
Can Homomorphic Encryption be Practical?

Kristin Lauter
Microsoft Research

klauter@microsoft.com

Michael Naehrig
Microsoft Research

mnaehrig@microsoft.com

Vinod Vaikuntanathan
Microsoft Research
vinod@microsoft.com

ABSTRACT
The prospect of outsourcing an increasing amount of data
storage and management to cloud services raises many new
privacy concerns for individuals and businesses alike. The
privacy concerns can be satisfactorily addressed if users en-
crypt the data they send to the cloud. If the encryption
scheme is homomorphic, the cloud can still perform mean-
ingful computations on the data, even though it is encrypted.

In fact, we now know a number of constructions of fully ho-
momorphic encryption schemes that allow arbitrary compu-
tation on encrypted data. In the last two years, solutions for
fully homomorphic encryption schemes have been proposed
and improved upon, but it is hard to ignore the elephant in
the room, namely efficiency – can homomorphic encryption
ever be efficient enough to be practical? Certainly, it seems
that all known fully homomorphic encryption schemes have
a long way to go before they can be used in practice. Given
this state of affairs, our contribution is two-fold.

First, we exhibit a number of real-world applications, in
the medical, financial, and the advertising domains, which
require only that the encryption scheme is “somewhat” ho-
momorphic. Somewhat homomorphic encryption schemes,
which support a limited number of homomorphic operations,
can be much faster, and more compact than fully homomor-
phic encryption schemes.

Secondly, we show a proof-of-concept implementation of
the recent somewhat homomorphic encryption scheme of
Brakerski and Vaikuntanathan, whose security relies on the
“ring learning with errors”(Ring LWE) problem. The scheme
is very efficient, and has reasonably short ciphertexts. Our
unoptimized implementation in magma enjoys comparable
efficiency to even optimized pairing-based schemes with the
same level of security and homomorphic capacity. We also
show a number of application-specific optimizations to the
encryption scheme, most notably the ability to efficiently
convert between different message encodings in a cipher-
text.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
The development of cloud storage and computing plat-

forms allows users to outsource storage and computations
on their data, and allows businesses to offload the task of
maintaining data-centers. However, concerns over loss of
privacy and business value of private data is an overwhelm-
ing barrier to the adoption of cloud services by consumers
and businesses alike. An excellent way to assuage these pri-
vacy concerns is to store all data in the cloud encrypted, and
perform computations on encrypted data. To this end, we
need an encryption scheme that allows meaningful computa-
tion on encrypted data, namely a homomorphic encryption
scheme.

Homomorphic encryption schemes that allow simple com-
putations on encrypted data have been known for a long
time. For example, the encryption systems of Goldwasser
and Micali [GM82], El Gamal [El-84] and Paillier [Pai99]
support either adding or multiplying encrypted ciphertexts,
but not both operations at the same time. Boneh, Goh and
Nissim [BGN05] were the first to construct a scheme capa-
ble of performing both operations at the same time – their
scheme handles an arbitrary number of additions and just
one multiplication. More recently, in a breakthrough work,
Gentry [Gen09, Gen10] constructed a fully homomorphic en-
cryption scheme (FHE) capable of evaluating an arbitrary
number of additions and multiplications (and thus, compute
any function) on encrypted data.

The main point of this paper is to show to what extent
current schemes can actually be used to compute functions
of practical interest on encrypted data. Since the appear-
ance of Gentry’s scheme, there has been much informal dis-
cussion in the industry as to whether fully homomorphic
encryption is implementable and practical. While the initial
solution may not have been practical, subsequent develop-
ments produced other schemes [DGHV10, SV10, SS10] lead-
ing up to the most recent solutions of Brakerski and Vaikun-
tanathan [BV11b, BV11a], an implementation of which we
consider in this paper. The scheme is efficient and simple,
produces short ciphertexts, and its security is based on the
“ring learning with errors” (Ring LWE) problem [LPR10].

While the performance of the state-of-the art FHE imple-
mentations is itself a question of interest (and has indeed
been considered recently in, e.g., [GH11, SV11]), our fo-
cus here is on describing concrete practical applications and
concrete useful functions to be computed, most of which re-
quire only a limited number of multiplications of ciphertexts
(as well as a possibly very large number of additions of ci-
phertexts). For these applications, it is enough to consider

an implementation of a “somewhat homomorphic encryp-
tion” (SHE) scheme, namely, one which allows a fixed num-
ber of multiplications of ciphertexts. These SHE schemes
are building blocks for the FHE schemes of, e.g., [Gen09,
DGHV10, BV11b, BV11a], and provide much better effi-
ciency guarantees than their fully homomorphic counter-
parts.

1.1 Practical Applications of Homomorphic En-
cryption

We describe a number of concrete applications and func-
tions to be implemented to provide cloud services in the
medical, financial, and advertising sectors. (We provide a
sketch of the applications here, and refer the reader to Sec-
tion 2 for detailed descriptions).

For a cloud service managing electronic medical records
(EMR), consider a futuristic scenario where devices contin-
uously collect vital health information, and stream them to
a server who then computes some statistics (over these mea-
surements, and over the course of time) and presumably
decides on the course of treatment (e.g., whether the dosage
of medicine should be changed). The volume of the data
involved is large, and thus, the patient presumably does not
want to store and manage all this data locally; she may pre-
fer to use cloud storage and computation. To protect patient
privacy, all the data is uploaded in encrypted form, and thus
the cloud must perform operations on the encrypted data in
order to return (encrypted) alerts, predictions, or summaries
of the results to the patient.

We describe scenarios such as the above, which require
computing simple statistical functions such as the mean,
standard deviation, as well as logistical regressions that are
typically used for prediction of likelihoods of certain desir-
able or undesirable outcomes. For these functions, it suffices
to have a somewhat homomorphic encryption system which
computes many additions and a small number of multiplica-
tions on ciphertexts: for example, averages require no mul-
tiplications, standard deviation requires one multiplication,
and predictive analysis such as logistical regression requires
a few multiplications (depending on the precision required).
Other applications we describe in the financial and advertis-
ing sector use similar functions, except that in those sectors,
the function itself may also be private or proprietary.

1.2 Our Implementation
We have implemented the somewhat homomorphic en-

cryption scheme of [BV11b] using the computer algebra sys-
tem Magma [BCP97]. We ran experiments on an ordi-
nary laptop with an Intel Core 2 Duo processor running at
2.1 GHz, with 3MB L2 cache and 1GB of memory, using
Magma’s polynomial arithmetic for all computations in Rq.

Choosing secure parameters for lattice-based cryptogra-
phy is a complex problem. Unlike traditional number-theory
based systems, cryptosystems based on lattices and the learn-
ing with errors (LWE) problem tend to be governed by a
number of inter-related parameters. We follow the method-
ology of Lindner and Peikert [LP11] (following earlier work
of [GN08, MR09, RS10]) to choose these parameters cor-
rectly and securely. 1 More precisely, fixing a parameter D

1Lindner and Peikert, and indeed all previous work, analyze
security for the LWE problem, whereas here, we rely on
the security of the more restricted Ring LWE problem. We

– an upper bound on the number of multiplication opera-
tions that the scheme supports – we compute the parame-
ters of the scheme secure against an attacker with a time-
to-advantage ratio of about 2120 (or larger) which, by the
heuristics of Lenstra and Verheul [LV01], roughly translates
to a security level matching that of AES-128.

For parameter settings which support one multiplication
(i.e., D = 2) followed by a large number of (integer) addi-
tions, the underlying ring in our scheme isRq = Zq[x]/ 〈xn + 1〉
where n ≈ 2048 and q ≈ 258. We always set the LWE error
to be a discrete Gaussian with standard deviation σ = 8.
In fact, for these choices of parameters, we get more secu-
rity than we asked for, namely a time-to-advantage ratio of
about 2196. 2 For this setting, the key and ciphertext sizes,
and the running times are as follows:

• The public key is 2n lg q ≈ 29 KB, the secret key is
n lg q ≈ 14 KB, and a ciphertext generated by the
encryption algorithm is 2n lg q ≈ 29 KB. The cipher-
text has two ring elements in Rq = Zq[x]/ 〈f(x)〉, how-
ever homomorphic multiplication adds another ring el-
ement to the ciphertext making it 3n log q ≈ 43.5 KB.

• Key-generation runs in 250 milliseconds (ms), encryp-
tion takes 24 ms, whereas decryption takes 15–26 ms
(depending on whether we are decrypting a 2- or 3-
element ciphertext). Homomorphic addition is essen-
tially instantaneous (i.e., takes less than 1 ms), whereas
homomorphic multiplication takes about 41 ms.

We also implement an optimization proposed in [BV11a] –
termed re-linearization – that reduces the size of the cipher-
text to two ring elements. This comes at a cost of increasing
the keys and the time for homomorphic multiplication, al-
though we observe that the advantage of this optimization
outweighs the cost in the larger parameter settings.

Let us contrast these numbers with the performance of the
BGN encryption scheme [BGN05] based on bilinear pairings
on elliptic curves, which also supports one multiplication.
While the key sizes in our scheme are larger, our homomor-
phic multiplication is much faster than that for the BGN
scheme, which requires a pairing computation. A magma
implementation of the optimal ate pairing on a 254-bit BN
(Barreto-Naehrig) curve takes around 240 ms on the same
machine that we used to time the somewhat homomorphic
scheme. The BGN scheme requires composite order pair-
ing groups and thus, it is likely that the parameters are less
favorable parameters leading to an even slower pairing com-
putation. Even if we assume highly optimized pairings at
the 128-bit security level (about 1ms per pairing) and the
use of Freeman’s prime-order version of the BGN scheme
[Fre10] which requires 12 such pairings, the performance of
the homomorphic multiplication of our magma implemen-
tation is comparable to the BGN scheme. We remark that
a C implementation (possibly using special purpose polyno-
mial arithmetic along the lines of the SWIFFT hash func-

still choose to use the analysis of [LP11] since (as pointed
out therein), we do not know any attacks against ring LWE
that perform better than the attacks on LWE.
2Since we constrain the dimension n to be a power of 2, we
sometimes get “jumps” in security levels. In such a case,
we choose to use the smallest setting whose security level
exceeds our minimum, namely a time-to-advantage ratio of
2120.

tion [LMPR08]) would likely be several orders of magnitude
faster than the magma implementation that we report here.

We build on the somewhat homomorphic encryption, and
implement simple statistics such as mean, standard devia-
tion and logistical regression, and report on the performance
numbers (See Section 5 for more details). To support com-
puting these functions, we come up with two tricks to encode
messages appropriately. As such, the encryption scheme
supports addition and multplication modulo a fixed inte-
ger t, where t is a parameter of the system. The first trick
shows how to encode integers in a ciphertext so as to enable
efficient computation of their sums and products over the
integers. This is useful in computing the mean, the stan-
dard deviation and other private statistics efficiently. The
second trick shows how to “pack” n encryptions of bits into
a single encryption of the n-bit string. Some homomorphic
operations, e.g., comparison of integers or private informa-
tion retrieval, seem to require bit-wise encryptions of the
input. Once the answers are computed, though, they can be
packed into a single encryption using this trick.

Finally, the work of [BV11a] shows how to make this
scheme fully homomorphic under the same assumption (namely,
ring LWE) in an efficient way. Implementing the “boot-
strapping” operation for this system (thus, making it fully
homomorphic) is a very interesting avenue for future imple-
mentation efforts.

2. CLOUD SERVICES
Adoption of cloud services by consumers and businesses

is limited by concerns over the loss of privacy or business
value of their private data. In this section we will describe
concrete and valuable applications of Fully Homomorphic
Encryption which can help preserve customer privacy while
outsourcing various kinds of computation to the cloud. In
all of these scenarios, we imagine a future of streaming data
from multiple sources, uploaded in encrypted form to the
cloud, and processed by the cloud to provide valuable ser-
vices to the content owner. There are two aspects of the
computation to consider: the data itself, and the function
to be computed on this data. We consider cases where one
or both of these are private or proprietary and should not
be shared with the cloud.

In all of these applications, we consider a single content-
owner, who is the consumer for the cloud service. All data
that is encrypted and sent to the cloud is public-key en-
crypted to the content-owner’s public key, using the seman-
tically secure somewhat homomorphic encryption scheme
from [BV11b] described later in this paper.

2.1 Medical Applications: Private data and
Public functions

In [CLBH09], a private cloud medical records storage sys-
tem (Patient Controlled Encryption) was proposed, in which
all data for a patient’s medical record is encrypted by the
healthcare providers before being uploaded to the patient’s
record in the cloud storage system. The patient controls
sharing and access to the record by sharing secret keys with
specific providers (features include a hierarchical structure
of the record, ability to search the encrypted data, and var-
ious choices for how to handle key distribution). However
this system does not provide for the cloud to do any compu-
tation other than search (exact keyword match, or possibly

conjunctive searches). With our FHE implementation, we
add the ability for the cloud to do computation on the en-
crypted data on behalf of the patient. Imagine a future
where monitors or other devices may be constantly stream-
ing data on behalf of the patient to the cloud. With FHE,
the cloud can compute functions on the encrypted data and
send the patient updates, alerts, or recommendations based
on the received data.

The functions to be computed in this scenario may include
averages, standard deviations or other statistical functions
such as logistical regression which can help predict the likeli-
hood of certain dangerous health episodes. Encrypted input
to the functions could include blood pressure or heart mon-
itor or blood sugar readings, for example, along with infor-
mation about the patient such as age, weight, gender, and
other risk factors. The functions computed may not need to
be private in this case since they may be a matter of public
health and thus public.

2.2 Financial Applications: Private data and
Private functions

In the financial industry there is a potential application
scenario in which both the data and the function to be com-
puted on the data is private and proprietary.

As an example, data about corporations, their stock price
or their performance or inventory is often relevant to mak-
ing investment decisions. Data may even be streamed on a
continuous basis reflecting the most up-to-date information
necessary for making decisions for trading purposes. Func-
tions which do computations on this data may be propri-
etary, based on new predictive models for stock price per-
formance and these models may be the product of costly
research done by financial analysts, so a company may want
to keep these models private to preserve their advantage and
their investment.

With FHE, some functions can be evaluated privately as
follows. The customer uploads an encrypted version of the
function to the cloud, for example a program where some of
the evaluations involve encrypted inputs which are specified.
The streaming data is encrypted to the customer’s public
key and uploaded to the cloud. The cloud service evaluates
the private function by applying the encrypted description
of the program to the encrypted inputs it receives. After
processing, the cloud returns the encrypted output to the
customer.

2.3 Advertising and Pricing
Imagine an advertiser, for example a cosmetics company,

who wants to use contextual information to target adver-
tising to potential customers. The consumer uses a mobile
phone as a computing device, and the device constantly up-
loads contextual information about the consumer, including
location, the time of day, information from email or brows-
ing activity such as keywords from email or browser searches.
In the future, imagine that information is uploaded poten-
tially constantly from video devices: either pictures of ob-
jects of interest such as brands or faces which are automat-
ically identified, or from a video stream from a camera on
the body which is identifying context in the room (objects,
people, workplace vs. home vs. store). When contextual in-
formation is uploaded to the cloud server and made accessi-
ble to the cosmetics company, the company computes some
function of the contextual data and determine which tar-

geted advertisement to send back to the consumer’s phone.
Some examples of where context is important for advertis-

ing or providing targeted coupons: beer commercials during
sports events, or, you are near a Starbucks in the morn-
ing and a coffee discount coupon for the Starbucks nearby is
sent to your phone, or, cosmetics companies market different
products for different times of day (e.g. Friday night going
out vs. Sunday morning hanging out with the family), ads
or coupons for shows if you are in New York near Broadway
in the evening. Other (private) contextual data might be:
your income, your profession, your purchasing history, your
travel history, your address, etc.

Encrypted version: The problem with these scenarios is the
invasion of privacy resulting from giving that much detailed
information about the consumer to the server or to the ad-
vertising company. Now, imagine an encrypted version of
this entire picture. All the contextual data is encrypted
and then uploaded to the server; the advertiser uploads en-
crypted ads to the server; the server computes a function
on the encrypted inputs which determines which encrypted
ad to send to the consumer; this function could be either
private/proprietary or not. All contextual data and all ads
are encrypted to the consumer’s public key. Then the cloud
can operate and compute on this data, and the consumer
can decrypt the received ad. As long as the cloud service
provider does not collude with the advertisers, and seman-
tically secure FHE encryption is employed, the cloud and
the advertisers don’t learn anything about the consumer’s
data. 3

2.4 Functions to be computed with FHE
We can compute the following functions with a somewhat

homomorphic encryption scheme:

• Average of n terms {ci}: as a pair (
∑
i=1,...n ci, n),

where m =
∑
i=1,...n ci

n
is the average.

• Standard deviation:

√
(
∑
i=1,...n ci−m)2

n
, returned as a

pair which is the numerator and denominator of the
expression, before taking the square root.

• Logistical regression: x =
∑
i=1,...n αixi , where αi is

the weighting constant or regression coeffficient for the
variable xi, and the prediction is f(x) = ex

1+ex

A couple of remarks are in order. First, we set the parame-
ter choices for the encryption system based on the expected
number of multiplication operations to be done to compute
the given functions. These parameter choices determine the
efficiency and security of the system. Thus parameters for
the system need to be changed as the functions to be com-
puted change.

Secondly, so far we do not have a way to efficiently do
divisions of real numbers or square roots. Thus in the above
computations, numerators and denominators need to be re-
turned as separate encryptions.

3If the cloud and the advertiser collude, then the cloud may
be able to learn some information about whether the user
likes the ad or not, which reveals information about his pref-
erences. This constitutes a form of CCA attack, which might
endanger the securty of the FHE.

3. THE ENCRYPTION SCHEME
We describe the “ring learning with errors” (Ring LWE)

assumption of [LPR10] in Section 3.1, and present the“some-
what” homomorphic encryption scheme of Brakerski and
Vaikuntanathan [BV11b] based on Ring LWE in Section 3.2.
We then report on an instantiation of the parameters, as well
as the running-times and sizes of the keys and ciphertexts
in Section 5.

3.1 The Ring LWE Assumption
In this section, we describe a variant of the “ring learn-

ing with errors” (RLWE) assumption of Lyubaskevsky, Peik-
ert and Regev [LPR10]. In the RLWE assumption, we con-

sider rings R , Z[x]/ 〈f(x)〉 and Rq , R/qR for some de-
gree n integer polynomial f(x) ∈ Z[x] and a prime integer
q ∈ Z. Note that Rq ≡ Zq[x]/ 〈f(x)〉, i.e. the ring of degree
n polynomials modulo f(x) with coefficients in Zq. Addi-
tion in these rings is done component-wise in their coeffi-
cients (thus, their additive group is isomorphic to Zn and
Znq respectively). Multiplication is simply polynomial mul-
tiplication modulo f(x) (and also q, in the case of the ring
Rq).

Thus an element in R (or Rq) can be viewed as a degree
n polynomial over Z (or Zq). One can represent such an
element using the vector of its coefficients. For an element
a(x) = a0 +a1x+ . . .+an−1x

n−1 ∈ R, we let ‖a‖ = max |ai|
denote its `∞ norm.

The RLWEf,q,χ assumption is parameterized by an inte-
ger polynomial f(x) ∈ Z[x] of degree n (which defines the
ring R = Z[x]/ 〈f(x)〉), a prime integer q ∈ Z and an error

distribution χ over R, and is defined as follows. Let s
$← Rq

be a uniformly random ring element. The assumption is
that given any polynomial number of samples of the form
(ai, bi = ai ·s+ei) ∈ (Rq)

2, where ai is uniformly random in
Rq and ei is drawn from the error distribution χ, the bi’s are
computationally indistinguishable from uniform in Rq. As
shown in [ACPS09, LPR10], this is equivalent to a variant
where the secret is sampled from the noise distribution χ
rather than being uniform in Rq. It is also easy to see that
the assumption is equivalent to a variant where the noise ei
are multiples of some integer t that is relatively prime to q.

We consider the RLWE problem for specific choices of the
polynomial f(x) and the error distribution χ. Namely,

• We set f(x) to be the cyclotomic polynomial xn + 1
for n a power of two. In addition to many other useful
properties, the fact that f(x) = xn + 1 means that
multiplication of ring elements does not increase their
norm by too much (see Lemma 3.2 below).

• The error distribution χ is the discrete Gaussian dis-
tribution DZn,σ for some σ > 0. A sample from this
distribution defines a polynomial e(x) ∈ R.

We present some elementary facts about the Gaussian er-
ror distribution, and multiplication over the ring Z[x]/ 〈xn + 1〉.
The first fact bounds the (Euclidean and therefore, the `∞)
length of a vector drawn from a discrete Gaussian of stan-
dard deviation σ by σ

√
n. The second fact says that mul-

tiplication in the ring Z[x]/ 〈xn + 1〉 increases the norm of
the constituent elements only by a modest amount.

Lemma 3.1 (see [MR07], Theorem 4.4). Let n ∈ N.
For any real number σ > ω(

√
logn), we have

Pr
x←DZn,σ

[||x|| > σ
√
n] ≤ 2−n+1

Lemma 3.2 (see [LM06, Gen09]). Let n ∈ N, let f(x) =
xn + 1 and let R = Z[x]/ 〈xn + 1〉. For any s, t ∈ R,

||s · t (mod xn + 1)||∞ ≤ n · ||s||∞ · ||t||∞

Solving the RLWE problem (for the stated parameters) is
also known to give us a quantum algorithm that solves“short
vector problems” on ideal lattices with related parameters.
The latter problem is believed to be exponentially hard.

3.2 Somewhat Homomorphic Encryption
The somewhat homomorphic encryption scheme SHE =

(SH.Keygen, SH.Enc,SH.Add, SH.Mult, SH.Dec) is associated
with a number of parameters:

• the dimension n, which is a power of 2,

• the cyclotomic polynomial f(x) = xn + 1,

• the modulus q, which is a prime such that q ≡ 1
(mod 2n),

Together, n, q and f(x) define the ringsR , Z[x]/ 〈f(x)〉
and Rq , R/qR = Zq[x]/ 〈f(x)〉.

• the error parameter σ, which defines a discrete Gaus-
sian error distribution χ = DZn,σ with standard devi-
ation σ,

• a prime t < q, which defines the message space of
the scheme as Rt = Zt[x]/ 〈f(x)〉, the ring of integer
polynomials modulo f(x) and t, and

• a number D > 0, which defines a bound on the maxi-
mum number of multiplications that can be performed
correctly using the scheme.

These parameters will be chosen (depending on the security
parameter κ) in such a way as to guarantee correctness and
security of the scheme. See Section 3.2.2 for the asymptotic
setting of parameters, and 5 for concrete choices.

3.2.1 The Scheme

SH.Keygen(1κ): Sample a ring element s
$← χ and define

the secret key sk , s. Sample a uniformly random ring
element a1 ← Rq and an error e ← χ and compute the
public key pk , (a0 = −(a1s+ te), a1).

Publish pk and keep sk secret.

SH.Enc(pk,m): Recall that our message space isRt. Namely,
we encode our message as a degree n polynomial with coef-
ficients in Zt.

Given the public key pk = (a0, a1) and a message m ∈ Rq,
the encryption algorithm samples u← χ, and f, g ← χ, and
computes the ciphertext

ct = (c0, c1) , (a0u+ tg +m,a1u+ tf)

SH.Dec(sk, ct = (c0, c1, . . . , cδ)): To decrypt, we first com-
pute

m̃ =

δ∑
i=0

cis
i ∈ Rq

and output the message as m̃ (mod t).

Homomorphic Operations. We now show how to compute
the addition and multiplication operations homomorphically.
To compute an arbitrary function f homomorphically, we
construct an arithmetic circuit for f (made of addition and
multiplication operations over Zt), and then use SH.Add and
SH.Mult to iteratively compute f on encrypted inputs.

Although the ciphertexts produced by SH.Enc contains
two ring elements, the homomorphic operations (in partic-
ular, multiplication) increases the number of ring elements
in the ciphertext. In general, the SH.Add and SH.Mult op-
erations get as input two ciphertexts ct = (c0, c1, . . . , cδ)
and ct′ = (c′0, c

′
1, . . . , cγ). The output of SH.Add contains

max(δ+1, γ+1) ring elements, whereas the output of SH.Mult
contains δ + γ + 1 ring elements.

SH.Add(pk, ct0, ct1): Let ct = (c0, c1, . . . , cδ) and ct′ =
(c′0, c

′
1, . . . , c

′
γ) be the two ciphertexts. Assume that δ = γ,

otherwise pad the shorter ciphertext with zeroes.
Homomorphic addition is done by simple component-wise

addition of the ciphertexts. Namely, compute and output

ctadd = (c0 + c′0, c1 + c′1, . . . , cmax(δ,γ) + c′max(δ,γ)) ∈ Rmax(δ,γ)
q

SH.Mult(pk, ct0, ct1): Let ct = (c0, c1, . . . , cδ) and ct′ =
(c′0, c

′
1, . . . , c

′
γ) be the two ciphertexts. Here, we do not pad

either of the ciphertexts with zero.
Let v be a symbolic variable and consider the expression

(

δ∑
i=0

civ
i) · (

γ∑
i=0

c′iv
i)

(over Rq). We can (symbolically, treating v as an unknown
variable) open the parenthesis to compute ĉ0, . . . , ĉδ+γ ∈ Rq
such that for all v ∈ Rq(

δ∑
i=0

civ
i

)
·

(
γ∑
i=0

c′iv
i

)
≡
δ+γ∑
i=0

ĉiv
i . (1)

The output ciphertext is ctmlt = (ĉ0, . . . , ĉδ+γ).

3.2.2 Correctness and Security
We show the correctness of decryption and homomorphic

evaluation in the following lemmas. The statement of the
lemma also serves as the setting of the modulus q (in terms
of σ, t, n and D) that ensures that the scheme can perform
D multiplications and A additions.

Lemma 3.3. The encryption scheme SHE is correct, and
can compute D multiplications followed by A additions, as-
suming that

q ≥ 4 · (2tσ2√n)D+1 · (2n)D/2 ·
√
A (2)

Proof. First, note that the ciphertext ct = (c0, c1) can
be written in the following way:

c0 = a0u+ tg +m

= −(a1s+ te)u+ tg +m

= −(a1u+ tf)s+ t(−eu+ fs+ g) +m

= −c1s+ tẽ+m

where tẽ = −t(eu + fs + g) is a polynomial where each
co-efficient has magnitude at most

√
3 · σ2t

√
n with over-

whelming probability. This is because e, u, f, s and g are

all polynomials whose co-efficients are drawn from a dis-
crete Gaussian with standard deviation σ, and multiplying
two such polynomials (mod xn + 1) produces a polynomial
whose co-efficients are of size at most√

(σ2 ·
√

2n)2 + σ2 · t ·ω(
√

logn) ≤
√

3 ·σ2√n · t ·ω(
√

logn)

with overwhelming probability (by the Central Limit the-
orem). Our experiments show that this number is in fact
smaller, and is of the order of 2 · σ2t

√
n.

Before we prove correctness of the homomorphic opera-
tions, we state an invariant that holds for all ciphertexts
produced either by the encryption algorithm, or as a result
of a homomorphic evaluation. The invariant is that for a
ciphertext ct = (c0, c1, . . . , cδ),

fct(s) ,
δ∑
i=0

cis
i = te+m (3)

where s is the secret key, e is a “small error” (namely, |te| <
q/2) and m is the message.

Clearly, the invariant holds for a fresh ciphertext pro-
duced by SH.Enc (by the calculation above), assuming that
q ≥ 2 · (2tσ2√n). Furthermore, if the invariant holds, then
the decryption algorithm succeeds. This is because the de-
cryption algorithm outputs fct(s) (mod t) which is indeed
the message, assuming the bound on the error. The bound
on the error essentially ensures that the quantity te + m
(mod q) that the decryption algorithm recovers does not
“wrap around mod q”.

Correctness of homomorphic addition is easy to see. We
have two ciphertexts ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c

′
δ)

that satisfy the invariants that fct(s) = te+m and fct′(s) =
te′ +m′ respectively. Then, the sum of the two ciphertexts
is ctadd = ct+ct′, where the addition is done componentwise.
Now,

fctadd (s) = fct+ct′(s)

=

δ∑
i=0

(ci + c′i)s
i

=

δ∑
i=0

cis
i +

δ∑
i=0

c′is
i

= fct(s) + fct′(s) = t(e+ e′) +m+m′

This satisfies the invariant as well, assuming that the larger
error t(e + e′) is smaller than q. In general, adding A ci-
phertexts with error at most η each results in error at most
A · η. In practice, as our experiments show, this is likely to
be smaller, namely of the order of 2

√
A · η.

With this perspective, correctness of homomorphic mul-
tiplication is easy to see. The way the ciphertext ctmlt is
defined, we have

fctmlt (s) = fct(s) · fct′(s) (by Equation 1)

= (te+m) · (te′ +m′)

= temult +mm′

where emult = tee′+em′+e′m. This satisfies the invariant as
well, however the error grows roughly as the product of the
constituent errors. In particular, assuming that the errors

in the ciphertext te+m and te′ +m′ each have magnitude
at most η, each co-efficient of the resulting error polynomial
(te + m) · (te′ + m′) can be as large as η2 · n. However, in
practice, the error is only about η2 ·

√
2n, as our experiments

show.
Putting these estimates together, doing D multiplications

increases the error from η to about ηD+1(
√

2n)D. Then,

performing A additions increases this to 2·ηD+1(
√

2n)D ·
√
A.

Since the initial error (in a ciphertext produced by SH.Enc) is
at most η ≤ 2tσ2√n, the final error (after D multiplications
followed by A additions) is at most

ηfinal ≤ 2 · (2tσ2√n)D+1(2n)D/2 ·
√
A

Decryption succeeds if this quantity is smaller than q/2,
which gives us equation 2 in the Lemma.

Security follows directly from Ring LWE. For a proof, we
refer the reader to [LPR10].

Lemma 3.4. The encryption scheme SHE is secure under
the Ring LWE assumption with parameters n, q and χ.

3.2.3 An Optimization to Reduce Ciphertext Size
The homomorphic multiplication operation described above

increases the number of ring elements in a ciphertext. Brak-
erski and Vaikuntanathan [BV11a] describe a transforma-
tion – called “relinearization” – that reduces the ciphertext
back to two ring elements. We describe this optimization be-
low, implement it and report on the performance numbers
in Section 5.

Essentially, the idea is the following: assume that we run
SH.Mult on two ciphertexts (each containing two ring ele-
ments) produced by the encryption algorithm. The result-
ing ciphertext ctmlt contains three ring elements that satisfy
the ”invariant”

fctmlt (s) = c2s
2 + c1s+ c0 = temult +mm′

This is a quadratic equation in s, and thus, SH.Mult turned
two “linear ciphertexts” into a “quadratic ciphertexts”. The
goal of re-linearization is to bring this back down to a linear
ciphertext.

To this end, we publish some “homomorphism keys” to
aid re-linearization. This could be thought of as part of
the public key, but the homomorphism key is only used for
re-linearization (following an SH.Mult operation). The ho-
momorphism key hk = (h1, . . . , hdlogt qe−1) is computed as:

hi = (ai, bi = −(ais+tei)+t
is2) for i = 0, . . . , dlogt qe − 1

where ai ← Rq and ei ← χ are chosen independently for
every i. In a sense, these are “quasi-encryptions” of ti · s2.
They are not real encryptions since ti · s2 may not lie in the
message space of the encryption scheme, namely Rt.

The homomorphic multiplication generates a ciphertext
ctmlt = (c0, c1, c2), starting from two 2-element ciphertexts.
Re-linearization is performed after every homomorphic mul-
tiplication, and proceeds as follows.

1. Write the polynomial c2 in its base-t representation
as follows. c2 =

∑
c2,it

i (for i = 0, . . . , dlogt qe − 1),
where all the co-efficients of c2,i are smaller than t.

2. Now, set

crelin
1 := c1 +

dlogt qe−1∑
i=0

c2,iai and (4)

crelin
0 := c0 +

dlogt qe−1∑
i=0

c2,ibi (5)

where hi = (ai, bi) come from the “homomorphism
key”.

3. Output the 2-element ciphertext ctmlt := (crelin
0 , crelin

1).

To see why this works, note that4

crelin
0 = c0 +

∑
i

c2,ibi

= c0 +
∑
i

c2,i(−ais− tei + tis2)

= c0 −

(∑
i

c2,iai

)
s− terelin +

(∑
i

c2,it
i

)
s2

= c0 − (crelin
1 − c1)s− terelin + c2s

2

from Equation 4 and by the definition of c2 ,
∑
i c2,it

i.
This means that

crelin
0 + crelin

1 s = c0 + c1s+ c2s
2 − terelin

But, since c0 + c1s+ c2s
2 = temult +mm′, we have

crelin
0 + crelin

1 s = t(erelin + emult) +mm′

thus maintaining the invariant and achieving correctness of
decryption if the final error erelin + emult is small enough.
Note that the re-linearization process adds a fixed amount
of error to the ciphertext, and does not accumulate error
multiplicatively.

On the one hand, re-linearization reduces the length of the
ciphertext considerably. On the flip side, the public parame-
ters become much larger. They now consist of an additional
logt q ring elements, totaling to logt q · n lg t = n(lg q)2/ lg t
bits. Re-linearization also affects the running time of the ho-
momorphic multiplication. In particular, one needs to addi-
tionally perform roughly logt q polynomial multiplications
and additions. These (side-)effects are most pronounced
for small t, where our experiments indicate considerable
overhead. Quite encouragingly, though, the benefits of re-
linearization seem to dominate the side-effects for large t
(see Section 5 for more details).

The security of the encryption scheme given the homomor-
phism keys relies on the circular security of the encryption
scheme when encrypting quadratic functions of the secret
key.

4. MESSAGE ENCODING TECHNIQUES
The ease of performing homomorphic operations depends

crucially on the specific message-encoding used in the ci-
phertexts. Consider the following two examples.

• If we wish to compare two encrypted integers x, y ∈ Zt
homomorphically, then it seems best to encrypt them

4The summation runs from i = 0 to i = dlogt qe − 1. We
omit the indices for brevity.

bit-wise rather than as an elements of Zt. The for-
mer approach translates to computing a polynomial of
degree lg t over the encrypted bits, whereas the latter
seems to require a polynomial of degree O(t).
• If we wish to compute the mean of k integers, then

it seems most natural to encode them as elements of
Zt (for a large enough t). Computing the mean ho-
momorphically then involves only cheap homomorphic
additions over Zt. On the other hand, if the numbers
are encrypted bit-wise, then addition requires compu-
tation of expensive “carry” operations that involve ho-
momorphic multiplication over Z2.

We describe two tricks for encoding messages. The first trick
shows how to efficiently encode integers in a ciphertext so as
to enable efficient computation of their sums and products
over the integers. This is useful in computing the mean, the
standard deviation and other private statistics efficiently.
The second trick shows how to “pack” n encryptions of bits
into a single encryption of the n-bit string. Some homo-
morphic operations, e.g., comparison of integers or private
information retrieval, seem to require bit-wise encryptions
of the input. Once the answers are computed, though, they
can be packed into a single encryption using this trick.

4.1 Efficient Encoding of Integers for Arith-
metic Operations

Given a list of integers (m1, . . . ,m`) ∈ Z`, if our goal is to
compute their sum or product over the integers homomor-
phically, the obvious (and sub-optimal) choice is to encrypt
them directly. Namely, for every m in the list, compute

Enc(pk,m) = (c0, c1) = (a0u+ tg +m,a1u+ tf)

To ensure that we obtain
∑
imi over the integers (and not

mod t), we are forced to choose t to be rather large, namely
t >

∑
imi, which could be rather prohibitive.

We show a method of encrypting integers more efficiently
by encoding them in the polynomial ring, in essence enabling
a smaller choice of t and better efficiency. In particular, for
small enough mi < 2n, we show that it suffices to choose
t > ` in order to add ` integers. Being able to work with a
small t in turn enables us to choose other parameters, e.g.,
q and n to be correspondingly smaller.

The idea is very simple: break each m into (at most

n) bits (m(0), . . . ,m(n−1)), create a degree-(n-1) polynomial

pm(x) =
∑
jm

(j)
i xj and encrypt m as

Enc(pk,m) = (c0, c1) = (a0u+ tg + pm, a1u+ tf)

Adding these encryptions now adds up the polynomials pmi(x)
co-efficient-wise. Note that each co-efficient was a single bit
to start with, and a sum ` of them grows to at most `.
As long as q > t > `, this does not wrap around mod-
ulo t and upon decryption, we in fact get the polynomial
pmadd(x) =

∑
i pmi(x) over Z[x]. Now, the result is simply

pmadd(2).
Extending this idea to support multiplication is a bit trick-

ier. The problem stems from the fact that multiplying the
polynomials pm(x) and pm′(x) increases their degree. If
their original degree was close to n to start with, we will only
be able to obtain pm(x)pm′(x) (mod xn + 1) upon decryp-
tion, which loses information about the product. The solu-
tion is to encode the messages m as polynomials of degree
at most n/d, if we anticipate performing d multiplications.

For our applications (e.g., computing standard deviations),
this is an acceptable trade-off since we only anticipate doing
a single multiplication (or, at most a small number of them
in the case of computing higher-order regression functions).

4.2 Packing Many Bits in a Ciphertext
We show how to transform ciphertexts that encode n bits

b0, b1, . . . , bn−1 separately, into a single ciphertext that en-
codes the polynomial b(x) = b0 + b1x+ . . .+ bn−1x

n−1.
Given n ciphertexts cti = (c0,i, c1,i) that encrypt the bits

bi, it is easy to see that the ciphertext

ctpack , (
∑
i

c0,ix
i,
∑
i

c1,ix
i)

encrypts the polynomial b(x) = b0 + . . . + bn−1x
n−1. (It is

equally easy to do this with homomorphically evaluated –
and thus, potentially longer – ciphertexts as well).

In contrast, it seems much harder to unpack a ciphertext.
Namely, transform a ciphertext that encodes the polynomial
b(x) = b0 + . . .+ bn−1x

n−1 into n separate ciphertexts that
encode the bits bi. This is a useful thing to do when the
homomorphic computation demands that the messages be
encrypted bit-wise, forcing the client to send many cipher-
texts, one for each bit. If we had a technique for unpack-
ing bits, we could have the client send a single ciphertext,
unpack it at the server’s end, have the server perform com-
putations, and finally, pack the result into one ciphertext to
send it back.

5. IMPLEMENTATION DETAILS
We have implemented the somewhat homomorphic pub-

lic key encryption scheme in the computer algebra system
magma [BCP97] and ran experiments on an Intel Core 2
Duo processor at 2.1 GHz. We use magma’s polynomial
arithmetic for all computations in Rq, in particular we use
magma’s addition and multiplication of polynomials over Zq
modulo xn + 1.

Choice of Parameters. To assess the security of our encryp-
tion scheme, we assume that an adversary carries out the
attacks described in [MR09, LP11]. We follow the analy-
sis described in [LP11] and adjust it to our setting. This
leads to specific parameter choices for different required ci-
phertext degrees D. The results are summarized in Table 1.
According to the analysis in [LP11], the chosen parameters
mostly provide a security level of around 128 bits or more
against the distinguishing attack with advantage ε = 2−32.

We explain the choice of the parameters in detail in Ap-
pendix A. We end this discussion with the remark that both
n and log q seem to grow almost linearly in D (more pre-
cisely, they grow as D logD). This observation is confirmed
by our concrete parameter calculations.

Mean and variance computation. To compute the mean,
we do not need any multiplications, just additions of ci-
phertexts, i.e. the maximal degree of ciphertext we need is
D = 1. We used the parameters from Table 1 with t = 1024,
D = 1 and n = 1024. The corresponding 30-bit prime is
q = 1061093377 and has been chosen so as to support up
to 1000 additions. We do not compute the ciphertext of
the mean, but of the sum of all numbers instead together
with a ciphertext encrypting the number of numbers that
have been added. The mean can then easily be computed

t D n dlg(q)e δ lg(T)
2 1 512 19 1.0054 123

2 1024 38 1.0058 107
3 2048 64 1.0051 134
4 2048 89 1.0072 64
4 4096 94 1.0038 218
5 4096 120 1.0049 145
10 8192 264 1.0055 117
15 16384 423 1.0044 172

128 1 1024 27 1.0041 199
2 2048 52 1.0041 198
3 2048 82 1.0067 78
3 4096 86 1.0035 250
4 4096 118 1.0048 149
5 4096 150 1.0062 92
10 8192 324 1.0068 74
10 16384 338 1.0035 243
15 16384 513 1.0054 122

1024 1 1024 30 1.0047 164
2 2048 58 1.0046 164
3 2048 91 1.0074 59
3 4096 95 1.0039 215
4 4096 130 1.0053 124
5 4096 165 1.0068 73
5 8192 171 1.0035 242
10 8192 354 1.0074 59
10 16384 368 1.0039 214
15 16384 558 1.0059 103
32 65536 1298 1.0034 255
64 131072 2705 1.0036 239

Table 1: Example parameters and cost of the distin-
guishing attack from [LP11] for distinguishing ad-
vantage ε = 2−32, i.e. c ≈ 2.657, modulus t for the
message space Rt, maximal ciphertext degree D, size
of prime q, Hermite root factor δ, and logarithm of
the runtime lg(T).

by one division after decryption. Computing the ciphertext
for the sum of 100 numbers of size 128-bits from the single
ciphertexts takes about 20ms.

Computation of the variance requires one multiplication.
Suitable parameters are given in Table 1 as t = 1024, D = 2,
and n = 2048 with the 58-bit prime q = 144115188076060673.
To obtain the ciphertexts for the sum and sum of squares
that can be used to determine mean and variance takes
about 6s.

Potential Improvements. We remark that our implementa-
tion uses the generic polynomial arithmetic in magma. A
number of performance optimizations are possible; we men-
tion one such possibility, suggested to us by Daniele Mic-
ciancio. The encryption scheme uses addition and multipli-
cation of polynomials over Zq modulo xn + 1, where n is a
power of two and q = 1 (mod 2n). However, the particular
choice of n and q could allow for much faster implementa-
tions than the generic magma code. Such optimizations have
already been considered in the context of hash functions
(e.g., SWIFFT [LMPR08]) that use fast Fourier-transform
techniques to speed up computations.

Sχ SH.Keygen SH.Enc SH.Dec SH.Add SH.Mult SH.Mult
precomp. deg 1 deg 2 w/ deg red

t D n dlg(q)e ms ms ms ms ms ms ms ms s
2 1 512 19 27 60 81 2 2 − < 1 − −

2 1024 38 55 120 171 9 6 10 1 15 0.34
3 2048 64 110 260 353 29 18 33 1 56 1.98
4 2048 89 111 270 357 32 19 35 1 59 2.94
4 4096 94 221 540 733 82 46 89 2 155 7.63
5 4096 120 223 560 742 85 49 94 3 163 10.59
10 8192 264 438 1480 1738 425 227 454 7 887 114.57
15 16384 423 880 4000 4176 1503 781 1561 14 3160 669.40

128 1 1024 27 54 110 163 4 4 − < 1 − −
2 2048 52 110 270 348 23 15 25 1 41 0.23
3 2048 82 110 270 357 32 20 35 1 60 0.44
3 4096 86 222 520 724 69 41 77 4 130 1.05
4 4096 118 221 550 740 86 49 93 4 162 1.62
5 4096 150 221 590 771 117 65 124 4 226 2.76
10 8192 324 437 1620 1845 548 283 565 6 1069 26.17
10 16384 338 870 3540 3864 1269 656 1327 19 2501 63.49
15 16384 513 864 4710 4503 1925 977 1960 29 3844 145.55

1024 1 1024 30 54 110 164 5 4 − < 1 − −
2 2048 58 110 250 348 24 15 26 1 41 0.19
3 2048 91 111 270 366 38 22 41 2 73 0.46
3 4096 95 221 530 733 81 46 88 4 154 0.95
4 4096 130 220 580 756 102 57 109 4 196 1.50
5 4096 165 220 600 770 117 64 125 4 226 2.19
5 8192 171 440 1250 1582 275 148 288 5 526 5.33
10 8192 354 435 1720 1824 523 271 538 9 538 19.28
10 16384 368 868 3690 3851 1260 664 1300 19 1593 48.23
15 16384 558 863 5010 4805 2343 1136 2269 13 4411 126.25

Table 2: Timings for the somewhat homomorphic encryption scheme using the example parameters given in
Table 1. The column labeled Sχ gives timing for sampling an element from the discrete Gaussian distribution
χ. In the second column for SH.Enc, labeled prec., encryption is measured without sampling from χ, which
is instead done as a precomputation. The two columns for SH.Dec correspond to decryption of a degree-1
and a degree-2 ciphertext, respectively. The last column gives the time taken for a ciphertext multiplication
of two linear ciphertexts including the degree reduction resulting in a degree-1 ciphertext for the product.
Measurements were done on a 2.1 GHz Intel Core 2 Duo using the computer algebra system Magma [BCP97].

6. EXTENSIONS AND FUTURE WORK
Implementing Fully Homomorphic Encryption. The some-
what homomorphic encryption scheme of [BV11b] can be
turned into a fully homomorphic encryption scheme using
the re-linearization and the dimension reduction techniques
of [BV11a]. We leave the problem of implementing the re-
sulting fully homomorphic encryption scheme as an impor-
tant future work. Implementing bootstrapping could also
lead to a number of nice applications of homomorphic en-
cryption, for example, to the problem of optimizing commu-
nication with the cloud described below.

Optimizing communication with the cloud. We present a
solution to help mitigate the problem of the large ciphertext
size for the Ring-LWE based FHE solution. In any of the
above applications, a client communicates with the cloud
service and uploads its data encrypted under a FHE scheme,
and the cloud operates on this data and returns encrypted
outputs to the client. Each ciphertext has size n log(q), and
for functions requiring a large number of multiplications, q
and n could be very large (see the implementation section
for sample choices of q and n).

The solution to this is two fold. First, all encryptions
that the client sends to the server can be encrypted using
AES (which, by itself, is not homomorphic at all). The
main observation is that the steps of AES encryption and
decryption can all be carried out on FHE-encrypted entries.
A one time set-up cost is that the client uploads the FHE-
encryption of its AES secret key K:

”Client sends FHE(K) to Cloud”

Then for each piece of content m to be uploaded to the
cloud, the client uploads only the AES-encryption of m to
the cloud, encrypted under its own secret key K.

”Client sends AESK(m) to Cloud”

Now the cloud is expected to operate on the inputs it receives
for the client and compute and return FHE-encryptions of
functions of those inputs. In order to do that, the cloud must
first compute the FHE-encryption of m: in other words the
cloud computes the public key FHE-encryption of the AES
encryption of the content, FHE(AESK(m)), and must now
unravel the AES encryption inside the FHE encryption to
obtain FHE(m). Once this is done, the cloud computes the
FHE encryption of f(m), for the appropriate function f .

There is still a snag in this solution, namely that the re-
sulting ciphertext that the server returns to the client is still
a large FHE ciphertext. The solution to this is the dimen-
sion reduction technique introduced by [BV11a]. In particu-
lar, the dimension reduction technique converts a ciphertext
in Zq[x]/ 〈xn + 1〉 (where both n and q are large in order
to support expressive homomorphisms) to a ciphertext in
Zp[x]/

〈
xk + 1

〉
, where both k and p are small. The result-

ing ciphertext encrypts the same message, although it does
not support any further homomorphisms. The server then
applies this transformation and sends the resulting short ci-
phertext to the client.

In short, all the communication over the network consists
of short, non-homomorphic ciphertexts. At the server’s end,
the ciphertexts are first “upgraded” to homomorphic cipher-
texts which are then computed on, and finally“downgraded”
to short non-homomorphic ciphertexts which are then sent
to the client.

7. REFERENCES
[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and

Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, CRYPTO, volume
5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

[BCP97] Wieb Bosma, John Cannon, and Catherine
Playoust. The Magma algebra system I: The user
language. J. Symbolic Comput., 24(3-4):235–265,
1997. Computational algebra and number theory
(London, 1993).

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim.
Evaluating 2-DNF formulas on ciphertexts. In
Theory of Cryptography - TCC’05, volume 3378 of
Lecture Notes in Computer Science, pages 325–341.
Springer, 2005.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan.
Efficient fully homomorphic encryption from
(standard) LWE. In Submission, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully
homomorphic encryption from ring-LWE and
security for key dependent messages. To Appear in
CRYPTO 2011, 2011.

[CLBH09] Melissa Chase, Kristin Lauter, Josh Benaloh, and
Eric Horvitz. Patient-controlled encryption: patient
privacy in electronic medical records. In ACM Cloud
Computing Security Workshop, 2009.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and
Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Gilbert [Gil10],
pages 24–43.

[El-84] Taher El-Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[Fre10] David Mandell Freeman. Converting pairing-based
cryptosystems from composite-order groups to
prime-order groups. In Gilbert [Gil10], pages 44–61.

[Gen09] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic
encryption on worst-case hardness. In Tal Rabin,
editor, CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 116–137. Springer, 2010.

[GH11] Craig Gentry and Shai Halevi. Implementing
gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, 2011. (To appear).

[Gil10] Henri Gilbert, editor. Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture
Notes in Computer Science. Springer, 2010.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption and how to play mental poker keeping
secret all partial information. In STOC, pages
365–377. ACM, 1982.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting
lattice reduction. In Nigel P. Smart, editor,
EUROCRYPT, volume 4965 of Lecture Notes in
Computer Science, pages 31–51. Springer, 2008.

[LM06] Vadim Lyubashevsky and Daniele Micciancio.
Generalized compact knapsacks are collision
resistant. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors,
ICALP (2), volume 4052 of Lecture Notes in
Computer Science, pages 144–155. Springer, 2006.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris
Peikert, and Alon Rosen. Swifft: A modest proposal
for fft hashing. In Kaisa Nyberg, editor, FSE,
volume 5086 of Lecture Notes in Computer Science,

pages 54–72. Springer, 2008.

[LP11] Richard Lindner and Chris Peikert. Better key sizes
(and attacks) for lwe-based encryption. In Aggelos
Kiayias, editor, CT-RSA, volume 6558 of Lecture
Notes in Computer Science, pages 319–339.
Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded
Regev. On ideal lattices and learning with errors
over rings. In Gilbert [Gil10], pages 1–23. Draft of
full version was provided by the authors.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting
cryptographic key sizes. J. Cryptology,
14(4):255–293, 2001.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to
average-case reductions based on gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based
cryptography. In Post-Quantum Cryptography.
Springer, 2009.

[Pai99] Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT, pages 223–238, 1999.

[RS10] Markus Rückert and Michael Schneider. Estimating
the security of lattice-based cryptosystems.
Cryptology ePrint Archive, Report 2010/137, 2010.
http://eprint.iacr.org/2010/137.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully
homomorphic encryption. In Masayuki Abe, editor,
ASIACRYPT, volume 6477 of Lecture Notes in
Computer Science, pages 377–394. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully
homomorphic encryption with relatively small key
and ciphertext sizes. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography,
volume 6056 of Lecture Notes in Computer Science,
pages 420–443. Springer, 2010.

[SV11] N.P. Smart and F. Vercauteren. Fully homomorphic
simd operations. Cryptology ePrint Archive, Report
2011/133, 2011. http://eprint.iacr.org/2011/133.

APPENDIX
A. CHOICE OF PARAMETERS

We now explain the choice of parameters in our scheme.
For simplicity, we analyze the distinguishing attack of [MR09].
We remark that the parameters in the tables also offer a
large degree of protection against the more powerful decod-
ing attack of [LP11].

The distinguishing attack, in order to succeed with advan-
tage ε, needs vectors of length c ·q/s in the dual Λ⊥(A). We

have c ≈
√

lg(1/ε)/(lg 2 · π) which for example translates to
c ≈ 2.657 for ε = 2−32 or c ≈ 3.758 for ε = 2−64.

Since the runtime of the BKZ algorithm is mainly deter-
mined by the root Hermite factor δ [LP11], we express the
length of the shortest vector in the reduced basis in terms
of δ and get

c · q/s = δm · det(Λ⊥(A))1/m = δm · qn/m.

The optimal runtime of the attack is achieved for m =√
n log q/ log δ which gives us the following relation between

q, n and δ:

c · q/s = 22
√
n log q log δ. (6)

To determine specific parameters, we fixed a value for n
which we require to be a power of 2. The correctness condi-
tion (2) (or an experimentally confirmed smaller value) gives
us a lower bound on the prime q. Also fixing the prime q

now allows us to solve equation (6) for δ and determine a
runtime tAdv via

lg tAdv = 1.8/ lg δ − 110

as in [LP11].

