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ABSTRACT

In this paper, we present a sentence simplification method and demon-
strate its use to improve intent determination and slot filling tasks in
spoken language understanding (SLU) systems. This research is mo-
tivated by the observation that, while current statistical SLU models
usually perform accurately for simple, well-formed sentences, error
rates increase for more complex, longer, more natural or spontaneous
utterances. Furthermore, users familiar with web search usually for-
mulate their information requests as a keyword search query, sug-
gesting that frameworks which can handle both forms of inputs is
required. We propose a dependency parsing-based sentence simpli-
fication approach that extracts a set of keywords from natural lan-
guage sentences and uses those in addition to entire utterances for
completing SLU tasks. We evaluated this approach using the well-
studied ATIS corpus with manual and automatic transcriptions and
observed significant error reductions for both intent determination
(30% relative) and slot filling (15% relative) tasks over the state-of-
the-art performances.

Index Terms— spoken language understanding, intent determi-
nation, slot filling, semantic parsing, dependency parsing, sentence
simplification

1. INTRODUCTION AND MOTIVATION

Spoken language understanding (SLU) in human/machine spoken
dialog systems aims to automatically identify the intent of the user
as expressed in natural language and extract associated arguments
or slots [1] towards achieving a goal. An example utterance with
semantic intent and slot annotations is shown in Table 1. The system
can then decide on the next proper action to take according to the
domain specific semantic template.

While these tasks can be seen as two halves of a whole, each of
them have been studied in different contextual frameworks. Histor-
ically, intent determination has emerged from the call classification
systems (such as the AT&T How May I Help You [2] system) af-
ter the success of the early commercial interactive voice response
(IVR) applications used in call centers. On the other hand, the slot
filling task originated mostly from non-commercial projects such as
the DARPA (Defense Advanced Research Program Agency) spon-
sored Airline Travel Information System (ATIS) [3] project.

While both tasks have been extensively studied, it is still not pos-
sible to say that SLU is a solved problem, especially for more real-
istic, natural utterances spoken by a variety of speakers and for tasks
more complex than simple flight information requests. Independent
of the approach (data-driven vs. knowledge-based) employed for
these tasks, the single biggest problem is the “naturalness” of the
natural language input. This is apparent even in the artificially pop-
ulated datasets such as ATIS.

Utterance How much is the cheapest flight arriving
to JFK no later than tomorrow morning?

Intent: Airfare

Cost Relative cheapest
Destination Airport JFK
Arrive Time.Relative no later than
Arrive Date.Relative tomorrow
Arrive Time.Period morning

Table 1. An example utterance from the ATIS dataset.

Our previous work on error analysis for SLU using the ATIS
corpus revealed that the most common reason of mistakes for these
tasks along with their frequencies are mostly due to non-trivial syn-
tactic characteristics [4]:

• Intent Determination:

– Prepositional phrases in noun phrases (24.5%): These
errors involve phrases where the prepositional phrase
suggests a different intent than the actual one. For the
example utterance “Capacity of the flight from Boston
to Orlando”, the actual intent is determined by the head
word of the noun phrase, capacity, instead of flight.

– Wrong functional arguments of utterances (30%): This
category is similar to the previous one but the difference
is that, instead of a prepositional phrase, the confused
phrase is a semantic argument of the utterance. An ex-
ample utterance would be “What day of the week does
the flight from Nashville to Tacoma fly on?”

• Slot Filling:

– Long distance dependencies (26.9%): These are slots
where the disambiguating tokens are out of the current
n-gram context. For example, in the utterance “Find
flights to New York arriving in no later than next Satur-
day”, a 6-gram context is required to resolve that Sat-
urday is the arrival date.

These error categories for SLU have previously been addressed
in the literature, and can be clustered into two groups, depending on
whether or not a syntactic parser is used.

Raymond and Riccardi [5] extracted features using manually-
designed patterns. For example, they used the existence of the verb
“arrive” in the sentence and framed this as using a priori knowledge
for SLU. This improved the slot filling performance from 95.0% to
95.6% for ATIS.

Similarly, Jeong and Lee [6] used trigger patterns. The slot fill-
ing performance increased from 94.8% to 96.2% for the Communi-
cator corpus. They also tried to exploit syntactic information, such
as the head word, without success.
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Moschitti et al. [7] presented the first study showing the use of
using syntactic features for slot filling via syntactic tree kernels with
support vector machines. This improved the performance in ATIS to
95.9% from 95.5%.

Regarding intent determination, in our previous work we have
presented an approach populating heterogeneous features from syn-
tactic and semantic graphs of utterances [8]. We showed their use
in a cascaded setup for utterances which received low confidences
using the baseline word n-gram based classifier.

In this discussion we should not omit knowledge-based semantic
parsing approaches, such as SRI Gemini [9], MIT TINA [10] and
CMU Phoenix [11] systems which heavily rely on syntactic parsing.

As seen, while using syntactic information for SLU is not a
novel idea, in this paper we propose going one step further and pro-
pose using syntactic information to modify the input for SLU tasks.
There are two main reasons that motivate us for sentence simplifica-
tion for SLU:

• First, as observed by [12], the major problem with using syn-
tactic features for classification is that the paths in the parse
trees occur relatively infrequently (or not at all) in the training
set. A simple negation, for example, may totally change the
structure of the syntactic parse tree. Sentence simplification
may then help this problem by condensing the training and
test sets so that the classifier will work better as the average
frequency of candidate lexical and syntactic features increase.

• Second, this will alleviate the problem of handling long-distance
dependencies. Given that most classifiers rely on word n-
grams, where n is typically less than 5 words, it is critical to
cover such cases without bombarding the classifier with can-
didate syntactic features.

Our approach can be seen as an utterance compression task,
where the goal is to rephrase the same intent with fewer words, and
by doing so, would also support short, keyword sequence inputs.
This is analogous to understanding keyword-based queries where
there is usually a natural language query in mind. An example would
be rephrasing the query “What is the capacity of a 737?” as “ca-
pacity 737”. While sentence simplification intuitively makes more
sense for intent determination, which is typically framed as an ut-
terance classification task, we also demonstrate that this approach
is effective for slot filling due to its power for handling long dis-
tance dependencies. For both tasks, our approach relies on features
extracted from the dependency parse of the input utterance.

In the next section, we will present the sentence simplification
approach we used in this study. Then we describe how this is used
for intent determination and slot filling in sections 2.1 and 2.2, re-
spectively. We present our experimental results in Section 3 before
concluding in Section 4.

2. SENTENCE SIMPLIFICATION

Sentence simplification is an area which has been studied for var-
ious language processing tasks such as summarization or semantic
role labeling, with different motivations. For summarization, the
motivation is presenting the information to the user in as few words
as possible. For example, [13] employed sentence simplification to
get rid of certain patterns such as noun appositives, nonrestrictive
relative clauses, intra-sentential attributions, or lead adverbials and
conjunctions from newspaper articles.

Our approach is actually more similar to [12], who simplifies
sentences for better classification (in their case better semantic role

Fig. 1. Dependency parse of an example sentence “I need to fly from
Boston to London” and demonstration of simplification.

labeling) via a number of hand-written syntactic parse tree trans-
formations. For example, one transformation converts passive sen-
tences into active voice, another eliminates negations, and so on.
During run-time they combine the outputs of the models trained from
original and simplified sentences. Note that, in our case the simpli-
fied sentence does not need to be grammatical as the consumer is not
a human but a classifier. This gives greater flexibility to assess pos-
sible simplification strategies and enables us to perform quantitative
experiments in an efficient manner.

The simplification procedure relies on dependency parses of the
sentences where the structure of a sentence is determined by the re-
lation between a word (a head) and its dependents. Each word has a
head it is pointing to. For example, for the noun phrase blue book,
blue points to book.

In this study we employ the Berkeley Parser [14], a state-of-
the-art parser trained from a treebank following a latent variable
approach by iteratively splitting non-terminals to better represent
the data. We use the LTH Constituency-to-Dependency Conversion
toolkit1 to form dependency parses from the output parse trees. To
adapt the parser to the speech domain, we retrain it using monocase
WSJ treebank stripping out punctuation [15] and further employ a
self-training approach using the ATIS training data. This process im-
proves the parser’s ability to handle monocase words, lack of punctu-
ation and focus on conversational style sentences which rarely occur
in textual corpora.

2.1. Intent Determination

The key observation is that, for intent determination, the presence
or absence of some salient phrases is critical for making the correct
classification. In the marginal case, if each intent was uttered by
just its name, there would be no classification mistakes. Since this
is not possible, the approach we take is approximating this behavior
via sentence simplification based on syntactic information using a
dependency parser as explained above.

Given the dependency parse of a sentence, the simplification al-
gorithm then only uses the top level predicate and its dependents,
excluding the auxiliary predicates, such as need or want. Consider
the example sentence “I need to fly from London to Boston”. Its de-
pendency parse is shown in Figure 1. The highest level non-auxiliary
predicate is fly. Its dependents are from and to. Then this sentence is
simplified as fly from to. The prepositions are kept as they are salient
for many intents. The power of using simplification comes from the
fact that, it gets rid of phrases which complicates the classification
task. If the example sentence is “how much does it cost to fly from

1http://nlp.cs.lth.se/software/treebank converter/
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London to Boston”, the word fly is no longer the highest level pred-
icate and the sentence is simplified as cost to. Now, this is a much
simpler job for the intent classifier.

For intent determination, we use icsiboost2, an implementation
of the AdaBoost.MH algorithm, a member of the boosting family of
classifiers [16]. Boosting is an iterative procedure that builds a new
weak learner ht at each iteration. Every example of the training data
set is assigned a weight. These weights are initialized uniformly
and updated on each iteration so that the algorithm focuses on the
examples that were wrongly classified during the previous iteration.
At the end of the learning process, the weak learners used on each
iteration t are linearly combined to form the classification function:

f(x, l) =

T∑
t=1

αtht(x, l)

with αt the weight of the weak learner ht and T the number of iter-
ations of the algorithm.

2.2. Slot Filling

For slot filling, our main motivation is handling the long distance
dependencies between the slot phrase and its disambiguator. A dis-
ambiguator is a phrase which determines the semantic subcategory
of an entity. For the example in Table 1, the word morning is known
to be a time period. But the semantic disambiguation of whether it
is an arrival or departure time relies on the predicate of the sentential
clause, i.e., arriving. This information is straightforward to capture
using the dependency parse tree of this sentence but it may get lost
among other features when constituency parse trees are used as tree
kernel features as in Moschitti et al. [7].

To this end, for slot filling, predicates of sentential clauses in
addition to top level non-auxiliary predicates are considered. In the
example sentence “Find flights departing from New York tomorrow
arriving in Tokyo no later than Saturday”, the predicate arrive is also
considered as a feature while classifying the words which directly or
indirectly depend on it, in this case in Tokyo no later than Saturday.
The same is true for the phrase from New York tomorrow for the pred-
icate departing. The recursive algorithm to find the predicate head
of a given word is as follows: If the head of a word is a predicate,
then it is used, otherwise, the predicate head of its head is used as its
predicate head.

For slot filling, following [5], the baseline statistical model relies
on word n-gram based linear chain conditional random fields (CRF).
CRFs are shown to outperform many other classification methods
for sequence classification since the training can be done discrimi-
natively over a sequence. Similar to maximum entropy models, the
conditional probability, p(Y |X) is defined as:

p(Y |X) =
1

ZX
exp

(
T∑

t=1

∑
k

λkfk(yt−1, yt, x, t)

)

with the difference that both X = x1, ..., xT and Y = y1, ..., yT
are sequences instead of individual local decision points given a set
of features fk with associated weights λk. ZX is the normalization
term. We used the CRF++ toolkit3 in this study.

2http://code.google.com/p/icsiboost/
3http://crfpp.sourceforge.net

Approach TCER (Man) TCER (ASR)
1. Baseline (Word n-grams) 4.25% 7.95%

2. Heads only 16.68% 22.17%
1+2 4.81% 6.94%

3. Head/Dependency pairs only 10.19% 12.76%
1+3 4.47% 7.05%

4. Simplified sentence only 7.27% 8.28%
1+4 3.24% 5.59%

4 with retrained parser 6.60% 8.84%
1+4 with retrained parser 3.02% 5.37%

Table 2. Intent determination experiments on the ATIS set using
both manual transcriptions (man) and speech recognition outputs
(ASR).

3. EXPERIMENTS AND RESULTS

In this paper, we use the ATIS corpus as used in He and Young [17]
and Raymond and Riccardi [5]. The training set contains 4,978 utter-
ances selected from the Class A (context independent) training data
in the ATIS-2 and ATIS-3 corpora, while the test set contains 893 ut-
terances from the ATIS-3 Nov93 and Dec94 datasets. Each utterance
has its named entities marked via table lookup, including domain
specific entities such as city, airline, airport names, and dates.

The corpus has 17 different intents, such as Flight or Aircraft
capacity. The prior distribution is, however, heavily skewed, and
the most frequent intent, Flight represents about 70% of the traffic.
The ATIS utterances are represented using semantic frames, where
each sentence has a goal or goals (a.k.a. intent) and slots filled with
phrases. The values of the slots are not normalized or interpreted. In
total there are 2,837 slots belonging to 69 different categories to fill.

The ATIS corpus is automatically recognized using the generic
dictation models using the Microsoft commercial speech recognition
system. The word error rate was 13.76% without using the ATIS
training set. While this is significantly higher than the best reported
performances of about 5% WER [18], this provides a more challeng-
ing and realistic framework for syntax driven studies.

3.1. Intent Determination

Table 2 shows the results for intent determination using the sentence
simplification technique. For evalution, the error rate of the top scor-
ing class (TCER) is used. The baseline performance of 4.25% is ob-
tained using only word trigrams with Boosting and is already signif-
icantly better than the previously published TCER of 4.81% by [18]
using Maximum Entropy classifier on the same dataset. One im-
portant result is that, using simplified sentences alone did not im-
prove the performance, but when it is combined with the actual sen-
tence, the TCER significantly4 reduced to 3.02% (about 30% rel-
ative). When ASR outputs are used, even higher relative reduc-
tions in TCER is observed, proving the robustness of the parser and
the approach used. We also present results using all and top level
head/dependency pairs as features and combine them with word n-
grams. These results show that when used in a straightforward fash-
ion, head/dependency pairs do not help the intent classification per-
formance, and actually hurts performance since this introduces more
confusion to the model.

In the ATIS test set, only a few sentences have been correctly
classified with the baseline model and erroneously classified by the
model trained also with simplified sentences.

4According to the Z-test with 0.95 confidence interval.
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Class Original (%) Simplified (%)
Abbreviation 2/32 (6.25%) 2/32 (6.25%)

Aircraft 1/8 (1.25%) 0/8 (0.00%)
Airfare 3/52 (5.76%) 5/52 (9.61%)
Airline 1/38 (2.63%) 0/38 (0.00%)
Airport 2/18 (1.11%) 0/18 (0.00%)

Capacity 9/21 (42.85%) 4/21 (19.04%)
City 3/5 (60.00%) 2/5 (40.00%)

Day Name 2/2 (100.00%) 2/2 (100.00%)
Distance 1/10 (10.00%) 1/10 (10.00%)

Flight 16/640 (2.50%) 6/640 (0.94%)
Flight No 4/9 (44.44%) 3/9 (33.33%)

Flight Time 1/1 (100.00%) 0/1 (0.00%)
Ground Fare 2/7 (28.57%) 2/7 (28.57%)

Ground Service 0/36 (0.00%) 0/36 (0.00%)
Meal 5/5 (100.00%) 4/5 (80.00%)

Quantity 0/8 (0.00%) 0/8 (0.00%)
Restriction 0/1 (0.00%) 0/1 (0.00%)

Total 38/893 (4.25%) 27/893 (3.02%)

Table 3. Class-level intent classification error rates on the ATIS set
using manual transcriptions.

Table 3 shows the class-level classification error rates. We see
that the greatest reductions in error rates are for the Capacity and
Flight classes, which contribute to the overall error rate reduction.

3.2. Slot Filling

Table 4 presents the effectiveness of the sentence simplification for
the slot filling task. The data sets are converted into the IOB for-
mat so that there is only one word per sample to classify. Using the
CoNLL evaluation script5, the F-Measure we obtained is 94.4% us-
ing all trigrams6, which is comparable to what has been reported in
the literature (e.g., [5]).

This table shows the importance of using the predicate head in-
stead of the immediate head for slot filling. Similar to [6], we ob-
served little improvement using immediate head with manual tran-
scriptions which disappeared using ASR output.

The use of dependency parse information significantly7 decreases
the token error rate (TER) by about 15% relative from 2.23% to
1.91% for manual transcriptions. This corresponds to an increase
of 0.6% absolute for the F-Measure. Using ASR output, F-Measure
increases 0.7% absolute.

When we look at slot-level performances, we see that the biggest
improvement comes from the disambiguation of depart and arrive
types of the slots. More specifically, the macro-average of F-Measures
for depart/arrive related 21 slots increase from 70.0% to 84.5%. These
slots account for about 26% of the total.

4. CONCLUSIONS

We present a dependency parsing based sentence simplification method
and demonstrated its use to improve intent determination and slot
filling tasks in spoken language understanding (SLU) systems. The
simplicity and effectiveness of this approach motivates us to pursue it
further. One idea is incorporating semantic role labeling for seman-
tically motivated simplification. Another idea is running slot filling
first and using the output for better simplification for intent determi-
nation. Note that this method can be easily applied to other language

5http://www.cnts.ua.ac.be/conll2000/chunking/output.html
6It is 94.9% using the representation used by [5], who reported 95.0%
7According to the McNemar significance test [19], p < 0.001

Approach F-M TER F-M TER
(man) (man) (ASR) (ASR)

Baseline (Word n-grams) 94.4% 2.23% 88.9% 4.25%
+Immediate Head words 94.7% 2.14% 88.9% 4.28%
+Predicate Head words 95.0% 1.91% 89.6% 3.93%

Table 4. Slot filling experiments on the ATIS set using manual tran-
scriptions (man) and speech recognizer output (ASR).

processing tasks such as dialog act tagging, summarization, or ma-
chine translation.
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