIN (SELECT [Extent4].[ID] AS [ID]
FROM [DBA].[Person] AS [Extent4]

WHERE [Extent2].[ID] = [Extent4].[ID] ) AS [Project2] ON cast(1 as bit) = cast(1 as bit)
WHERE ([Extent1].[ID] = [Project1].[ID]) OR (([Extent1].[ID] IS NULL)

AND ([Project2].[ID] IS NULL)) )
) AS [Distinct1]

LEFT OUTER JOIN
(SELECT [Extent5].[ID] AS [ID], [Extent6].[SalesOrderID] AS [SalesOrderID], [Extent6].[TotalDue] AS [TotalDue], 1 AS [C1]

FROM [DBA].[Person] AS [Extent5]
INNER JOIN [DBA].[Sales] AS [Extent6]

ON EXISTS (SELECT cast(1 as bit) AS [C1]
FROM ( SELECT cast(1 as bit) AS X ) AS [SingleRowTable2]
LEFT OUTER JOIN (SELECT [Extent9].[ID] AS [ID]

FROM [DBA].[Person] AS [Extent9]
WHERE [Extent6].[ID] = [Extent9].[ID] )AS [Project5]
ON cast(1 as bit) = cast(1 as bit)

LEFT OUTER JOIN (SELECT [Extent8].[ID] AS [ID]
FROM [DBA].[Person] AS [Extent8]

WHERE [Extent6].[ID] = [Extent8].[ID] )
AS [Project6] ON cast(1 as bit) = cast(1 as bit)

WHERE ([Extent5].[ID] = [Project5].[ID])
OR (([Extent5].[ID] IS NULL) AND ([Project6].[ID] IS NULL))

)
) AS [Project8]
ON ([Project8].[ID] = [Distinct1].[ID]) OR (([Project8].[ID] IS NULL)
AND ([Distinct1].[ID] IS NULL))
) AS [Project9]
ORDER BY [Project9].[ID] ASC, [Project9].[C2] ASC

Q2 = select Extent6.ID as,
1 as C1,
1 as C2,
Extent6.ID as ID1,
Extent6.SalesOrderID as SalesOrderID,
Extent6.TotalDue as TotalDue
from DBA.Sales as Extent6
order by Extent6.ID as ID asc
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Consistent selectivity estimation via maximum entropy

Presented by Volker Markl. Originally appeared in VLDB J. 16(1): 55-76 (2007)
Authors : Volker Markl, Peter J. Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh
Srivastava, Tam Minh Tran

To provide robust query performance, cost-based query optimizers need to esti-
mate the selectivity of conjunctive predicates when comparing alternative query
execution plans. To this end, advanced optimizers use multivariate statistics to
improve information about the joint distribution of attribute values in a ta-
ble. The joint distribution for all columns is almost always too large to store
completely, and the resulting use of partial distribution information raises the
possibility that multiple, non-equivalent selectivity estimates may be available
for a given predicate. Current optimizers use cumbersome ad hoc methods to
ensure that selectivities are estimated in a consistent manner. These methods
ignore valuable information and tend to bias the optimizer toward query plans
for which the least information is available, often yielding poor results. The
maximum entropy method proposed by Markl et al. enables robust cardinal-
ity estimation based on the principle of maximum entropy (ME). The method
exploits all available information and avoids the bias problem. In the absence
of detailed knowledge, the ME approach reduces to standard uniformity and
independence assumptions.

Measuring the Robustness of Query Optimization:
Towards a Robustness Metric

Kai-Uwe Sattler, Meikel Poess, Florian Waas, Ken Salem, Harald Schoening,
Glenn Paulley

We discussed the notions of robustness and performance and how to quantify
them. The discussion focused on the family of simple parameterized range queries
Q = {q1, q2, . . . , qn}, where the parameter controls query selectivity. For in-
stance, q1 =

SELECT count(*)
FROM T1
where T1.C1>=P1

AND T1.C1<=P1;

We imagined a plot of query execution times as a function of selectivity, and
we concluded that the performance could be measured as the difference between
measured, E(qi)), and optimal execution time, O(qi), such as: P (qi) = |O(qi)−
E(qi)|. It is unclear at this point how to obtain (O(qi). Robustness is related
to the smoothness of the execution time function. We considered the coefficient
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of variation of the query performance of query set Q as a potential smoothness
metric, i.e.

S(Q) =
σQ
µQ

=

√
1
n +

∑n
i=1

(
P (qi)−

∑n
i=1 P (qi)

n

)2
∑n

i=1 P (qi)

n

.

Because performance and robustness are orthogonal metrics, it is necessary to
consider both of them. While measurement of query execution time allows for the
characterization of the performance and robustness of a Database Management
System (DBMS), such measurements do not allow us to draw any conclusions
about individual components of the DBMS, such as the query optimization. In a
second approach we considered whether a comparison of measured and estimated
query result cardinalities might be a good way to characterizing the performance
and robustness. That is, for a set of queries we plans we extract the estimated top
level cardinalities for each query: Ce = {e1, e2, . . . , en}. Then, we compute the
cardinalities by running the queries: Ca = {a1, a2, . . . , an}. As the final metric,

C(Q), we considered the geometric mean of the error: C(Q) = n

√∏n
i=1

|ai−ei|
ai

.
Computing the cardinality estimate error is an imperfect measure of perfor-

mance since estimation errors do not necessarily result in plan changes. It also
fails to measure robustness. However, correlating measurements of cardinality es-
timation errors with execution time measurements might be a way of assuming
responsibility of poor performance to the optimizer.

5.3 Query Execution

Deferring optimization decisions to query execution time
using novel execution engine paradigms

Anastasia Ailamaki, Christian Koenig, Bernhard Mitschang, Martin Kersten,
Stratos Idreos, Volker Markl, Eric Simon, Stefan Manegold, Goetz Graefe, Alfons
Kemper, Anisoara Nica

When deciding on the least expensive plan for a query, the query optimizer uses
two kinds of information:

1. Statistics on the data
2. Cost estimations for using the system’s resources.

Both of the above are inaccurate. Statistics are invalidated by updates to
the data and changes on value distributions, and real system costs can drift
from estimations by orders of magnitude, for example in the face of competing
workloads.

At execution time, we know more about data and the system than at op-
timization time. This raises an opportunity to reap the knowledge and “cor-
rect” optimizer’s decisions. New query execution paradigms such as MonetDB
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and StagedDB act as enablers for such initiatives. MonetDB employs a “ver-
tical” query processing optimization strategy which is based on architecture-
conscious data partitioning and aggressive materializing of intermediate results
for just-in-time optimal decisions. StagedDB optimizes sharing and parallelism
by decoupling operators into independent services, and uses queues of requests
to cohort-schedule queries with common subtrees in their plans. Both systems
make it much easier to reconsider optimization decisions at processing time than
a traditional query processing engine.

So which optimizer decisions can we reconsider? Clearly, join orders and
selection of join algorithms play a key role in performance and can be heavily
biased by inaccurate statistics towards a suboptimal plan. Join orders are mostly
determined by cardinality estimations, where join algorithms are determined by
other aspects of the data such as distribution and skew as well as sorting. As
cardinality estimation is the Achilles’ heel of most query optimizers, an effort to
detect and reconsider an incorrect join order at query processing time.

A good example is the query “bubble”, described as a join amongst several
tables which is submitted to the query engine without a predetermined join order.
In business processes (e.g. call center) the system accepts queries of the form
Q(x1, x2, ..., xn) where xi is a variable; These can be either precompiled or they
are compiled on the spot. Precompilation increases the opportunity for common
subtrees, but ignores differences in optimal join orders because of changes in
selectivity. Query-at-a-time compilation has the inverse effect, plus an additional
optimization cost. The tradeoff is relaxed by sending a bubble describing a multi-
way join to the query; the corresponding operator (e.g., m-join or eddies) execute
the bubble, which then serves as a reusable block for other queries in the system.
The problem with such operators is the increased memory requirements when
many joins are executed on large datasets (e.g., multi-input hash join), or routing
overhead (in the case of eddies).

We conclude that deferring or reconsidering optimization decisions to the
query processor is a promising direction, however it is difficult to achieve pre-
dictably good results using traditional query processing engines. Novel query
processing paradigms such as MonetDB and StagedDB strengthen the interac-
tion between the database operators and the underlying system, perhaps offer-
ing potential to reconsider optimizer decisions without the associated processing
overheads.

Testing how a query engine adapts to unexpected runtime
environment

Eric Simon, Florian Waas, Bernhard Mitschang, Robert Wrembel

We first convened to define the robustness of a query processing engine as its
capability (until certain limits) to adapt unexpected runtime environment. We
considered a query plan generated by a query optimizer under certain assump-
tions on runtime environment. However, at the time a query plan is executed the
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assumptions may not hold, which may result in bad response time or through-
put. We classified the parameters of the runtime environment into a category
of query-related and query-unrelated parameters. The former category includes:
data correlation between two columns, selectivity of filters with functions, selec-
tivity of filters with arithmetic expressions. These parameters determine the size
of the result of unary or binary operations. The second category includes: main
memory, network speed and CPU. We focused our attention on main memory.
Our simple idea of a robust test for this parameter is as follows. We consider a
workload of queries, say TPC-H queries. We set up the memory parameter of
the query engine with the amount of memory that is available on the system.
For each query, we generate a query plan and we then execute the query using
two sets of experiments. In the first set, we reduce the value of the static avail-
able memory for the query engine (by changing the memory parameter value).
In the second set, we run an eager process concurrently with the query so that
the available memory decreases as query execution goes. We measure response
time in each case. We left open the implementation of a "portable test" for the
second set of experiments. A similar testbed can then be constructed by run-
ning several instances of the same query (same query plan) in parallel. We then
measure throughput.

A generalized join algorithm

Presented by Goetz Graefe, Hewlett-Packard Laboratories

Database query processing traditionally relies on three alternative join algo-
rithms: index nested loops join exploits an index on its inner input, merge join
exploits sorted inputs, and hash join exploits differences in the sizes of the join
inputs. Cost-based query optimization chooses the most appropriate algorithm
for each query and for each operation. Unfortunately, mistaken algorithm choices
during compile-time query optimization are common yet expensive to investigate
and to resolve.

Our goal is to end mistaken choices among join algorithms by replacing the
three traditional join algorithms with a single one. Like merge join, this new join
algorithm exploits sorted inputs. Like hash join, it exploits different input sizes
for unsorted inputs. In fact, for unsorted inputs, the cost functions for recursive
hash join and for hybrid hash join have guided our search for the new join
algorithm. In consequence, the new join algorithm can replace both merge join
and hash join in a database management system. The in-memory components of
the new join algorithm employ indexes. If the database contains indexes for one
(or both) of the inputs, the new join can exploit persistent indexes instead of
temporary in-memory indexes. Using database indexes to match input records,
the new join algorithm can also replace index nested loops join.
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Interaction of Execution and Optimization

Surajit Chaudhuri, Jayant Haritsa, Stratos Idreos, Ihab Ilyas, Amol Deshpande,
Rick Cole, Florian Waas, Awny Al-Omari, Guy Lohman

This breakout session focused on how to test the impact of interactions between
the query optimizer and the execution engine on query processing robustness.
The session began by considering whether robust query processing is equivalent
to adaptive query processing. According to MeriamWebster, robust does not nec-
essarily mean adaptive— robust means capable of operating under a wide range
of conditions. According to that definition, in many ways, DBMSs are already
robust. But what we are mean by query processing robustness is that systems
should perform optimally under a wide range of conditions. This is much more
stringent than robustness! Perhaps we should coin a new word ("roboptimal"?
"adaptimal"? "optibust"? :) .

Performing optimally under a wide range of possibly unexpected conditions
requires run-time adaptability. There could be several reasons we need to adapt
a query plan. The plan could be perfect for expected conditions, but the execu-
tion environment could change at runtime, or the initial plan could have been
too narrow due to incomplete knowledge, which we would need to mitigate at
execution time even though the environment didn’t change. Readers are referred
to the definitive work by Amol Deshpande about adaptive query processing [De-
sphande 2007]. One can consider the problem of adaptation using an analogy to
balancing an investment portfolio, where an aggressive investment paves the way
to greater potential gain at the risk of greater loss. The question is how much
effort to invest in making a plan adaptable, when to invest it, and how often
and when (a priori? post mortem?) to re-balance the investment plan. The over-
head, and the payoff, can be greater for parallel systems. For example, Teradata
materializes result of each join for the sake of recoverability, but at the cost of
increased IO. Some systems (Ingres, microstrategy, and map reduce.) also ma-
terialize intermediate results for the sake of safety, whereas other systems such
as System R pipeline for the sake of performance.

There is a spectrum of runtime interaction for adaptive query optimiza-
tion/processing. Dimensions include (1) how often adaptation takes place, (2) at
what level the adjustment takes place, and (3) when the adaptation occurs. For
(1), the spectrum runs the gamut from row-by-row (Eddies), to per plan segment
(POP or Choose-Plan), per query, per session. With regard to (2), adaptation
can take place at the macro-level (e.g. entire system) or the micro-level (operator
parameter). As for (3), Choose-Plan adapts query plans a priori (to runtime).
POP checks actual cardinalities against estimates and lazily/opportunistically
adapts plans at runtime. LEO lets plans run to completion, then performs a
post-mortem analysis for the benefit of future plans. (Note that POP and LEO
are complementary — POP recognizes and avoids problems at runtime; LEO
can then figure out the causes of problems.)

The final question is how to measure the impact of runtime interactions be-
tween the optimizer and the executor? Issues include what to measure (e.g., mea-
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sure total resource usage?) and how to interpret it (how to distinguish whether
a query is a victim or a perpetrator. Guy presented some slides showing how
IBM demonstrated the impact of POP upon a customer workload.

Figure 1 shows aggregated improvement – the blue rectangles represent that
the mid-50% of the queries in the workload had response times between 40
and 210 time units. The red lines above and below the rectangles represent the
range of response times for the remaining outliers. This figure demonstrates that
overall, although POP only modestly improved most queries’ response times, it
dramatically improved the response times of "problem" queries.
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Fig. 1. Aggregated improvement.

Figure 2 is based on the same experiments as Figure 1, but shows speed up
as a ratio of time without POP vs. time with POP. The queries are ordered by
decreasing amount of improvement. The red line indicates the threshold of no
speed up. This graph explicitly indicates regressions – queries that fall below the
red line, whose speeds increased with POP, but does not intuitively convey the
degree of either improvement or regression (e.g., for the query that regressed,
how significant was the regression). Furthermore, this type of graph would not
scale to show results for large numbers of queries.

Finally, Figure 3 is a scatter plot that shows both regression and improvement
for each query. The X-axis represents response time without POP and the Y-
axis represents response time with POP. The advantage of a scatter plot is
that it gives both improvements and regressions the perspective of overall query
response time. Also, a scatter plot scales naturally to show large numbers of data
points.
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Fig. 2. Relative improvement with and without POP.

 

Fig. 3. Scatter plot.
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5.4 Physical Database Designs and System Context

Heuristic Guidance and Termination of Query
Optimization

Stefan Manegold, Anastassia Ailamaki, Stratos Idreos, Martin Kersten, Stefan
Komprass, Guy Lohman, Thomas Neumann, Anisoara Nica

One aspect of robust query processing is the robustness of the query optimization
process itself. We discussed various aspects to assess and control the robustness
of query optimization decisions, focusing in particular on query parameters that
are unknown at query compilation time. In addition, we discussed techniques to
ensure the robustness of query optimization.

Evaluating the robustness of a physical database design
advisor

Goetz Graefe, Anastassia Ailamaki, Stephan Ewen, Anisoara Nica, Robert Wrem-
bel

A right physical database design (indexes, partitions, materialized views, and
other data structures) strongly impacts query performance. Typically, a physical
database design is done in two steps. In the first step, after designing a logical
schema, the set of indexes, partitions, and materialized views is created by a
DB designer based on the analysis of a DB schema and user requirements. In
the second step, after deploying a database, the set of additional data structures
is created (typically indexes and materialized views). This set is based on the
analysis of a real workload and is very often proposed by a software, called
physical database design advisor (PDBAdv). The disadvantage of the second
step is that the set of data structures proposed by a PDBAdv optimizes the
execution of a particular workload, assuming that it is static over time.

In order to evaluate the robustness of a PDBAdv and in order to be able
to compare different PDBAdws we propose to use a standard TPC-H bench-
mark and a robustness evaluation method. The robustness evaluation method is
as follows. First, the original TPC-H benchmark is run and for it, a PDBAdv
proposes an initial physical DB design. For this design, the overall execution
time (T0) is measured. Next, queries in TPC-H are being modified but retain
their patterns. Different modifications constitute different workloads. For every
modified workload W1, W2, ..., Wn, its overall execution time T1, T2, ..., Tn is
measured for the initial DB design. The robustness of the PDBAdv is evaluated
by the differences between T1 and T0, T2 and T0, etc. The maximum difference
between the times is treated as a parameter.
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Assessing the Robustness of Index Selection Tools

Stefan Manegold, Jens Dittrich, Stephan Ewen, Jayant Haritsa, Stratos Idreos,
Wolfgang Lehner, Guy Lohman, Harald Schöning

Creating a suitable physical design, in particular creating the most beneficial
indexes, is an important aspect of achieving high performance in database sys-
tems. Given a (historic) workload, automated index selection tools suggest a set
of indexes to that should be created to achieve optimal performance for that
workload, assuming that the given workload is representative for future work-
loads. In this work, we propose a metric to assess the robustness of such physical
database design decisions wrt. varying future workloads. Focusing on single-table
access, i.e., omitting joins for the time being, workloads differ in the in the set
of columns they access in the select clause (projection list), where clause (local
predicates), and group by clause. The idea is to create variations of a workload
by varying these column sets and to compare both the estimated and real (mea-
sured) costs of the workload variation to the original workload given the physical
design suggested for the original workload. The less to performance of the varied
workloads on the original index set differs from the performance of the original
workload, the more robust is the advice of the index selection tools.

Benchmarking Hybrid OLTP & OLAP Database
Workloads

Alfons Kemper, Harumi Kuno, Glenn Paulley, Stefan Krompass, Eric Simon,
Kai-Uwe Sattler, Leo Giakoumakis, Florian Waas, Rick Cole, Meikel Poess, Wey
Guy, Ken Salem, Thomas Neumann

On Line Transaction Processing (OLTP) and Business Intelligence (BI) systems
have performance characteristics inherent in their system design, database im-
plementation and physical data layout. OLTP systems facilitate and manage
transaction-oriented applications, which are vital to the day-to-day operations
of a company. They are designed for data entry and retrieval transaction pro-
cessing of relatively small amounts of data, e.g. row-wise lookup and update.
Hence, OLTP systems require short latency, support for a high number of users
and high availability. To the contrary, BI systems are usually deployed for the
spotting, digging-out, and analyzing of large amounts of business data for the
purpose of assisting with the decision making and planning of a company, e.g.
computing sales revenue by products across regions and time, or fraud detec-
tion. Therefore, BI systems require fast scans, complex data algorithms for a
relatively small number of users.

Because of their orthogonal performance characteristics, OLTP and BI data-
bases have been kept and maintained on separate systems, coupled through
Extract, Transform and Load (ETL) processes. However, due to companiesâ
insatiable need for up-to-the-second business intelligence of their operational
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data, which, in many cases add Terabytes of data per day, recently the case
has been made for operational or real-time Business Intelligence. The idea is
to build systems that suit the performance requirements of both OLTP and BI
systems. The advent of the first generation of such hybrid OLTP&BI systems
requires means to characterize their performance. While there are standardized
and widely used benchmarks addressing either OLTP or BI workloads, the lack
of a hybrid benchmark led us to the definition of a new mixed workload bench-
mark, called TPC-CH. This new benchmark bridges the gap between the existing
single-workload benchmarks: TPC-C for OLTP and TPC-H for BI.

The newly proposed TPC-CH benchmark executes a mixed workload: A
transactional workload based on the order entry processing of TPC-C and a cor-
responding TPC-H equivalent BI query suite that operates on the same database.
As it is derived from these two most widely used TPC benchmarks our new
TPC-CH benchmark produces results that are highly comparable to both, hy-
brid systems and classic single-workload systems.

5.5 Test Suite Design

Measuring the Effects of Dynamic Activities in Data
Warehouse Workloads on DBMS Performance

Leo Giakoumakis, Glenn Paulley, Meikel Poess, Ken Salem, Kai-Uwe Sattler,
Robert Wrembel

Modern database management systems (DBMSs) are confronted with an
array of dynamic runtime behaviors of data warehouse workloads. Users are
connecting to systems at random times, issuing queries with vastly different
workload characteristics. In order to guarantee high levels of overall system per-
formance, DBMSs need to dynamically allocate the finite system resources to
changing workloads.

In order to measure the ability of a DBMS to manage dynamic allocation
of resources in response to a dynamic workload, we propose a benchmark. The
benchmark is based on TPC-H. It focuses on testing systemsâĂŹ overall per-
formance with respect to the management of main memory and the number
of parallel processes. The benchmark is composed of two basic tests, namely a
Fluctuating Memory Test (FMT) and a Fluctuating degree of Parallelism Test
(FPT).

For both tests, baselines have to be defined. For FMT we define an upper
baseline, further called memUBL, that represents the overall system’s perfor-
mance (an overall response time) for the whole test workload when the entire
available memory is allocated to processing the workload. Similarly, we define
a lower baseline, further called memLBL, that represents the overall system’s
performance when the minimum required memory was allocated for processing
the workload. For FPT we also define two baselines in a similar manner. An
upper baseline (procUBL) and a lower baseline (procLBL) represent the overall
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system’s performance when all the available parallel processes and only one pro-
cess were allocated to processing the workload, respectively. The procLBL and
procUBL baselines can also be measured for single queries.

In FMT, the amount of available memory is dynamically changing when the
test workload is executed. Memory can be decreased gradually from maximum
to minimum, or can change randomly. During the execution of the test workload,
an overall system’s performance is measured. If the tested DBMS manages well
the resources, then the observed performance characteristic oscillates between
memUBL and memLBL.

In FPT, the amount of available parallel processes is decreased for each of
the single queries from the TPC-H benchmark. For a query, say Qi, a tester
defines the number of processes that should be allocated for executing the query.
During the execution of Qi another query, say Qm, is executed that requires more
processes than available. We measure how Qm impacts the performance of Qi.
The number of processes required by Qm can be parameterized.

Finally, as a complex test we propose to merge FMT and FPT in order to
represent the system’s performance in a two-dimensional space.
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6.2 Summaries

D.J. Abadi, S.R. Madden, N. Hachem: Column-Stores vs.
Row-Stores: How Different Are They Really? SIGMOD,
2008

(Summary by Robert Wrembel)

Two the most popular storage systems applied in practice for the ROLAP im-
plementation of a data warehouse (DW) include a row-store and a column-store.
Columnstore systems offer better performance of queries that access subsets of
columns and compute aggregates. A column-store system can be simulated in a
row-store system by: vertically partitioning tables, creating indexes - an index
for one column used by a query, and creating materialized views that contain
columns required by queries.

The paper compares the performance of a column-store and a row-store DWs,
represented by C-Store and System X, respectively. In particular, the paper fo-
cuses on: (1) evaluating the performance of a row-store DWthat simulates a
column-store DWby the three aforementioned mechanisms, and (2) demonstrat-
ing the impact of column-store query optimization techniques on a system’s
performance. The optimization techniques addressed in the paper include: late
materialization (joining columns to form rows is delayed as much as possible in a
query execution plan), block iteration (multiple values from a column are passed
as a block to a query operator), compression techniques (e.g. run-length), and a
new join algorithm (called invisible join) contributed in this paper.

The basic idea of the invisible join is to rewrite joins between a fact table
and dimension tables into predicates on foreign key columns of a fact table. By
using a has function for each predicate, bitmaps are constructed. Bits having
values equal to 1 represent fact rows that fulfill a given predicate. By AND-ing
the bitmaps, a query optimizer obtains the final bitmap describing fact rows
fulfilling all predicates.

The experimental comparison of the aforementioned techniques was done on
the star schema benchmark (a lightweight version of the TPC-H schema with a
scale factor equal to 10). The obtained results for the row-store and column-store
DW led the authors to the following observations. First, by applying vertical par-
titioning to a rowstore DW performance slightly improves but only when less
than 1/4th of columns are selected by a query. It results from the implementation
of vertical partitioning in row-store systems where row headers are included in
every partition increasing its size. Moreover, combining column values into rows
requires expensive hash joins. Second, while the indexing technique is used for
all queried columns, the query optimizer of a row-based DW constructs an ineffi-
cient execution plan with hash joins. Third, the application of materialized views
yields the best performance since appropriately constructed materialized view
contains the required (possibly precomputed) data and joins are not necessary.
Fourth, from the column-oriented optimization techniques the most significant
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ones include compression and late materialization. Finally, the experiments also
showed that the denormalization of a star schema not always increases perfor-
mance of a column-based system. Such a characteristic is caused by a query
optimizer that applies the very efficient invisible join technique on a normalized
star schema.

D.J. Abadi, S.R. Madden, N. Hachem: Column-Stores vs.
Row-Stores: How Different Are They Really? SIGMOD,
2008

(Summary by Harald Schöning)

The paper covers two approaches. First, the authors try to show that column-
store performance cannot be achieved by just configuring row stores in a column-
store like manner. Experiments are limited to read-only OLAP scenarios. Three
different setups of row stores are evaluated (using an anonymized commercial row
store): 1) a maximum vertical partition of tables into two-column tables (table
key, attribute) - no indexes defined as far as one can tell from the paper. Storage
requirements for each of these two-column tables are significantly higher than for
the corresponding columns in column stores, because of tuple header overhead,
table key (where the mere position is sufficient in column stores) and missing
compression (run-length encoding). The cost of tuple reconstruction is, however,
introduced even for columns that are not restricted by predicates. Hence, it is
not a surprise that performance of this variant is not convincing. 2) Answering
queries index-only, even for those columns that are not restricted by predicates. It
remains unclear why the authors did not use a combination of predicate-by-index
evaluation and table lookup for query resconstruction. The introduced some op-
timizaion to the tuple reconstruction by extending the index key with the value
of another column (e.g. the foreign key of a dimension table) but it seems there
were still a lot of full index scans (which of course lead to bad performance) 3)
creating a dedicated tailor-made materialized view for each query that contains
only the columns needed for the query, apparently with some bitmap indexes de-
fined. As a result, a full table scan is required. Interestingly, this method did not
only exhibit the best performance. When the authors forced the column store to
act similarly (by forcing the content of a row into a single column), performance
of the column store was much worse than that of the row store In almost all
cases, the materialized view variant showed the best performance, immediately
followed by the "traditional" unmodified row store My personal conclusion on
this part of the paper: I am not sure that the authors found the optimum con-
figuration a row store allows for. As a second experiment (based on C-Store),
various column-store specific optimizations are removed and one new is added to
assess their influence on performance 1) Column-specific compression techniques
such as run-length encoding are disabled. Obviously, organization of columns is
position based (as opposed to value-ordered). Obviously, this causes more IO
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overhead and prevents the usage of operations on compressed data. A perfor-
mance difference of factor 2 is reported 2) the late materialization is removed,
i.e. tuples are reconstructed before any further processing. As a consequence,
some tuples are reconstructed that are discarded by later processing steps, op-
erations cannot work on compressed columns, cache performance decreases and
block iteration cannot be applied (factor 3) 3) block iteration is removed - pro-
cessing happens in a tuple-by-tuple mode. Array-processing, which benefits from
modern CPU architectures, cannot be used then. With block iteration, C-Store
performs 5%-50% better. 4) A novel join optimization is added, that mainly
consists of rewriting a contiguous range of join values as range condition. As a
side result, the paper argues that denormalization is not beneficial for column
stores and decreases performance.

Self-tuning Histograms: Building Histograms without
Looking at Data A. Aboulnaga and S. Chaudhuri Sigmod
1999.

(Summary by Jayant Haritsa)

This paper represents a pioneering effort in successfully applying autonomic
computing concepts to database engines. Specifically, rather than the standard
hard-wired approach of building a certain type of histogram (e.g. equi-width,
equi-depth) for approximating attribute value distributions, an algorithm for
allowing the histogram shape to incrementally adapt itself to the underyling
data is proposed. Beginning with a uniform histogram, the learning process is
implemented through a feedback process based on the estimation errors observed
during query execution - the errors are assigned to the buckets in proportion to
their current frequencies, and the bucket frequencies are either refined or their
ranges reorganized based on these errors. The attractiveness of the self-tuning
scheme lies in its not incurring the computational overheads associated with
directly scanning the data, but gradually inferring the distribution through the
metadata that is produced "for free" during query executions. This indirect
approach also ensures that the histogram construction effort is independent of
the size of the data, a particularly compelling advantage in today’s world of
tera- and peta-byte sized databases that need to be operational on a continuous
basis. Finally, the self-tuning scheme naturally lends itself to efficiently building
multi-dimensional histograms, a long-standing bugbear in the development of
high-quality optimizer models.
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M. Ahmad, A. Aboulnaga, S. Babu: Query Interactions in
Database Workloads. DBTest, 2009

(Summary by Robert Wrembel)

The paper addresses the problem of measuring the performance of a database
system for workloads composed of multiple concurrent queries. Since the queries
interact with each other with respect to the subset of data accessed and the
resources used, the performance measures may differ for different execution or-
ders of the queries. The authors demonstrated this claim by experiments. To this
end, they used the TPC-H benchmark on 1GB and 10GB databases, run by DB2
v.8.1. In the experiments the authors used various database workloads composed
of TPC-H queries Q1 to Q22. A workload was composed of the sequence of the
so-called query mixes. A query mix consists of a number of different number of
instances of each query type, where different instances of a query type may have
different parameter values.

The experiments focused on measuring: (1) overall system performance for
different query mixes and (2) measuring resource consumption in different query
mixes. The experiments showed that some interactions between queries in a mix
decreased overall processing time while other interactions increased overall pro-
cessing time. The experiments showed also that when queries run concurrently,
resource utilization and competition can vary from one query mix to another.
From the experiments, the authors drew two conclusions. First, that measuring a
systemŠs performance without taking into account query interactions may lead
to inaccurate conclusions on performance. Second, that there is no clear impact
of a query mix on resource consumption.

In order to appropriately understand a system’s performance obtained for
a query mix, a DBA should know the workload in advance and the model of
interactions between queries in the workload. Unfortunately, practically, it is
impossible to achieve.

In order to be able to handle the impact of query mixes on a system’s per-
formance, the authors proposed to build the model of a workflow and query
interactions. To this end, a statistical model is was proposed. This model is rep-
resented by the set of functions, y = f(x1, x2, ..., xn) each of which yields the
performance characteristic (e.g., CPU, I/O, overall query execution time) for
a specific query mix, where xi(i = 1, 2, ..., n) is the number of queries of type
i in the mix. Function f() depends on a statistical model used. In the paper,
the authors tested the accuracy of a linear regression and Gaussian processes.
The experiments showed that the Gaussian processes provided a more accurate
estimation of a performance characteristic.
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Towards a Robust Query Optimizer: A Principled and
Practical Approach Brian Babcock, Surajit Chaudhuri
SIGMOD Conference 2005: 119-130

(Summary by Nico Bruno)

The main idea in the paper is to use sampling as the mechanism to obtain car-
dinality estimates. Using samples, then, we can obtain a probability distribution
using Bayes’ rule rather than a single expected value for a given predicate. Then,
we can collapse such distribution in a different way depending on the degree of
"robustness" that we require. We can see this "robustness" parameter as biasing
selectivity values to the "right" (i.e., more tuples) when we require more robust
answers, and to the "left" otherwise. In that way, we will consistently attempt
to overestimate cardinality results in a principled way and avoid picking plans
that can be very bad whenever the true selectivity is larger than its expected
value from the underlying estimators.

Proactive Re-Optimization S. Babu, P. Bizarro and D.
DeWitt Sigmod 2005.

(Summary by Jayant Haritsa)

It is well known that query optimizers often make poor plan choices because the
compile-time estimates of various parameters, such as selectivities, are consid-
erably at odds with those actually encountered at run-time. One approach to
address this issue, which has been extensively investigated in the literature, is
to dynamically reoptimize the query during the course of its processing, with
the reoptimizations triggered by encountering significant errors in the parame-
ter estimates. The runtime values replace these estimates in the reoptimization
process, and may lead to a change in plans midway through the execution. Re-
optimizations and plan changes can incur considerable computational overheads
and loss of prior work, motivating this paper to propose an algorithm called
Rio that attempts to minimize these overheads. Specifically, in the initial opti-
mization phase, Rio uses a set of uncertainty modeling rules to classify selectivity
errors into one of six categories, ranging from "no uncertainty" to "very high un-
certainty", based on their derivation mechanisms. Then, these error categories
are converted to hyper-rectangular error boxes drawn around the optimizerŠs
point estimate. Finally, if the plans chosen by the optimizer at the corners of the
principal diagonal of the box are the same as that chosen at the point estimate,
then this plan is assumed to be robust throughout the box, and reoptimization
is invoked only when the runtime errors are large enough to fall outside the box.
Further, plans that are robust and easily switchable with a minimum loss of the
work already done, are preferentially chosen during the optimization porcess.
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"DIADS: Addressing the "My-Problem-or-Yours"
Syndrome with Integrated SAN and Database Diagnosis"
Babu, Borisov, Uttamchandani, Routray, Singh; FAST
2009

(Summary by Amol Deshpande)

Given a complex end-to-end system that includes a database system and a stor-
age area network, the authors address the problem of identifying the root causes
of query slowdown. Because of the complex interactions between the different
components, it is not easy even for humans to quickly diagnose such issues.
The authors attempt to address this problem in a systematic fashion by us-
ing monitoring data and event logs in conjunction with a symptoms database
that encodes domain knowledge and machine learning techniques, to identify the
possible reasons for the query slowdown.

The paper addresses a very important and tough problem and in my opinion,
the key contributions of the paper lie in formalizing the problem and formulating
an approach. By necessity, the approach requires a fair amount of up front work
and is specific to a specific installation (this may one of the bigger challenges
in applying this approach to different setups). The database-related causes are
comparatively easier to identify, e.g., the plan may have changed causing an
unintentional slowdown. However, the SANrelated causes are somewhat harder
to pin down. For instance, we need to know which physical and logical compo-
nents can have an impact on a specific operator in the query plan, and these
components would be different for different operators.

Another component of the system is a symptoms database, which allows map-
ping the specific low-level inferences to high-level root causes. This database also
needs to be populated externally using domain knowledge. The authors observe
that several efforts are underway to create such databases in the industry. Finally
the paper contains an extensive experimental study that uses a production SAN
environment to illustrate the effectiveness of the system at identifying query
slowdown causes. Overall, I think this is a great effort at solving an important
problem, and should be studied further.

G. Candea, N. Polyzotis, and R. Vingralek. A scalable,
predictable join operator for highly concurrent data
warehouses. PVLDB, 2(1):277-288, 2009

(Summarized by Jens Dittrich)

About: This paper presents a new approach to processing star queries in a data
warehouse. Background: Traditional query processing engines use a query-at-
a-time model to translate incoming declarative queries to a physical execution
plan. However this approach neglects that concurrent queries may compete for
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resources invalidating the assumptions made by the cost-based optimizer in the
first place. As an example consider multiple queries using the same I/O-device,
e.g. a hard disk. Assume each query performs a large scan. Therefore, in terms
of the cost model we would expect access times of two random I/Os plus the
sequential scan costs. In reality, however, both queries will be competing for the
hard disk. Each query will be allowed to execute one portion of the scan, then we
switch to the other query triggering another random I/O and so forth. Overall
this process could trigger considerable random I/O.

Solution: the authors propose a fixed physical execution pipeline. The pipeline
uses a shared circular scan [Harizopoulos et al, SIGMO 2005]. It continuously
scans the central fact table. Each tuple that is read by the circular scan is
enriched by a bit vector. That bit vector contains one bit for each query in the
workload to signal whether that tuple is relevant for a query. Each tuple is then
joined (probed) to a set of hash tables where each one contains the union of the
tuples of a dimension table satifying the search predicates of the current query
workload. Again each tuple in each dimension is enriched by a bit vector signaling
whether that tuple is relevant for a query. A probe of a tuple from the fact table
then combines both bit vectors with a boolean AND. The effect is somewhat
similar to a SIMD operation: data for multiple queries is computed with a single
operation. Tuples with bit vectors where all bits are set to zero are dropped
from the pipeline. After all tuples have been filtered, they are distributed to
aggregation operators that group and aggregate the tuples.

Possible Impact: a very interesting solution to multi-query optimization. A
nice and useful (actually I want to say "cool") extension of prior work, e.g. cir-
cular scans [Harizopoulos et al, SIGMO 2005] which was restricted to a single
table; and "clock scans" which was built for a large denormalized table [Unter-
brunner et al, PVLDB 2009]. In a way, this paper turns the star schema query
processing problem into a streaming problem.

Identifying robust plans through plan diagram reduction
Harish D., Pooja N. Darera, Jayant R. Haritsa PVLDB
1(1): 1124-1140 (2008)

(Summary by Nico Bruno)
The paper is the latest in a line of ideas around plan diagrams. A plan dia-

gram for a parametric input query is a pictorial diagram that assigns a different
color to each different plan that the optimizer picks for a given combination of
input selectivity values. It was originally shown that plan diagrams are helpful in
understanding the plan space of optimizers and also established that "anorexic"
plan diagrams can be valuable. Anorexic diagrams are similar to plan diagrams,
and assign a given plan to each discrete combination of input selectivity values.
However, unlike traditional plan diagrams, in anorexic plan diagrams the total
number of plans is minimized given the constraint that at each selectivity point,
the cost of the chosen plan is at most Delta times the cost of the optimal plan at
such point. Anorexic plan diagrams result in a small number of different plans
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for the whole spectrum of selectivity values without degrading the overall quality
compared with the original plan diagram.

The paper extends the notion of anorexic plan diagrams taking into account
cardinality estimation problems. The idea is that at runtime, the true selectivity
value might be different from the estimated one. For that reason, the choice of
plan (by using the plan diagram) would be done in the "wrong" area of the true
selectivity space. This is a problem because (naturally) sometimes a plan p1 that
are chosen using an anorexic plan diagram can be much worse than the original
optimizer plan p2 in the region outside of that for p1 (due to cardinality errors).

The problem statement in the paper is to find a subset of the original plan
diagram with minimum size, such as the plan assigned to each selectivity value is
either the one picked by the optimizer or instead one that is no worse than Delta
times compared to the original one picked by the optimizer *for every selectivity
value*. The problem is NP-Hard and the paper explores heuristics to obtain such
minimal plan diagrams and relies on some simplifying assumptions on the cost
model of an optimizer. There is also an alternative problem formulation that
makes additional assumptions on the cost model, which guarantee that only a
small subset of points (those at "corners" in the space) need to be tested. This
results in a faster technique with small drops in quality.

Adaptive Query Processing

Amol Deshpande, Zachary Ives and Vijayshankar Raman

This survey (at least the first part) is a must for every attendee of the seminar.
The overall goal of this survey is to introduce into the concept to adaptive query
processing, outlining the overall challenges, providing a general framework for
classification of different approaches and finally discussing special aspects of
adaptive query processing concerning multiple selection ordering and multiple
join ordering. Finally, the survey closes with a list of open issues and potential
research areas. The survey covers a lot of material which will be outlined as bullet
points below; in order to be able to jump directly into the paper, we preserve
the general structure of the paper.

Introduction

– fundamental breakthroughs of Codd’s relational data model: convert a declar-
ative, logic-based formulation of a query into an algebraic query evaluation
tree

– Challenge: how to optimize regardless of where or how the data is laid out,
how complex the query is, and how unpredictable the operating environment
is.

– break-down of the System R-style optimize-then-execute model
• optimizer error begins to build up at a rate exponential in the size of the

query
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• consequence of more general data management (querying autonomous
remote data sources, supporting continuous queries over data streams,
querying XML data, ...)

Adaptive query processing (AQP)
• addresses the problems of missing statistics, unexpected correlations,

unpredictable costs, and dynamic data
• sing feedback to tune execution

Spectrum of AQP
• multiple query executions or adapt within the execution of a single query
• affect the query plan being executed or the scheduling of operations

within the plan
• for improving performance of local DBMS queries, for processing dis-

tributed and streaming data, and for performing distributed query exe-
cution

Query Processing in Relational Database Systems

– conventional method: parse the SQL statement, produce a relational calculus-
like logical representation, invoke the query optimizer

– query plan: a tree of unary and binary relational algebra operators (specific
details about the algorithm to use and how to allocate resources; includes
low-level "physical" operations like sorting, network shipping, etc.

– query processing model established with the System R project: divide query
processing into three major stages.
• Statistics generation is done offine on the tables in the database (infor-

mation about cardinalities and numbers of unique attribute values, and
histograms)

• Query optimization: similar to traditional compilation; uses a combina-
tion of cost estimation and exhaustive enumeration

• Query execution: virtual machine or interpreter for the compiled query
plan
∗ pipeline computation: full/ partial (multiple segments, materializing

(storing) intermediate results at the end of each stage and using that
as an input to the next stage)

∗ scheduling computation
· classical approach: iterator architecture: each operator has open,
close, and getNextTuple methods
· alternate approach: data-driven or datafow scheduling - data pro-
ducers control the scheduling (aach operator takes data from an
input queue, processes it, and sends it to an output queue)

Motivations for AQP: Many refinements to basic query proessing technology:
mor epowerfull CPUs -> more comprehensive search of the space, relying less on
pruning heuristics; selectivity estimation techniques have become more accurate
and consider skewed distributions/attribute correlations
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– Unreliable cardinality estimates: many real-world settings have either in-
accurate or missing statistics or correlations between predicates can cause
intermediate result cardinality estimates to be off by several orders of mag-
nitude

– Queries with parameter markers: precomputed query plans for such queries
can be substantially worse than optimal for some values of the parameters

– Dynamically changing data, runtime, and workload characteristics: queries
might be long-running, and the data characteristics and hence the optimal
query plans might change during the execution of the query

– Complex queries involving many tables: switch to a heuristic approach leads
to estimation errors and the use of heuristics exacerbates the problem.

– Interactive querying: a user might want to cancel or refine a query after a
few seconds of execution

– Need for aggressive sharing: traditional databases with almost no inter-query
state sharing because their usage pattern is made up of a small number of
queries against large databases.

Background: Conventional Optimization Techniques

Query Optimization: heart of cost-based optimization lies in selection ordering
and join enumeration

Selection Ordering: refers to the problem of determining the order in which
to apply a given set of commutative selection predicates to all the tuples of a
relation

– Serial Plans: single order in which the predicates should be applied to the
tuples of the relation

– Conditional Plans: generalize serial plans by allowing different predicate eval-
uation orders to be used for different tuples based on the values of certain
attributes

– Static Planning: simple if the predicates are independent of one another;
problem quickly becomes NP-Hard in presence of correlated predicates.

– Independent Predicates: optimal serial order can be found in O(nlog(n))
time by simply sorting the predicates in the increasing order of rank of the
predicate

– Correlated Predicates: complexity depends on the way the correlations are
represented (general: NP-Hard).
⇒ The Greedy algorithm for correlated selection ordering

– Multi-way Join Queries: many choices: access methods, join order, join al-
gorithms, and pipelining
• Access Methods: pick an access method for each table in the query (direct

table scan, a scan over an index, an index-based lookup on some predicate
over that table, or an access from a materialized view.

• Join Order: Def: is a tree, with the access methods as leaves; each internal
node represents a join operation over its inputs. may not cover all join
predicates, ie. if the join predicates form a cycle, the join order can only
cover a spanning tree of this cycle
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⇒ picks a spanning tree over the join graph: eliminated join predicates
are applied after performing the join, as "residual" predicates

• Join Algorithms: nested loop join, merge join, hash join, etc.
• Pipelining vs. Materialization: contain a blocking operator or not

+ blocking operator: needs to hold intermediate state in order to com-
pute its output, e.g., a sort / a hash join
two classes:
+ Non-pipelined plans: contain at least one blocking operator that

segments execution into stages; Each materialization is performed
at a materialization point

+ Pipelined plans: execute all operators in the query plan in parallel
⇒ offer very different adaptation opportunities
- for pipelined plans: changes in the tuple flow
- for non-pipelined plans: involve re-evaluating the rest of the plan
at the materialization points

– Multi-way Join Queries: Static Planning

• Projection, and in many cases selection, can be pushed down as a heuris-
tic

• fairly easy to develop cost modeling equations for each join implemen-
tation: given page size, CPU and disk characteristics, other machine-
specific information, and the cardinality information about the input
relations, the cost of executing a join can be easily computed
⇒ challenge is to estimate the cardinality of each join’s output result

• in general, the cost of joining two subexpressions is independent of how
those subexpressions were computed
⇒ naturally leads to a dynamic programming formulation

• impact of sorting
+ a single sort operation can add significant one-time overhead
+ may be amortized across multiple merge joins
⇒ interesting order: sort order that might be exploited when joining or

grouping

– Choosing an Effective Plan search limitation:

+ deferred reasoning about Cartesian products until all possible joins were
evaluated

+ only considers left-deep or left-linear plans some extenions of modern
optimizers:

+ Plan enumeration with other operators: explore combinations of opera-
tors beyond simply joins. i.e. group-by pushdown

+ Top-down plan enumeration: recursion with memoization with early prun-
ing of subexpressions that will never be used: branch-and-bound pruning

+ Cross-query-block optimization: allow for optimizations that move pred-
icates across blocks and perform sophisticated rewritings, such as magic
sets transformations
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+ Broader search space: considers bushy plans as well as early Cartesian
products. first partition the work using heuristics, and then run dynamic
programming on each plan segment.
selectivity estimation: given a set of input relations and an operation,
the estimator predicts the cardinality of the result

+ System R: DBMS maintained cardinality information for each table, and
selectivity estimation made use of this information, as well as minimum
and maximum values of indexed attributes and several ad hoc "magic
ratios" to predict cardinalities

+ Modern DBMSs: employ more sophisticated techniques, relying on his-
tograms created offline to record the distributions of selection and join
key attributes

– Robust Query Optimization: generell choice
+ between a "conservative" plan that is likely to perform reasonably well
+ a more aggressive plan that works better if the cost estimate is accurate,

but much worse if the estimate is slightly off
approaches: knob to tune the predictability of the desired plan vs. the
performance by using such probability distributions Error-aware opti-
mization (EAO): makes use of intervals over query cost estimates employ
more sophisticated operators, for instance, n-way pipelined hash joins,
such as MJoins or eddies. Such operators dramatically reduce the num-
ber of plans considered by the query optimizer, although potentially at
the cost of some runtime performance.

– Parametric Query Optimization
+ An alternative to finding a single robust query plan: a small set of plans

appropriate for different situations
+ postpone certain planning decisions to runtime
+ the simplest form uses a set of query execution plans annotated with

a set of ranges of parameters of interest; just before query execution
commences, the current parameter values are used to find the appropriate
plan, e.g. choose-plan operators are used to make decisions about the
plans to use based on the runtime information

+ not been much research in this area
+ commercial adoption has been nearly non-existent
– big problem: what plans to keep around: the space of all optimal plans is

super-exponential in the number of parameters considere relationship to
progressive parametric query optimization the reoptimizer is called when
error exceeds some bound or when there is no "near match" among the
set of possible plan configurations

– Inter-Query Adaptivity: Self-tuning and Autonomic Optimizers
+ Several techniques: passively observe the query execution and incorpo-

rate the knowledge to better predict the selectivity estimates in future
Examples: adaptive selectivity estimation: attribute distribution is ap-
proximated using a curve-fitting function Self-tuning histograms focus
on general multi-dimensional distributions using histograms



48 G. Graefe, H.A. Kuno, A.C. König, V. Markl and K-U. Sattler

Foundations of Adaptive Query Processing

– goal of adaptive query processing
+ find an execution plan and a schedule that are well-suited to runtime

conditions
+ interleaving query execution with exploration or modification of the plan

or scheduling space
⇒ differences between various adaptive techniques can be explained as dif-

ferences in the way they interleave Example: + System R-style: full ex-
ploration first, followed by execution

+ Evolutionary techniques (e.g. choose nodes or mid-query reoptimization)
interleave planning and execution a few times

+ Radical techniques like eddies: not even clearly distinguishable.
– New Operators

+ to allow for greater scheduling flexibility and more opportunities for
adaptation

+ requires greater memory consumption and more execution overhead, but
the result is still often superior performance

1. Symmetric Hash Joins
+ traditional hash join operator: must wait for the build relation to fully

arrive before it can start processing the probe relation and producing
results

⇒ restricts adaptation opportunities since the build relations must be cho-
sen in advance of query execution and adapting these decisions can be
costly

+ Symmetric hash join operator: build hash tables on both inputs ; when
an input tuple is read, it is stored in the appropriate hash table and
probed against the opposite table, resulting in incremental output

⇒ enables additional adaptivity since it has frequent moments of points at
which the join order can be changed without compromising correctness
or without losing work

⇒ disadvantage: memory footprint is much higher since a hash table must
be built on the larger input relation

+ Extensions: XJoin and the doubly pipelined hash join
⇒ for a multi-threaded architecture, using producerŰconsumer threads in-

stead of a dataflow model
⇒ include strategies for handling overflow to disk
+ Extensions: Ripple join: adapts the order in which tuples are read from

the inputs so as to rapidly improve the precision of approximated aggre-
gates

2. Eddy
+ enable fine-grained run-time control over the query plans executed by

the query engine
– treat query execution as a process of routing tuples through operators
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– adapt by changing the order in which tuples are routed through the
operators (–> changing the query plan being used for the tuple)

+ eddy operator monitors the execution, and makes the routing decisions
for the tuples.
– routing table to record the valid routing destinations, and current
probabilities for choosing each destination, for different tuple signa-
tures.

+ Extension: SteMs; open the set of operators; not predefined at startup
of query procesing

+ Pipelined operators offer the most freedom in adapting and typically also
provide immediate feedback to the eddy

+ blocking operators are not very suitable
– Various auxiliary data structures are used to assist the eddy during the

execution; broadly speaking, these serve one of two purposes:
+ Determining Validity of Routing Decisions: some form of tuple-level

lineage, associated with each tuple, is used to determine the validity
of routing decisions
∗ use the set of base relations that a tuple contains and the oper-

ators it has already been routed through (→ tuple signature) as
the lineage.

∗ two bitsets : done and ready to encode the information about
the operators that the tuple has already been through, and the
operators that the tuple can be validly routed to next

– Implementation of the Routing Policy: refers to the set of rules used by
the eddy to choose a routing destination for a tuple among the possible
valid destinations
+ classified into two parts:

– Statistics about the query execution: eddy monitors certain data
and operator characteristics

– Routing table: stores the valid routing destinations for all possi-
ble tuple signatures

– for probabilistic choices: a probability may be associated with each des-
tination

– two-step process for routing a tuple:
++ Step 1: uses the statistics to construct or change the routing table

(per-tuple basis, or less frequently)
++ Step 2: The eddy uses the routing table to find the valid destina-

tions for the tuple, and chooses one of them and routes the tuple
to it deterministic routing: O(1) probalisitic routing: O(H(p)) using
a Hu?man Tree, where H(p) denotes the entropy of the probability
distribution over the destinations

3. n-ary Symmetric Hash Joins/MJoins
– generalizes the binary symmetric hash join operator to multiple inputs

by treating the input relations symmetrically
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– allows the tuples from the relations to arrive in an arbitrary interleaved
fashion

– Idea: MJoins build a hash index on every join attribute of every relation
in the query MJoin uses a lightweight tuple router to route the tuples
from one hash table to another (use of eddy op) when a new tuple arrives:
⇒ built into the hash tables on that relation
⇒ porbe the hash tables corresponding to the remaining relations in

some order to find the matches for the tuple (order in which the
hash tables are probed is called the probing sequence)

– Adaptivity Loop
+ regular query execution is supplemented with a control system for mon-

itoring query processing and adapting it
+ Adaptive control systems are typically componentized into a four-part

loop that the controller repeatedly executes
∗ Measure: An adaptive system periodically or even continuously mon-

itors parameters that are appropriate for its goals, e.g. measuring
cardinalities at key points in plan execution
· at the end of each pipeline stage
· add statistics collectors (i.e., histogram construction algorithms)

∗ Analyze: Given the measurements, an adaptive system evaluates how
well it is meeting its goals, and what is going wrong
· determining how well execution is proceeding - relative to original
estimates or to the estimated or measured costs of alternative
strategies
· the only way to know precise costs of alternative strategies is
through competitive execution, which is generally expensive
· all adaptive strategies analyze (some portion of) past perfor-
mance and use that to predict future performance

∗ Plan: Based on the analysis, an adaptive system makes certain deci-
sions about how the system behavior should be changed
· often closely interlinked with analysis
· changing the query plan requires additional “repairs”
+ Query scrambling may change the order of execution of a query

plan
+ Query plan synthesis may be required
+ Corrective query processing requires a computation to join among

intermediate results that were created in different plans: “cleanup”
or “stitch-up” phase

∗ Actuate: After the decision is made, the adaptive system executes
the decision, by possibly doing extra work to manipulate the system
state.
· cost depends on how flexible plan execution needs to be
· some previous work may be sacrificed, accumulated execution
state in the operators may not be reused easily and may need to
be recomputed
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· simplest case: query plans can only be changed after a pipeline
finishes: actuation is essentially free, but prior work might have
to be discarded
· plan change in the middle of pipelines execution: make sure that
the internal state is consistent with the new query plan
– different approaches: only consider switching to a new query
plan if it is consistent with the previously computed internal
state
– to switch at certain consistent points indicated by punctuation
markers
– to use specialized query operators to minimize such restrictions,
e.g., MJoins, SteMs
– to modify the internal state to make it consistent with the new
query plan (dynamic plan migration)
– Example: STAIR operator: exposes the internal state using
APIs and allows to change the internal state, for ensuring cor-
rectness or for improving the performance

– Post-mortem Analysis of Adaptive Techniques
• adaptive techniques may use different plans for different input tuples →

makes it hard to analyze or reason about the behavior of these systems
• goal of “post-mortem” analysis: understand how the result tuples were

generated and, if possible, to express the query execution in terms of
traditional query plans or relational algebra expressions.

• two types of behavior:
+ Single Traditional Plan: use a single traditional plan for all tuples

of the relations, with the only difference being that the plan is not
chosen in advance

+ Horizontal Partitioning: splitting the input relations into disjoint
partitions, and executing different traditional plans for different par-
titions

– Adaptivity Loop and Post-mortem in Some Example Systems
• System R

+ Measurement: measures the cardinalities of the relations and some
other simple statistics on a periodic basis

+ Analysis & Planning: statistics are analyzed during planning at “com-
pile” time

+ Actuation: straightforward, when the query is to be executed, oper-
ators are instantiated according to the plan chosen

+ Post-mortem: System R uses a single plan, chosen at the beginning
of execution, for all tuples of the input relations

• Ingres (one of the earliest relational database systems)
+ highly adaptive query processing, no notion of a query execution

plan; instead it chose how to process tuples on a tuple-by-tuple basis
+ Example: join the data from n tables, R1,...,Rn, the query processor

begins by evaluating the predicates on the relations and materializing



52 G. Graefe, H.A. Kuno, A.C. König, V. Markl and K-U. Sattler

the results into hashed temps by a special one variable query pro-
cessor (OVQP) query processor begins by choosing a tuple from the
smallest table values from this tuple are substituted into the query
resulting (new) query is recursively evaluated process continues until
a query over a single relation is obtained, which is then evaluated
using OVQP the decision at each step of recursion is made based on
the sizes of the materialized tables → different plans may be used
for different tuples

+ Measurement: sizes of the materialized tables that get created during
the execution.

+ Analysis & Planning: done at the beginning of each recursive call
(after a call to OVQP)

+ Actuation: by substituting the values of a tuple as constants in the
current query to construct a new (smaller) query
–> Ingres query processor interleaves the four components of the
adaptivity loop to a great extent

+ post-mortem analysis: tricky, because Ingres does not use traditional
query operators

• Eddies: unify the four components of the adaptivity loop into a single
unit and allow arbitrarily interleaving
+ Measurement: can monitor the operator and data characteristics at

a very fine granularity
+ Analysis & Planning: are done with the frequency decided by the

routing policy, e.g. lottery scheduling for every tuple
+ Actuation: process and cost depend largely on the operators being

used
+ Post-mortem: behavior can usually be captured using traditional

query plans and horizontal partitioning, although this depends on
the rest of the operators used during execution.

Adaptive Selection Ordering

– Adaptive Greedy : continuously monitors the selectivities of the query predi-
cates using a random sample over the recent past, and ensures that the order
used by the query processor is the same as the one that would have been
chosen by the Greedy algorithm
+ Analysis: continuously by the reoptimizer, which looks for violations of

the greedy invariant using the matrix-view
+ Planning: If a violation is detected in the analysis phase, the Greedy

algorithm is used to construct a new execution plan.
+ Actuation: The stateless nature of selection operators makes plan switch

itself trivial
+ Post-mortem: The query execution using the A-Greedy technique can

be expressed as a horizontal partitioning of the input relation by order
of arrival, with each partition being executed using a serial order. The
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A-Greedy technique is unique in that it explicitly takes predicate correla-
tions into account, and analytical bounds are known for its performance.
No other technique that we discuss has these properties

– Adaptation using Eddies
+ Routing Policies

– Deterministic Routing with Batching
– Lottery scheduling
– Content-based Routing

Adaptive Join Processing: Overview

... based on the space of the execution plans they explore

– History-Independent Pipelined Execution
– History-Dependent Pipelined
– Non-pipelined Execution

Adaptive Join Processing: History-Independent Pipelined Execution

– Pipelined Plans with a Single Driver Relation
• Static Planning
∗ Choosing Driver Relation and Access Methods
∗ Join Ordering: Reduction to Selection Ordering

• Adapting the Query Execution
– Pipelined Plans with Multiple Drivers
• n-ary Symmetric Hash Joins/MJoins
• Driver Choice Adaptation
• State Modules (SteMs)
∗ Query Execution and Hybridization
∗ Routing Constraints

• Post-mortem Analysis
– Adaptive Caching (A-Caching)

Adaptive Join Processing: History-Dependent Pipelined Execution

– Corrective Query Processing
• Separating Scheduling from Cost
• Post-mortem Analysis
• A Generalization: Complementary Joins
• Open Problems

– Eddies with Binary Join Operators
• Routing Policies
• Post-mortem Analysis
• Burden of Routing History

– Eddies with STAIRs
• STAIR Operator
• State Management Primitives
• Lifting the Burden of History using STAIRs
• State Migration Policies
• Post-mortem Analysis

– Dynamic Plan Migration in CAPE
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Adaptive Join Processing: Non-pipelined Execution

– Plan Staging
– Mid-Query Reoptimization
• Flavors of Checkpoints
• Switching to a New Plan
• Threshold to Invoke Reoptimization
• Computation of Validity Ranges
• Bounding Boxes and Switchable Plans

– Query Scrambling
– Summary and Post-mortem Analysis

Summary and Open Questions

– Trade-Offs and Constraints
• Precomputation vs. Robustness vs. Runtime Feedback
• Data Access Restrictions
• Exploration vs. Exploitation
• Optimizer Search Space
• Plan Flexibility vs. Runtime Overhead
• State Management and Reuse

– Adaptive Mechanisms
– Challenge Problems
• Understanding the Adaptive Plan Space
• Developing Optimal Policies
• Effective Handling of Correlation
• Managing Resource Sharing
• Scaling to Out-of-core Execution
• Developing Adaptation Metrics

K. E. Gebaly, A. Aboulnaga: Robustness in automatic
physical database design. EDBT, 2008

(Summarized by Robert Wrembel)

The paper presents the approach to developing a database advisor for index
design. The work is motivated by the fact that existing advisors (both com-
mercial and prototype ones) produce advices that may cause deterioration of
overall system’s performance. First, because estimated benefits obtained from
additional physical data structures, suggested by an advisor, may be inaccu-
rate. This inaccuracy often results from wrong cardinality estimation due to the
lack of multi-column statistics on correlated columns. Second, because a training
workload used for advising index designs is often slightly different than future
real workloads, executed after creating the recommended indexes.

For these reasons, the authors proposed an approach to develop a database
advisor, called Multi-Objective Design Advisor that will be more reluctant to
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the aforementioned problems. To this end, the authors proposed to define two
new metrics, namely Risk and Generality, for the evaluation of the quality of
a proposed index design. The Risk metric measures how resistant is the index
design to errors made by cost estimation module of a query optimizer. In other
words, the metric quantifies risk of selecting an index that will not improve (or
deteriorate) a query performance. Risk is expressed by means of the current
cost of executing a workload and an estimated maximum cost (the worst case).
The Generality metric measures how well an index design supports changes to
a workload. The metric is expressed by means of the number of unique index
prefixes being recommended (the higher the number of unique prefixes the better
the Generality).

The incorporation of these new metrics into a database advisor requires
changes in the optimization objective function. The authors defined this function
as a weighted sum of Benefit, Risk, and Generalization, where Benefit represents
a performance benefit of a traditional advisor.

In order to prove the applicability of this approach, series of experiments
were conducted on a TPC-H benchmark database (scale factor 1) run on Post-
greSQL. The experiments showed that: (1) an advisor supporting the Risk metric
performs better than a traditional advisor and (2) the Generality metric allows
to recommend the set of indexes that support also workflows that differ from
training workflows.

Database Cracking

Stratos Idreos, Martin L. Kersten, Stefan Manegold CIDR 2007: 68-78 (Summa-
rized by Nico Bruno)

The paper presents an intriguing idea towards self-managing database organi-
zation. Rather than manually building indexes in a single shot, the idea is to
piggyback on top of traditional query processing and progressively build indexes
on columns that are interesting. At a very high level, the idea is similar to that of
quicksort in main memory, where we iteratively choose a pivot value and shuffle
around elements that are smaller or larger than the pivot.

Consider a system that stores data column-wise, where each column consists
of pairs (value, rid). Suppose there is a query that asks for all tuples satisfying
a¡10. the first time we scan the corresponding column and filter the values that
satisfy the predicate. In addition to this step, we additionally use 10 as a "pivot"
value and create 3 partitions while scanning: one that contains tuples with a¡10
(in random order), another with a=10, and another with a¿10. We then store
these partitions using a tree-based structure for fast processing of partition in-
formation. Suppose that we have a new query with predicate a¿20. To evaluate
such query, we can then safely ignore the partition that contains tuples with a¡10
and a=10, and only scan the one with a¿10 (in doing so we create 3 partitions,
one with 10¡a¡20, a=20, and a¿20). As we keep working in this way, we pro-
gressively build a full index that only requires accessing the right data (or very
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close to the minimum amount of data). Initially searches are slowsince we scan
large portions of data, but (i) they are still faster than waiting for a index to
be built, and (ii) the "indexes" are quickly built, on demand, over columns that
are relevant during query processing. The paper introduces the idea of crack-
ing, discusses several implementation aspects, how the ideas relate to indexing
and sorting, how to extend the approach for row-oriented databases, several ex-
perimental results on a prototype, and many interesting follow-up ideas (e.g.,
handling updates or join predicates). These last two ideas are further explored
in subsequent papers.

Database Cracking

Stratos Idreos and Martin L. Kersten and Stefan Manegold (Summarized by
Stratos Idreos)

Database systems can provide optimal performance only for the workload they
were tuned for. Through the use of auxiliary data structures and proper data
layout they can prepare for the anticipated queries. This works perfectly if two
conditions are met: (a) the workload is known upfront and (b) there is enough
idle time to prepare the system with the proper structures and physical design
before the first query arrives. A plethora of seminal work advanced this area of
research providing solutions on how we can design automatic tuning advisors
that can off-line analyze an expected workload and propose the proper physical
design.

But what if the workload is not known upfront? Then, we can rely on solu-
tions that provide on-line tuning, i.e., during the first few queries, an online tool
monitors the system performance and eventually it provides a recommendation
for a proper physical design.

But what if the workload is not stable? What if the workload changes again
before we even had the chance to analyze it or before we even had the chance
to exploit the indices we built?

This paper proposes a research path towards such dynamic and unpredictable
environments where there is little if any time to invest in physical design prepa-
rations while at the same the workload cannot be safely predicted.

The idea is based on online and continuous physical reorganization. Data
is continuously reorganized by query operators using the query requests as an
advise of how data should be stored. This paper provides an initial architecture
in the context of columnstores, showing new selection operators and plans that
reorganize columns based on the selection predicates. The net effect can be seen
as an incremental quick sort, i.e., every query will perform only 1 or 2 steps of a
quick sort on a column, leaving behind a column that has more structure which
future queries can exploit. Areas of the column that are not interesting for the
workload are never optimized while performance quickly reaches optimal levels
for the hot parts of the column.
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Updating a cracked database

Stratos Idreos and Martin L. Kersten and Stefan Manegold (Summarized by
Stratos Idreos)

(Requires reading summary for paper “Database Cracking. CIDR07”) With con-
tinuous data reorganization during query processing and within query operators,
comes the challenge of updates. Updates imply physical changes on a column
which might conflict with the physical changes of database cracking. The goal is
to maintain the performance benefits even under updates.

Various approaches are studied. The simplest approach is the one of dropping
any auxiliary data structure upon a conflict. The next query that requires this
column, needs to make a new copy of the column and start reorganizing it from
scratch. This means that periodically we loose all knowledge gained by previous
queries.

The best approach found in this paper, is that of self-organizing differential
updates. Incoming updates are kept as pending updates until a relevant query
arrives, i.e., a query that requires the given value of the pending update. The al-
gorithm then, on-the-fly merges the pending value within the column performing
the less possible physical actions in its effort to maintain a physically contigu-
ous column. The updates logic is attached within the selections operators and
performed during query processing. It exploits the property that a cracking col-
umn contains multiple pieces in sorted order but within each piece there is no
order. The best algorithm will even move values from the normal column to the
pending updates to make room for the needed values of this query, i.e., make
sure the column is consistent for the current query only and worry for the rest
in the future and only on demand.

S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. CIDR, pages 68-78, 2007

(Summarized by Jens Dittrich)

About: follow-up paper to [Kersten and Manegold, CIDR 2005]. Contains more
technical detail on how to implement cracking in a column store (MonetDB).

Solution: the main idea is to copy (replicate) each original column the first
time it is being touched by a where-clause of a query. Then that column (a so-
called cracker column) is gradually reorganized as described in [Idreos, Kersten,
and Manegold, CIDR 2007]. The original columns are preserved. Columns not
touched by where-clauses are not replicated. Like this the cracking (pay-as-you-
go indexing might be a more appropriate name for this) builds a set of adaptive
indexes for each table. Internally, each cracker column implements cracking by
reordering data inside the column, i.e. there is no breaking of columns into
pieces but simply a partial re-sort of data inside the column. Overall, columns
referenced heavily will more and more approach the structure of a fine-granular
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index, whereas columns referenced rarely will only create a coarse-granular index
(which corresponds to a horizontal partitioning).

Possible Impact: an interesting solution to adaptive indexing in a column
store. A nice step towards self-managing database systems. Prof. Jens Dittrich
Chair of Information Systems Group Saarland University Campus, E1 1, 220.1,
Tel. +49 (0)681 302-70140 http://infosys.cs.uni-saarland.de

Self-organizing tuple reconstruction in column-stores

Stratos Idreos and Martin L. Kersten and Stefan Manegold (Summary by Stratos
Idreos)

(Requires reading summary for paper "Database Cracking. CIDR07") This paper
studies the problem of multi-attribute queries in database cracking. It demon-
strates the problem of performance degradation due to random access patterns
in tuple reconstruction. For example, when selecting a few tuples from column
A and then we need to get the corresponding tuple from column B, e.g., to per-
form an aggregation, then we are essentially performing a join operation on the
positions (rowids). Column-store architectures rely heavily on sequential access
patterns and positional joins to provide efficient tuple reconstruction. Database
cracking though, reorders data causing random data access and thus bad per-
formance, as the paper shows, during tuple reconstruction.

The solution comes via self-organizing tuple reconstruction operators that
work also via data reorganization as opposed to joins. In other words the columns,
we need to reconstruct are adaptively reorganized in the same way as the columns
we select on, ensuring sequential access patterns over aligned column areas.

The paper also demonstrates solutions for dealing with storage restrictions.
A single column consists from multiple smaller columns instead of a contiguous
area. Each smaller column is independently created, reorganized, aligned, and
dropped if storage is limited. As before everything happens adaptively and on-
demand within cracking operators during query processing, requiring no human
administrators, idle time or preparations.

M. Ivanova, M. L. Kersten, and N. Nes. Self-organizing
strategies for a column-store database. In EDBT, pages
157168, 2008.

(Summary by Harald Schoening)

The idea of this paper is to partition columns in a column store based on the
real query workload.

The paper addresses read-only workloads only and assumes value-based col-
umn organisation as provided by MONETDB’s binary association table (BAT).
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Even when the columns are value-based, a full column scan is necessary to eval-
uate range queries. Segmenting the column reduces IO cost when the query can
be restricted to a few or even one segment. The idea is to use the actual query
workload as splitting criterion, in particular range queries. As too many splits
would lead to too small segments, two splitting policies are considered, one being
random-based and one based on ranges for segment sizes Splitting can be done
either 1) as post processing which does not put the reorganization burden on the
query execution, but on the other hand misses the chance to reuse query results,
or 2) by eager materialization, which implies that parts of the column that are
not needed for query execution nevertheless have to be materialized because of
splitting or 3) by lazy materialization (also called adaptive replication). In this
case, the range addressed by the query is materialized in addition to the larger
original segment(hence leading to replicaed data). The paper mentions that con-
trol of the number of replicas is essential but does not provide a convincing
solution.

The paper claims that the presented form of self-reorganization is beneficial
compared to static segmentation and/or replication but the experiments do not
address this claim. The experiments also do not address the querstion whether
there is any benefit for using the ranges occurring in real queries as splitting
boundaries, considering that in the end all segements will be of more or less the
same size.

M. L. Kersten and S. Manegold. Cracking the database
store. CIDR, pages 213224, 2005.

(Summarized by Harald Schoening)

This paper addresses the horizonal splitting (cracking) of tables based on query
workload. In this respect it is similar to the paper "Self-organizing Strategies for
a Column-store Database". However, in this paper the usefulness of the idea is
not only discussed for a column store but also for row stores. The idea is to use
predicates in queries (in particular range expressions and equi-join predicates) as
"cracking" criteria. Since for a row store, queries can address disjoint attribute
sets in their predicates, split occur in varying dimensions. The resulting cracking
index (that keeps track of the segemtns that have been created) resembles some
multi-dimensional access structures as proposed in the early 90s, but the paper
does not elaboraze on this. Many questions on cracking index policies (size and
number of segments etc.) are mentioned as open problems. The application area
forseen for database cracking are OLAP and scintific databases. Here, some
multi-query patterns are addressed by experiments: homerun (drill-down), hiking
and strolling. The experiments are done fo rMonetDB (column store) and two
open-source row stores, but with 2-column tables only (which does not lead to
a dimension mix). The conclusion is that database cracking is not beneficial for
current row-store offerings.
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M. L. Kersten and S. Manegold. Cracking the database
store. In CIDR, pages 213-224, 2005

(Summarized by Jens Dittrich)

About: proposes a new approach to adaptive indexing. Background: the appro-
priate choice of indexes speeds-up may speed-up query processing considerably.
The right choice of indexes, however, have to be made anually by a DBA or
with the help of an automatic index selection tool. Solution: this paper takes a
different approach. The idea is to interpret each incoming query as a hint how
to break the database into pieces. For instance a simple select * from R where
R.aą10 may be interpreted to break the database into two sets of tuples: one
containing all tuples where R.aą10 and a second set for R.a£=10. This reorgani-
zation of the database store is termed "cracking"’. Each query (may) trigger(s) a
reorganization requests with extra costs, i.e. the costs for the reorganization are
piggybacked onto the query. If many queries come in, this process corresponds
to a lazy index creation: the more a table was "cracked" the more fine-granular
the index becomes. That index gradually adapts to the workload. It also consid-
ers skew, i.e. values refrenced more frequently will trigger a more fine-granular
index [also compare Dittrich et al, SIGMOD 2005, who consider such an adap-
tive (de-)index organization in the presence of updates]. The paper discusses
several issues when implementing this idea in an existing relational DBMS with
a focus on a columnar storage manager. Possible Impact: an interesting solution
to adaptive indexing. See also follow-up work [Idreos, Kersten, and Manegold,
CIDR 2007]

“Preventing Bad Plans by Bounding the Impact of
Cardinality Estimation Errors”; Moerkotte, Neumann,
Steidl; VLDB 2009

(Summary by Amol Deshpande)

The area of selectivity estimation has seen much work, both practical and the-
oretical, over the last 20 years, but the more important question of how much
it matters has seen much less work. Quantifying the effect of one wrong selec-
tivity estimate on the overall plan chosen is nearly impossible to do, since that
depends on the rest of the query, and the errors in the rest of the estimates. In
some cases, the errors may not matter because they don’t change the relative
order of the plans, in other cases, the errors may cancel out.

This paper studies this issue and presents the first theoretical results on the
problem. They define the notion of q-error, a form of multiplicative error metric,
to capture the selectivity estimation errors. Consider a single histogram that tries
to approximate a set of points (x i, b i), where x i denote the different values
of attribute, and b i denotes the frequency. Say the estimated value for x i is
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denoted by f approx(x i). Then q-error is maximum over all i, the value of: max(b
i/f approx(x i), f approx(x i)/b i). The authors prove several interesting results
using this. For instance, for cost functions that follow the ASI property (which
allows us to use the "rank ordering algorithm"), the authors can show some tight
results. They also obtain some results for more general cost functions. Although
the results are impressive and first of a kind, the practical utility of the theorems
is unclear. One of the results shows a q4 factor difference between optimal and
produced plans. However, q is defined to be the maximum multiplicative errors
over all intermediate and base relations, which itself may hide an exponential
term on the estimation errors on base relations.

Perhaps the key utility of the analysis is to motivate q-error, and ask the
question whether we can build synopsis structures that minimize q-error directly.
The second part of the paper focuses on this issue, and develops a deep algorithm
for minimizing q-error for certain classes of histograms. I firmly agree with the
authors these types of histograms should be used in place of histograms that
minimize average error (not the least because we also tried to minimize the
multiplicative error in our work on Dependency-based Histograms in SIGMOD
2001 :).

Extreme Visualisation of Query Optimizer Search Spaces
A. Nica, D. Brotherston and D. Hillis Sigmod 2009

(Summary by Jayant Haritsa)

This paper describes a functional tool, SearchSpaceAnalyzer (SSA), for visual-
izing the plan search space of an industrial-strength database query optimizer
(SQL Anywhere from Sybase). In contrast to most other optimizers, which typ-
ically employ a breadth-first approach to identify the best plan, SQL Anywhere
chooses to use a depthfirst enumeration that prunes partial plans costlier than
the best complete plan identified thus far. This technique is reminiscient of the
historical "pilot-plan" strategy proposed by Rosenthal, Dayal and Reiner about
two decades ago - while attractive in principle, the scheme had proved to be
impractical since the pilot plan, which was essentially randomly chosen, failed
to provide a meaningful degree of pruning. This issue of pilot plan choice is ad-
dressed in SQL Anywhere through a proprietary algorithm whose objective is to
enumerate access plans in a carefully chosen order that maximizes the likelihood
of producing cheap plans early in the enumeration exercise.

The SSA visualizer supports the entire spectrum of views of the search space,
ranging from high-level summaries to detailed diagrams of subspaces, represent-
ing the plans in a highly compressed manner without sacrificing the essential
optimization characteristics. It can be used to analyze the differences between
search spaces generated by the optimizer on different platforms, as well as under
different system loading conditions, or with different optimization levels.
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SSA is complementary to other visualizer tools such as Picasso in that it
characterizes the input search space where Picasso characterizes the output para-
metric optimality space.

“Predictable performance for unpredictable workloads,” P.
Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D.
Kossmann; PVLDB, 2(1):706-717, 2009

(Summary by Amol Deshpande)

The goal of this paper is to design a system that has very good yet predictable
performance (e.g., with latency and freshness guarantees) under a diverse and
unpredictable workload, containing both read queries and updates. The key pro-
posed technology is a distributed relational table implementation, called Cres-
cando. Crescando combines the idea of "collaborative scans", recently studied
in several works, in a very interesting manner with "query indexes" (from data
streams literature). Being scan-based, Crescando does not use indexes on the
data itself, but rather the incoming queries are batched and indexed (to the
extent possible). The relations (or relation partitions) are continuously scanned,
and matched against this index to generate result tuples. At any point, thou-
sands of queries may share a scan cursor on a relation. For selective queries, this
can result in huge savings over an approach that matches every query against
every tuple. Crescando uses a new scan algorithm, called Clock Scan, that si-
multaneously has a write cursor and a read cursor on the relation segment.

One key feature of Crescando is that, it uses essentially the same ideas for
supporting a large number of "updates" against the data. Guaranteeing ACID
properties is not easy in this case, but the authors are able to develop an approach
to handling that. The authors also discuss how to partition the relations, which
types of indexes to build, how to deal with non-uniform memory architectures
and so on.

The authors have implemented most parts of the Crescando system, and
comparisons with alternative approaches indicate that the proposed approach
can provide guaranteed query and update throughput for a wide range of work-
loads. As the authors also acknowledge, Crescando mainly focuses on handling
simple (single-table) queries and updates, and is not necessarily appropriate in
all scenarios. However, I believe that there are many use cases for such a system.
It is also an interesting future direction to generalize the types of queries handled
while providing the same types of guarantees.
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R. Wrembel: A survey of managing the evolution of data
warehouses. IJDWM, 5(2):24-56, 2009

(Summarized by Robert Wrembel)

Existing methods of designing a data warehouse (DW) usually assume that a DW
has a static schema and structures of dimensions. Unfortunately, this assumption
in practice is often false. Managing the evolution of a DW is challenging from a
research and technological point of view.

This paper surveys problems and solutions to managing changes/evolution
of a DW. The issues are illustrated with the MultiVersion Data Warehouse ap-
proach, developed by the author. In this approach, a DW evolution is managed
by the MultiVersion Data Warehouse (MVDW) that is composed of a sequence
of its versions, each of which corresponds either to the real-world state or to a
what-if scenario. The described MVDW approach provides the following: (1) a
query language capable of querying possibly heterogeneous DW states and ca-
pable of querying metadata on an evolving DW, (2) a framework for detecting
changes in EDSs that have an impact on the structure of a DW, (3) a data
structure based on bitmaps for sharing fact or dimension data by multiple DW
versions, (4) index structures, i.e., ROWID-based multiversion join index and
bitmap-based multiversion join index, for the optimization of the so-called star
queries that address multiple DW versions.
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