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ABSTRACT

Long-span language models that capture syntax and semantics are
seldom used in the first pass of large vocabulary continuous speech
recognition systems due to the prohibitive search-space of sentence-
hypotheses. Instead, an N -best list of hypotheses is created using
tractable n-gram models, and rescored using the long-span mod-
els. It is shown in this paper that computationally tractable varia-
tional approximations of the long-span models are a better choice
than standard n-gram models for first pass decoding. They not only
result in a better first pass output, but also produce a lattice with
a lower oracle word error rate, and rescoring the N -best list from
such lattices with the long-span models requires a smaller N to at-
tain the same accuracy. Empirical results on the WSJ, MIT Lec-
tures, NIST 2007 Meeting Recognition and NIST 2001 Conversa-
tional Telephone Recognition data sets are presented to support these
claims.

Index Terms— Recurrent Neural Network, Language Model,
Variational Inference

1. INTEGRATING LANGUAGE MODELS INTO LVCSR

The language model (LM) in most state-of-the-art large vocabulary
continuous speech recognition (LVCSR) systems is still the n-gram,
which assigns probability to the next word based on only the n −
1 preceding words. A major reason for using such simple LMs, be-
sides the ease of estimating them from text, is computational com-
plexity. The search space (time) in LVCSR decoding is governed
by the number of distinct “equivalent” histories, i.e. the number of
unique probability distributions needed to account for all possible
histories, and it grows nearly exponentially with n-gram order. So it
is customary to limit n to 3 or 4

It is also true, however, that long-span LMs, be they due to a
higher n-gram order, or because they take syntactic, semantic, dis-
course and other long-distance dependencies into account, are much
more accurate than low-order n-grams. Long-span LMs therefore
are employed when accuracy is a priority. The standard practice is
to carry out a first pass of decoding using, say, a 3-gram LM to gen-
erate a lattice, and to rescore only the hypotheses in the lattice with a
higher order LM, such as a 4- or 5-gram. But even the search space
defined by a lattice is intractable for many long-span LMs. In such
cases, only the N -best full-utterance hypotheses from the lattice are
extracted for evaluation by the long-span LM. Typically, N is a few
thousand, if not a few hundred.
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Using an n-gram for generating the N -best list however comes
at a price. For one, acoustic model adaptation based on the first pass
output may suffer due to its lower accuracy. More pertinently to this
work, the n-gram LM may assign such a low score to good hypothe-
ses that they fail to appear among the N -best. If such hypotheses
would have eventually surfaced to the top due to the long-span LM,
their loss is attributable to the “bias” of the N -best list towards the
first pass LM. For both reasons, we seek ways to incorporate infor-
mation from long-span LMs into first pass decoding.

We propose to do so using variational inference techniques.
Given a long-span model P , possibly a sophisticated LM with com-
plex statistical dependencies, we will seek a simple and computa-
tionally tractable model Q∗ that will be a good surrogate for P .
Specifically, among all models Q of a chosen family Q of tractable
models, we will seek the one that minimizes the Kullback-Leibler
divergence from P . We will use this model for first pass decoding.
Examples of P include computationally powerful LMs outside the
family of finite state machines, such as recurrent neural networks [1],
random forests [2] and structured language models [3, 4]. We will
approximate P with a Q∗ from the family Q of finite state machines.
The choice of Q is driven by decoding capabilities.

Section 2 provides details about the proposed variational ap-
proximation. Section 3 briefly describes our long-span LM, a re-
current neural network. Section 4 describes our experimental setup
and presents a number of results. We conclude with a summary and
some remarks in Section 5.

2. VARIATIONAL APPROXIMATION OF A MODEL

There are many popular methods of approximate inference, among
which variational inference has gained popularity due to its simplic-
ity [5]. Such methods are necessary when exact inference is in-
tractable. In variational inference, a surrogate model characterized
by the distribution Q ∈ Q is chosen to replace a complex model,
characterized by the distribution P , such that inference under Q be-
comes much more tractable. The surrogate1 model Q is chosen such
that among all the distributions in the family of the chosen parame-
terization, Q, it has the minimum Kullback-Leibler divergence with
the complex distribution P . Thus if we decide on a family of dis-
tributions, Q, then the surrogate distribution is found out by solving
the following optimization problem:

Q∗ = arg min
Q∈Q

KL(P‖Q)

= arg max
Q∈Q

X

·
P (·) log Q(·) (1)

1We use P and Q interchangingly for the model or the distribution.
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In this work, we choose Q to be the family of distributions parame-
terized by n-grams. i.e. we want to learn a model, Q, parameterized
by n-grams, that is closest to P in the sense of Kullback Leibler
divergence. Under some mild conditions, Q∗ is the n-dimensional
marginal of P .

A natural question is whether Q∗ is simply the n-gram model

Q̂ estimated from the same (LM training) text that P was estimated
from. Not surprisingly, the answer is negative. For one, even if both

P and Q̂ were estimated from the same text, P may have been esti-
mated with a different criterion than maximum likelihood (ML), so
that its n-gram marginals may not agree with Q̂, even after differ-
ences due to smoothing are ignored. Even if P is the ML estimate
from a rich family P that contain Q as a subset, additional assump-

tions must hold about P for Q∗ to be the same as Q̂.

But if P is indeed a long-span LM, then computing its n-
dimensional marginal could also be computationally prohibitive.
Often, and for our choice of P in Section 3, it is impossible. So how
does one proceed? For any P that is a generative model of text, the
minimizer of (1) may be approximated via Gibbs sampling [5] !

We simulate text using the distribution P . Given the start-of-
sentence symbol <s>, we sample the next word from the probability
distribution conditioned on <s>, and continue generating words
conditioned on already generated words, i.e. given the sequence
w1 w2 . . . wl−1 of words so far, the lth word is sampled from
P (·|w1, . . . , wl−1), conditioned on the entire past. Our estimate

of Q∗ is simply an n-gram model Q̂∗ based on this synthetically
generated text.

If P is stationary and ergodic, then from the consistency of the
maximum likelihood estimator [6], we know that by solving (1), we

essentially find out the maximum likelihood estimate, Q̂∗, in the n-
gram family, based on the simulated corpus. Thus

lim
n→∞

lim
L→∞

KL(P ||Q̂∗) = 0, (2)

where L is the size of the simulated corpus and n the order of the

approximated model, Q̂∗.

In practice, we choose n such that first pass decoding is
tractable; L is chosen as large as possible, subject to memory
constraints and diminishing returns in LVCSR performance. Since
L is finite, for pragmatic purposes, smoothing of n-gram probability
distribution (for modeling Q) allows us to approximate the maxi-
mum likelihood probability had we seen an infinite corpus (L → ∞)
generated by P .

3. A RECURRENT NEURAL NET LANGUAGE MODEL

It is well known that humans can exploit longer context with great
success in guessing the next word in a sentence. It seems natural
therefore to construct LMs that implicitly capture temporal infor-
mation of arbitrary length. Our recent work with a recurrent neural
network language model (RNN LM) does so [1], and has shown re-
markable improvements in perplexity over n-gram LMs, along with
improvement in recognition accuracy. RNN LMs also outperform
some combinations of syntactic and n-gram models [7]. We there-
fore use the RNN LM of [1] as our long-span model, which we will
try to approximate via n-grams.

The network has an input layer x, a hidden layer s (also called
state or context layer) and an output layer y. Input to the network at
time t is denoted x(t), output y(t), and the hidden state s(t). The
input x(t) is formed by concatenating a vector w(t), which repre-
sents the current word, with output from the context layer s(t − 1)

to capture long-span dependencies. We refer the readers to [1] for
details.

4. EXPERIMENTS, RESULTS AND DISCUSSION

We report experimental results on four corpora. Perplexity measure-
ments on the Penn WSJ Tree-Bank show that a variational 5-gram is
competitive with the best reported results for syntactic LMs. Word
error rate (WER) reduction in adapting a Broadcast News language
model to the MIT Lectures data is shown next. Finally, WER re-
ductions are demonstrated on the NIST 2007 Meeting Recognition
(rt07s) and the NIST 2001 Conversational Telephone Recognition
(eval01) test sets.

4.1. Perplexity Experiments on WSJ

We trained n-gram and RNN LMs on Sections 0-20 (1M words) of
the Penn Tree-Bank corpus, and measured their perplexity on Sec-
tions 23-24 (0.1M words). Sections 21-22 were used as a held out
set for parameter tuning.

Baselines: We used interpolated Kneser Ney smoothing to build
3-gram and 5-gram LMs; we will call them the KN models. We also
trained an RNN LM, which we will call RNN-Full. To obtain an
alternative long-span model we also trained a cache LM from the
same training data.

For all models, the vocabulary comprised the 10K most frequent
words in Sections 0-20.

Variational Approximations: We sampled about 230M word to-
kens using RNN-Full as a generative model. From this sampled
corpus, we estimated a 3-gram and 5-gram Kneser Ney smoothed
LMs. We will call them the VarApxRNN models. Each of these n-
gram approximations was also interpolated with the corresponding
n-gram LM estimated from (only) the original LM training corpus;
these interpolated LMs will be called the VarApx+KN models.

Setup PPL Setup PPL
KN (3g) 148 Random Forest (Xu) 132
VarApxRNN (3g) 152 - -
VarApx+KN (3g) 124 - -

KN (5g) 141 SLM (Chelba) 149
VarApxRNN (5g) 140 SLM (Roark) 137
VarApx+KN (5g) 120 SLM (Filimonov) 125
VarApx+KN + Cache 111 X-Sent (Momtazi) 118
RNN-Full 102 - -

Table 1. LM Perplexity on Penn Tree-Bank Sections 23-24.

The first column of Table 1 shows that VarApxRNN performs
as well as the KN model of the same n-gram order, and their inter-
polation, VarApx+KN, outperforms both of them. Since the VarA-
pxRNN model is trained on only the simulated text, interpolating it
with KN introduces the knowledge present in the original training
data (sections 0 − 20) bringing the simulated statistics closer to the
true distribution. To our knowledge, the perplexity of the RNN-full
model is significantly lower than any n-gram model reported in the
literature.

Figure 1 empirically supports the asymptotic validity of (2) in
the size L of the simulated corpus and model order n.

Comparison with Other Long-Span LMs: An advantage of
choosing the Penn Tree-Bank corpus and the particular training/test
partition is that several other researchers have reported preplexity
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on this setup using various long-span LMs. The second column of
Table 1 collects a few such results.

• The random forest language model (RFLM) of Xu [2] asks
questions of only the trigram history, and is therefore com-
parable with VarApxRNN (3g) and VarApx+KN (3g). The
RFLM estimates a better 3-gram model from existing text; by
contrast, VarApxRNN performs simple estimation from sim-
ulated text. It appears that VarApx+KN (3g), which combines
simulation with the original text, is better.

• Structured language models have been proposed by Chelba
and Jelinek [3], Roark [4] and Filimonov and Harper [8] to
exploit within sentence long-span dependencies. Table 1 sug-
gests that they are outperformed by VarApx+KN (5g), i.e.
by simulating text with RNN-Full and estimating KN 5-gram
models.

• Across-sentence dependencies are exploited in the model
of Momtazi et al [9]. This performance is nearly matched
by VarApx+KN (5g), which only uses the 5-gram context.
Moreover, the across-sentence model is a complex interpo-
lation of many word and class models with regular and skip
n-grams. The interpolation of VarApx+KN (5g) with another
tractable long-span LM, namely the cache LM, outperforms
the across-sentence model.

These results suggest that RNN-Full is actually a good approxima-
tion to the true distribution of the WSJ text, and the reduction in
variance by simulating 300M words of text offsets the bias of the
n-gram LM estimated from it. As a result, VarApx+KN (5g) outper-
forms more sophisticated models that have smaller bias, but suffer
higher variance due to the limited (1M words) text corpus.

Fig. 1. The perplexity of Sections 23-24 as a function of (left) the
size L of the simulated corpus for model order n = 5 and (right) the
order n of the model for corpus size L = 300M. These results support
(2), but also suggest that VarApxRNN (5g) is still far from the RNN
LM, whose perplexity is 102.

4.2. Domain Adaptation Experiments on MIT Lectures

We performed recognition on the MIT lectures corpus [10] using
state-of-the-art acoustic models trained on the English Broadcast
News (BN) corpus (430 hours of audio), provided to us by IBM
[11]. IBM also provided us its state-of-the-art speech recognizer,
Attila [12] and an LM containing 4.7M n-grams (n ≤ 4) that was
trained on BN text (335M word tokens). Another 150K words of
MIT lecture transcripts were provided as in-domain text.

Interpolated Kneser Ney smoothed n-gram models build with
the 150K word in-domain corpus were interpolated with correspond-
ing n-gram LMs from IBM. We will call these models KN:MIT+BN.
The RNN LM trained on the 150K words (only) will be called RNN-
Full as before.

We simulated text (30M word tokens) using RNN-Full, and
estimated n-gram LMs from it, which we will again call VarA-
pxRNN. Models resulting from the interpolation of VarApxRNN
and KN:MIT+BN n-gram LMs of the same order will be called
VarApx+KN.

We followed IBM’s multi-pass decoding recipe [12] using 3-
and 4-gram LMs, generated an N -best list from the resulting lattice,
and rescored it with RNN-Full. Table 2 shows the WER for different
decoding configurations, contrasting standard n-gram LMs with the
corresponding VarApx+KN LMs.

We used two sets (2.1 hours each) for decoding. Set 1 was used
as a development set for tuning various parameters (acoustic model
scaling parameter, language model interpolation weight etc), while
Set 2 was used for evaluation.

Setup Set 1 Set 2
KN:MIT+BN (4g) decoding 24.7 22.4

+ RNN-Full rescoring (100 best) 24.1 22.4
+ RNN-Full rescoring (2000 best) 23.8 21.6

Oracle (2000 best) 17.9 15.5

VarApx+KN (4g) decoding 24.3 22.2
+ RNN-Full rescoring (100 best) 23.8 21.7
+ RNN-Full rescoring (2000 best) 23.6 21.5

Oracle (2000 best) 17.5 15.1

Table 2. Performance (%WER) on the MIT Lectures data set.

4.3. Conversational Speech Recognition Experiments

We demonstrate WER improvements in two conversational speech
recognition tasks: the transcription of multiparty meetings, and of
conversational telephone speech. Brno’s variant of the AMI system,
developed for the NIST Meeting Transcription evaluation [13], was
used for the former, and the Brno conversational telephone speech
(CTS) system for the latter.

The AMI recognizer used fast speaker adaptation (HLDA, CM-
LLR and VTLN); it processed PLP+NN-posterior features extracted
from 16kHz audio with SAT models trained on 200 hours of meet-
ing data. The CTS recognizer used an initial decoding pass for for
VTLN and MLLR, and processed PLP features extracted from 8kHz
audio with SAT models trained on 270 hours of telephone speech.
All acoustic models were trained using the MPE criterion and used
cross-word tied-state triphones, and both setups produced bigram
lattices using a 2-gram LM trained using Good-Turing discounting,
which were subsequently expanded to 5-gram lattices using a modi-
fied Kneser-Ney smoothed LM.

5M words of Fisher CTS transcripts were used as training text
for three LMs: two n-grams and an RNN. We call the 2-gram model
with Good-Turning discounting GT (2g). The 5-gram model and the
RNN model are called KN (5g) and RNN-Full, as before. 400M
words of text generated from RNN-Full LM via Gibbs sampling
were used to estimate additional n-gram LMs, which we again call
VarApxRNN. Altogether, this resulted in a total of four LM config-
urations, 2-gram vs 5-gram × standard n-gram vs variational ap-
proximation. Since the LMs were trained on CTS transcripts, they
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are in-domain for conversation telephone recognition (eval01), but
out-of-domain for meeting recognition (rt07s).

The four LMs were applied to rt07s and eval01, and the WERs
are reported in Table 3. The table also illustrates the WER when
N -best list rescoring with RNN-Full is performed.

Setup eval01 rt07s
GT (2g) Decoding 30.3 33.7

+ KN (5g) Lattice Rescoring 28.0 32.4
+ RNN-Full rescoring (100 best) 27.1 30.8
+ RNN-Full rescoring (1000 best) 26.5 30.5

Oracle (1000 best) 19.5 21.3

VarApx+GT (2g) Decoding 30.1 33.3
+ VarApx+KN (5g) Lattice Rescoring 27.2 31.7

+ RNN-Full rescoring (100 best) 27.0 30.6
+ RNN-Full rescoring (1000 best) 26.5 30.4

Oracle (1000 best) 19.5 21.0

Table 3. Performance (%WER) on conversational speech data sets.

4.4. Analysis and Discussion of LVCSR Results

From Table 2 it is clear that using VarApx+KN during decoding con-
sistently produces lattices with a 0.5% lower oracle WER compared
to lattices produced by standard n gram models. The first pass out-
put from decoding with VarApx+KN also has 0.2% to 0.4% lower
WER than from decoding with their standard n-gram counterparts.
It seems fair to conclude that VarApx+KN is a better n-gram model
than a standard n-gram model estimated with Kneser Ney smooth-
ing. Unlike RNN-Full, it can be incorporated into the decoder, bring-
ing some of the benefits of RNN-Full to first pass decoding.

Note further from the upper half of Table 2 that 2000-best
rescoring with RNN-Full reduces WER over a standard 4-gram by
0.8% to 0.9%. In the lower half, using VarApx+KN in decoding
shows a different benefit: if VarApx+KN is used for generating
the N -best list, the same WER reduction is available at 100-best
rescoring! If 2000-best rescoring is undertaken, an additional small
gain of 0.2% is obtained.

The benefits of decoding & lattice rescoring with the variational
approximation of RNN-Full are even more evident from Table 3,
where VarApx+KN reduces WER by 0.7%-0.8% over a 5-gram on
both CTS and meeting transcription.

A final observation from Table 3 is that there still remains a gap
between decoding with VarApx+KN and rescoring with RNN-Full.
The latter reduces WER by almost 2% (absolute) over the standard
5-gram, compared to 0.7%-0.8% by the former. This suggests that
when the RNN is trained on more data (5M words in Table 3 vs
1M words in Table 1), it improves even further over a 4- or 5-gram
model. One may need to investigate further increasing the amount L
of simulated data and/or the order n of the approximation in (2), or
perhaps consider other tractable model families Q in (1).

5. CONCLUSION AND FUTURE WORK

We have presented experimental evidence that (n-gram) variational
approximations of long-span LMs yield greater accuracy in LVCSR
than standard n-gram models estimated from the same training text.
The evidence further suggests that the approximated LMs also yield
higher quality lattices in terms of the oracle WER, and result in
more efficient N -best rescoring with the long-span LMs. Both these

results advocate for early integration of long-span LMs during de-
coding, even if only in their approximated forms. Finally, there is
preliminary evidence that the RNN LM improves significantly over
n-grams with increasing training data, calling for an investigation of
more powerful tractable approximations.
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