
Power Budgeting for Virtualized Data Centers

Harold Lim
Duke University

Aman Kansal
Microsoft Research

Jie Liu
Microsoft Research

Abstract

Power costs are very significant for data centers. To max-
imally utilize the provisioned power capacity, data cen-
ters often employ over-subscription, that is, the sum of
peak consumptions of individual servers may be greater
than the provisioned capacity. Power budgeting methods
are employed to ensure that actual consumption never
exceeds capacity. However, current power budgeting
methods enforce capacity limits in hardware and are not
well suited for virtualized servers because the hardware
is shared among multiple applications. We present a
power budgeting system for virtualized infrastructures
that enforces power limits on individual distributed ap-
plications. Our system enables multiple applications to
share the same servers but operate with their individual
quality of service guarantees. It responds to workload
and power availability changes, by dynamically allocat-
ing appropriate amount of power to different applications
and tiers within applications. The design is mindful of
practical constraints such the data center’s limited visi-
bility into hosted application performance. We evaluate
the system using workloads derived from real world data
center traces.

1 Introduction

Data centers require large amounts of power and the
costs of their power supply infrastructure, backup gen-
erators and batteries, and power consumption are a sig-
nificant concern [13]. Aside from costs, the availabil-
ity of power may be a limiting factor, especially for
smaller data centers deployed in enterprise buildings, ed-
ucational institutions, and for emerging container-based
“edge” data centers located close to end users. As a re-
sult, data center design must minimize the power capac-
ity requested from utilities. The need to optimize provi-
sioned power capacity has lead to the adoption of a prac-
tice known as over-subscription. In over-subscribed data

centers, the sum of the possible peak power consump-
tions of all the servers combined is greater than the pro-
visioned capacity. Servers typically operate below their
peak power and even when servers from one application
are near peak usage, other servers may be well below
their peaks, keeping the total power within capacity. To
ensure that actual total power use stays below capacity,
servers are equipped with power budgeting mechanisms
that can throttle the power usage of a server, such as by
reducing the processor frequency. Power budgeting has
been used for several safe and efficient over-subscription
methods [9, 3, 23, 19].

However, the current methods are not well suited to
virtualized infrastructures where the servers are shared
by virtual machines (VMs) belonging to different appli-
cations, due to several reasons. First, in virtualized in-
frastructures, there is a disconnect between the physical
server layout and the logical organization of resources
among applications. Hardware power budgeting used in
current power budgeting methods does not respect the
isolation among virtual machines with different perfor-
mance requirements. Second, existing techniques do not
explicitly address workload and power dynamics. As in-
put workload volumes change, the power available for
different applications changes, as does the optimal distri-
bution of power among an application’s constituent tiers.
Third, existing designs typically use a single power con-
trol knob and do not exploit multiple feasible combina-
tions of power settings for optimizing performance.

In this paper we present a power budgeting solution
named virtualized power shifting (VPS) that efficiently
coordinates the power distribution among a large num-
ber of VMs within given peak power capacity. VPS dy-
namically shifts power among various distributed com-
ponents to efficiently utilize the total available power
budget, as workloads and power availability vary. Power
is distributed among application components in the cor-
rect proportions to achieve the best performance. The
system respects application boundaries and differentiates



performance based on priorities. In contrast to existing
techniques that use only one power control knob, typi-
cally frequency scaling, VPS uses multiple power control
knobs and selects the optimal combinations of power set-
tings to optimize performance within the available power
budget. We describe how the system operates with prac-
tical constraints such as limited insight into application
performance.

The system tracks dynamic power availability and
workload dynamics with low error, as its design is based
on well-studied control theoretic algorithms with desir-
able stability and accuracy properties. We evaluate the
system through experiments on a multi-server testbed
running a mix of interactive and batch processing bench-
marks. Real world data center traces from Microsoft’s
online services are used.

2 Virtualized Power Budgeting Challenges

The over-arching problem addressed by VPS is to dy-
namically adjust power allocations in a multi-application
scenario. The key challenges presented by this problem
are discussed below.

2.1 Server Sharing
The large number of servers in a data center are shared
among multiple applications, typically using virtualiza-
tion. VMs from multiple applications may be co-located
on the same physical servers depending on the applica-
tion characteristics such as complimentary resource us-
age and data placement needs. At the same time, VMs
from one application are spread across many servers
based on required minimum spread for hardware redun-
dancy, and minimum number of servers needed to al-
low for seamless software upgrades. Since different
applications have different users and workloads, an in-
crease in the workload and power usage of one appli-
cation should not negatively impact another application
sharing the same hardware. In some scenarios, different
applications may have different priorities. For example,
customer-facing online services may have higher priority
than batch processing or internal enterprise applications.

The power budgeting mechanism must therefore en-
force power limits at application granularity rather than
at the hardware level. Power budgets enforced in hard-
ware, such as using dynamic voltage and frequency scal-
ing (DVFS), impact an entire server or all processor cores
supplied from the same voltage rail1. This will cause a
performance drop for all application VMs sharing those
processors. Additional power capping mechanisms that

1In most servers, an entire processor chip or socket is supplied from
a single voltage rail and hence the supply voltage and DVFS can only
be controlled for the entire socket consisting of multiple cores.

operate at the individual VM level must be used. Coor-
dination of power allocations must also follow the appli-
cation VM layout across the server infrastructure.

2.2 Multi-dimensional Power Control
To respect application boundaries, a combination of
hardware-based (e.g. DVFS) and software-based (e.g.
VM CPU time allocation) power control knobs is used.
Multiple knobs imply that more than one combina-
tions of power settings may achieve the same power
level. However, application performance may be differ-
ent for each feasible combination. We illustrate this phe-
nomenon through experimental measurements in a later
section (Figure 5): at a given power level, performance
varies up to 25% depending on power settings. Power
budgeting design has the opportunity to maximize perfor-
mance, if it intelligently selects the best combination of
power settings to satisfy the power budget. Optimization
of performance brings with it challenges of measuring
and modelling performance. These measurements may
not be available in certain scenarios, especially when the
applications are not owned by the same entity that man-
ages the data center, as is often the case for large orga-
nizations and cloud based infrastructures. The VPS sys-
tem includes different modes of operation to work with
or without such information.

2.3 Dynamic Power Proportions
The input workload volume for each application changes
over time, implying that the power used, and as a result
the power available for other applications, changes. The
power budgets must be dynamically adapted, requiring
run time coordination across all applications.

Within an application, allocation of power to its VMs
is also non-trivial since the best allocation may vary with
workload volume. This happens because different VMs
may be hosting different tiers of the application. As a
toy example, consider a two tier application with the
front-end tier executing a processor intensive stage and
the back-end tier providing data storage. Power usage of
the front-end tier depends on processor utilization, and as
an example suppose it changes between 50W and 100W.
The back-end comprises disk storage, and has a high idle
power for keeping the disks spinning, say 80W, with an
additional power usage of up to 20W that varies with the
volume of I/O activity. At peak load, the allocation of
power is 100W to each tier, while at idle, the power al-
location is 50W and 80W to the two tiers respectively.
The power distribution proportion among tiers is not con-
stant.

Changes in workload not only change the applica-
tion power consumptions but also influence the power

2



used by the shared components such as cooling equip-
ment. Another dynamic factor is the power capacity
available. For example, if environmentally-harvested en-
ergy is used, the available supply varies over time. In
view of the workload and power capacity dynamics, to
maximally utilize the available capacity, the budgeting
mechanism must dynamically adjust the power alloca-
tion proportions across applications and application tiers.

3 System Design

The VPS system for power budgeting is designed to ad-
dress the challenges described in the previous section.
To support multiple distributed applications in a scalable
manner, we use a hierarchical approach. The hierarchy is
designed to follow the application layout, with the total
power budget being divided dynamically among appli-
cations, and within the application among the different
tiers, following down to the individual VMs comprising
those tiers. This hierarchy is independent of the server
and rack layout. Power is tracked at the VM level allow-
ing each application to be budgeted independently of oth-
ers by leveraging VM specific power control knobs (such
as VM CPU time allocation). The dynamics of the sys-
tem, including workload variations and power capacity
changes, are handled through feedback controllers that
monitor and control the power usage in real time. Ap-
plication performance is optimized through a combina-
tion of control algorithms based on proportional-integral-
derivative (PID) and model predictive control (MPC). In
this section, we describe the design of the VPS architec-
ture and the control algorithms used.

3.1 Power Budgeting Architecture

Figure 1 shows the overall structure of the VPS system.
The white boxes correspond to VPS components while
the gray boxes show the underlying physical hierarchy.
The VPS control mechanism consists of a multi-level hi-

VM VM … VM VM … VM VM … 

R
ack-1

 

… 

P
D

U
-1

 

P
D

U
-k 

…
 

Cooling 
Equipment 

Power Supply 

Tier 1 

App 1 
Data 

Center 
Controller 

PT(t) 

PM(t) 

Tier n … 

App m … 

Server-12 
… 

Server-1j Server-11 

VM VM … VM VM … VM VM … 

R
ack-N

 

Server-N2 
… 

Server-Ni Server-N1 

Figure 1: VPS power control hierarchy. The white boxes
constitute VPS while the gray boxes represent the physi-
cal hierarchy. PDU stands for power Distribution unit.

erarchy where the topmost level is a data center level
controller2. This controller receives the total power ca-
pacity as its input. The controller allocates it among
the application level controllers that comprise the next
level in the hierarchy. The top level controller is scal-
able since it monitors and controls only a small num-
ber of applications rather than the thousands of individ-
ual servers or VMs. Each application may in turn con-
sist of hundreds or even thousands of VMs. The appli-
cation is thus further divided into tiers and the applica-
tion level controller monitors and controls only the tier-
level controllers. The tiers of the application are typi-
cally arranged in a pipeline that, as we describe in the
detailed controller design, facilitates our method for op-
timal power allocation among the application compo-
nents. This approach utilizes the available power more
efficiently than following a physical server or rack lay-
out based hierarchy. The tier level controller in turn con-
trols each VM belonging to the corresponding applica-
tion tier. Within a tier, the constituent VMs are often load
balanced and similar in behavior. If a particular tier has a
reasonably small number of VMs, the tier level controller
can perform a nearly uniform allocation within the tier,
and directly command the VM power settings affecting
the power consumption. If the number of VMs within
a tier is very large, or the VM roles are distinct, further
levels may be added to the hierarchy, based on network
proximity or VM roles. Without loss of generality, we
focus on a three-level hierarchy: data center level, appli-
cation level, and tier level. VPS operates independent of
the physical hierarchy comprising of servers, racks, and
power distribution units (PDUs).

The above architecture assumes that power can be
measured and limits enforced at the application granu-
larity. Measurement of an application’s power consump-
tion may not be possible at a physical wire in virtualized
servers since the physical server components are shared
across multiple applications. The VPS system relies on
VM power measurement methods such as [8, 18] that re-
port the individual power usage of each VM on a shared
server, as well as, the base power that the hardware plat-
form consumes. The individual VM power measure-
ments are propagated up the VPS hierarchy to obtain
the power consumption of each application or applica-
tion tier.

Actual power reduction can only be realized at the
lowest layer that controls the power consuming resource.
In our implementation, the resource whose power is var-
ied is the processor since in current platforms, the proces-

2A data center may be divided into sections referred to as “colos”
where the power infrastructure and backup is separate for each colo: in
this case one data center level controller would operate in each colo.
The top level controller may be applied at any physical boundary rep-
resenting an independent unit in terms of application deployment and
power constraints.

3



sor is the resource with the most advanced power man-
agement options. By controlling the CPU active time
allocated, i.e., the CPU utilization, the power consump-
tion of the processor can be varied from near zero to its
peak power. Similarly, DVFS also allows varying the
processor power over a large range. We use both these
knobs to control power. For memory, power varies di-
rectly with the number of IOs performed [8], which can
effectively be throttled by the number of CPU cycles al-
located. Additional power control knobs can be included
in our framework as they become available since it is
already designed to use multiple knobs. Applications
whose power use does not change with any available
power control knob can of course not be throttled. Their
power use is measured, similar to idle power and cooling
equipment power, and changes are compensated for by
VPS controllers.

The application-based hierarchy is more natural from
a performance perspective because resource allocation
decisions are typically made for an application as a
whole and each application has a different business func-
tionality with its own priority, revenue, and QoS expec-
tation. The implementation of such a hierarchy is how-
ever more sophisticated since it incorporates knowledge
about the application’s VM layout and the hypervisor’s
VM CPU time allocation. As a result, the VPS sys-
tem operates in the data center management plane rather
than in the server motherboard or blade-enclosure based
firmware.

The power budget at the highest layer, denoted PT (t),
is an input to VPS. This is the hard constraint that must
be satisfied at all times. It could be based on the static
capacity built for the facility, or could be dynamic, based
on time-of-day based power prices, or amount of envi-
ronmentally harvested energy [16, 2] available.

3.2 Top Level Controller

The data center level controller, placed the the top level
in the design, determines the amount of power allocated
to each application. If applications have different priori-
ties, the controller takes those into account.

Naı̈vely partitioning the power budget PT (t) among
applications, say based on statically assigned shares,
does not work well in practice because of the following
factors. First, the application workloads are dynamic.
An application may not be using its fixed allocation at
time t if incoming workload is low. The power alloca-
tion mechanism must adapt dynamically, to assign the
unused power to another application if needed. Second,
the measurement of application power consumption may
have some errors. Additionally, a measurable power al-
location increase to an application may lead to associ-
ated hidden power level increases in shared infrastruc-

ture, such as due to non-linear changes in transformation
losses across power supplies and changes in cooling load,
that are hard to assign to any single application. Such
errors directly affect the total power used and must be
compensated to satisfy the hard limit of PT (t).

VPS design uses feedback control to address the above
factors. The top level controller receives measurements
of each application’s power consumption from the re-
spective application level controllers. It also receives the
total data center power consumption from hardware in-
strumentation at the power circuits supplying the servers
and cooling equipment. This hardware measurement in-
cludes power consumption that is not directly attributed
to any specific application VM. The output is the power
allocation to each of the applications, at each time in-
stance, that is then enforced by the application level con-
trollers. Figure 2 shows the feedback loop involved.

Data 
Center 
Level 

Controller 

App 1 App m … 

Data Center Power 
(Hardware measurement) 

PT(t) PA1(t) 
PAm(t) 

PM(t) 

Figure 2: Block diagram of data center level feedback.

The only output action available at this controller is the
power allocation and hence the performance objective is
only to allocate the maximum possible power, up to the
application demands, and minimize the workload throt-
tling. Any controller that can closely track the available
power limit and is robust to errors in measurements can
be used, and a PID controller is thus appropriate at this
layer. Other control algorithms that make optimal deci-
sions by choosing among multiple control knobs are em-
ployed in VPS at lower layers. Ad hoc algorithms such
as those based on rules that actuate power increases and
decreases based on observed consumption levels may be-
come unstable or oscillate as shown in [21]. VPS uses
a control theoretic framework that enables stable opera-
tion by design, over the range of practical operating con-
straints (the specific methods used to tune the controllers
in our prototype are outlined in Section 3.5).

3.2.1 Application Budgets and Priorities

Note that while the control algorithm adapts total power
consumption to operate close to PT , the PID controller
output here is the sum of all the applications’ power con-
sumptions. There is no knob available to control this
sum; only the power consumptions of individual applica-
tions can be affected through their respective application
level controllers. The control output is split across the

4



application level controllers using application priorities
as well as the measured application and total hardware
power consumptions, as follows.

At power provisioning time, each application is as-
signed a maximum budget, based on expected usage at,
say, 99-th percentile peak load. While in non-virtualized
settings, application budgets are typically assigned sim-
ply based on number of servers allocated and measured
power for those servers when running the relevant appli-
cation, with virtualization the actual power impact must
be profiled on the appropriate infrastructure. When a new
application is accepted, its power can be profiled for each
type of VM instance used, and extrapolated to number of
VM instances at 99-th percentile of peak load. Such pro-
visioning is typically required by a data center before it
can accept an application to be hosted. Suppose the as-
signed power is denoted P 0

Ai.
Suppose ∆(t + 1) denotes the desired change in to-

tal power at the next time step (PID controller output).
To determine the per application power split, the amount
of uncontrollable power, denoted PU (t), is first esti-
mated by subtracting the sum of application power con-
sumptions from the measured total power consumption,
PM (t):

PU (t) = PM (t)−
m∑
i=1

PAi(t) (1)

where PAi(t) represents the power consumption of ap-
plication i, and m is the number of applications. This
uncontrolled portion of power includes all shared infras-
tructure power as well as errors in application power
measurement. The estimate of the total power consump-
tion at the next time step becomes PM (t) + ∆(t + 1).
The power budget available to be allocated to the appli-
cations, denoted Papp, at the next time step, is estimated
as:

Papp(t+ 1) = PM (t) + ∆(t+ 1)− PU (t) (2)

This is only an estimate since it does not include the un-
known change in PU (t) at the next time step, and that
change will act as an error for the feedback controller, to
be compensated as the controller converges. Papp(t+ 1)
is distributed among the applications according to the de-
sired priortization policy.

In our implementation, the priortization policy is as
follows. The controller allocates power to each applica-
tion based on its current demand, subject to a maximum
of P 0

Ai, starting with the highest priority applications. If
at any priority level, there is not enough power budget
to satisfy all application power demands, then we use
weighted fair sharing to distribute the remaining power,
with weights set proportional to the initial provisioned

application budgets. With this policy, lower priority ap-
plications are affected first. Similarly, any excess power
left over is also assigned using weighted fair sharing to
applications with unsatisfied demand (excess power may
be available when some applications are below their ini-
tial budget). The assigned shares are sent to each appli-
cation level controller to be enforced. Effectively, prior-
ity levels determine the split of Papp across applications
while the feedback controller tunes the value of Papp to
meet the target total power.

3.3 Application Level Controller

The VMs comprising an application are typically di-
vided into a number of tiers. Each tier has a different
role, and consequently a different power requirement.
The application-level controller distributes the applica-
tion power budget received from the top level controller
among each of its application tiers. This controller only
communicates with a small number of tier level con-
trollers and is thus scalable in number of VMs.

The controller must determine the correct proportion
in which power is allocated to the different tiers. One
design option for this controller is to learn a model of
power usage across tiers, and use that to determine the
appropriate ratio in which power should be split among
the tiers. This approach can be used when a detailed
model of application performance and resource utiliza-
tion at each tier can be learned. This is feasible for a spe-
cific power control knob at a given workload volume [7].
However, as illustrated in Section 2.3, the best power
sharing proportion changes with workload volume. The
model may also depend on the power control knob used
at the lower layer, such as DVFS or CPU time allocation.
Further, the application behavior may change over time
with software upgrades. In a virtualized infrastructure
supporting multiple applications, with little control over
application internals, learning this model is difficult.

VPS design dynamically tunes the power allocations
without relying on previously learned models. The key
challenge of course is to determine the correct sharing ra-
tio. Our design is based on the observation that the multi-
ple application tiers are arranged in a pipeline, and throt-
tling one tier will directly affect the workload flowing
into other tiers. The relationship among power changes
at different tiers need not be known a-priori, as long as
the pipeline assumption holds. The VPS application-
level controller measures the total application power us-
age but controls only one of the tiers. As the power al-
location to the controlled tier is changed, the power con-
sumed by other tiers changes in the right proportion re-
quired to serve the throttled workload volume passed on
by the controlled tier. This automatically maintains the
optimal power sharing proportion.

5



An experimental illustration of the pipeline assump-
tion is shown in Figure 3, using a two tier application
described in Section 3.5. As the power usage of the con-
trolled tier is reduced, the power usage of the uncon-
trolled tier changes as well. The figure also shows that
the ratio of power consumptions is not constant at differ-
ent power levels and further depends on the lower layer
power control knob used (the figure shows two different
DVFS levels), implying that learning a model for this re-
lationship would be non-trivial.

172

177

182

187

192

197

202

0 20 40 60 80 100

Po
w

er
 (

W
) 

VM CPU Time (%), controlled tier 

Controlled Tier,
DVFS=100%
Uncontrolled Tier,
DVFS = 100%
Controlled Tier,
DVFS=64%
Uncontrolled Tier,
DVFS=64%

Figure 3: Server power variation with throttling of the
controlled tier VM CPU time.

While the pipeline assumption holds in many practi-
cal cases and is used in our description, theoretically,
the only assumption required is controllability, which is
a less stringent requirement. The analysis of controlla-
bility conditions is beyond the scope of this paper.

The specific feedback controller used here is based on
proportional-integral-derivative (PID) control (Figure 4),
governed by:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (3)

where u(t) represents the change in power allocated to
the controlled tier, e(t) represents the difference between
the desired application power budget and the currently
measured application power consumption, and the pa-
rameters Kp, Ki and Kd are PID controller parameters
for the proportional, integral, and derivative terms re-
spectively. The tuning of the controller parameters fol-
lows known control theoretic methods and is discussed
in Section 3.5.

Controller 

Tier 1 
(Controlled 

Tier) 
Tier n 

- Budget 

… 

u(t) 

e(t) 

Pa(t) 

Figure 4: Application level feedback controller.

Conceptually, any of the tiers in the pipeline can be
used as the controlled tier. From a practical standpoint,
selecting the tier with the largest power variation is desir-
able as that will provide finer control over the power con-
sumption, leading to lower error in tracking the power
budget. The controlled tier can be selected by record-
ing the power variation changes with workload from the
power readings provided by each tier.

3.4 Tier Level Controller

The tier level controller, at the controlled tier, controls
each of its VMs to track the tier power budget. It commu-
nicates with the servers hosting the tier’s VMs, to actuate
the power control knobs.

The control algorithm at this tier may have multiple
power control knobs at its disposal. In our prototype, we
use two knobs: VM CPU time allocation and DVFS.

VM CPU time allocation controls the maximum CPU
time allocated to a VM, and the processor can enter low
power sleep states (also known as C-states) for the un-
allocated time, reducing the CPU utilization and power
consumption [11]. This knob can control the power con-
sumption of an individual VM without affecting other
VMs sharing the same processor.

DVFS controls the processor frequency (P-state) to
scale CPU power. This knob affects all CPU cores sup-
plied from a single power rail, and thus impacts all VMs
sharing those cores.

While we use only CPU-based power knobs, these in-
directly influence other components such as the storage
subsystem by limiting the workload volume processed
and in our experiments we found that power consump-
tion of the storage intensive database tier does vary with
CPU power scaling. However, in the future, if the stor-
age subsystem provides direct power control knobs those
can be directly used in the VPS framework.

Performance Optimization: Use of multiple power
control knobs opens up the opportunity to affect perfor-
mance. Figure 5 shows the performance of one of the
application VMs (StockTrader application, Section 4.1),
with different settings of the two knobs. Different types
of marks correspond to different DVFS levels while mul-
tiple marks of the same type correspond to different VM
CPU time allocations at one DVFS setting. The key ob-
servation is that a given power level may be achieved at
multiple combinations of the two control knobs, yielding
different performance levels3.

3The absolute power variation here is small compared to typical
server power because the graph only shows the power variation of one
VM, and the range of power is restricted to the changes in power of
one core. Power is measured in hardware with only one VM allocated.
Only change in power is shown.

6



100

150

200

250

300

350

400

450

500

550

600

0 1 2 3 4 5

Th
ro

u
gh

p
u

t 
(T

P
S)

 

Power (Watt) 

DVFS = 100

DVFS = 94

DVFS = 88

DVFS = 82

DVFS = 76

DVFS = 70

Figure 5: Performance vs power at different DVFS and
VM CPU time allocation combinations.

One of the challenges here is to select the power set-
tings for optimal performance. Another challenge is to
coordinate the use of the hardware level DVFS knob with
power budgeting at application and VM boundaries. A
practical constraint for VPS design is that an application
performance model and a real time measurement of per-
formance may not be available. This is often the case
when data center power and the hosted applications are
managed by different entities, and is especially true for
cloud platforms.

We study three design options for the tier level con-
troller, making different trade-offs in terms of perfor-
mance achieved and implementation constraints. All of
these designs assume that VMs within a tier are largely
homogeneous and load balanced, though they may have
small instantaneous variation in their activity.

3.4.1 Open Loop Control

The open loop design assumes that a power model re-
lating the power consumption to the power control knob
setting is available for the server hardware. Such models
could be learned in-situ using known methods [8]. For
instance, if the power knob is VM CPU time, this model
may be represented as:

PVM = cfreq ∗ ucpu (4)

where PVM denotes VM power, ucpu is the CPU uti-
lization of the VM, and cfreq is a processor frequency
dependent power model parameter. Any single control
knob can be handled similarly. Multiple simultaneous
knobs are considered in Section 3.4.3.

No visibility into application performance is assumed.
Only the VM CPU time allocation knob, that acts at VM
granularity, is used. VM power allocation is obtained by
uniformly dividing the tier power among the tier VMs.
For each VM, the assigned power is converted to VM
CPU time allocation using (4). The controller is easy
to implement and acts instantaneously, but it does not
compensate for errors in the model equation (4).

3.4.2 PID Control

Accuracy of the open loop controller can be improved us-
ing feedback. Since a feedback controller uses real time
power measurements to tune the power setting, it can in
fact work even without a power model. VPS uses a PID
controller (Figure 6), with one variation that the control
output is sent to multiple homogeneous VMs. The con-
trol output, u(t), is the VM CPU time allocated to each
VM and is assumed to be the same across all VMs within
the tier. Small instantaneous differences in VM activity
are acceptable since the controller uses only the sum of
the powers of all VMs as feedback (small VM variations
are averaged out), but the overall VM CPU time to power
relationship must be similar for all VMs, implying that a
common hardware configuration is used and the software
running is the same (since different software functional-
ity can lead to different power consumption even at the
same CPU utilization [8]).

Controller 

VM1 VM k 

- 
Tier 

Budget 

… 

u(t), VM CPU Time 

e(t) 

Sum of VM power consumptions 

Figure 6: Tier level controller PID feedback loop.

The PID based design provides the advantage of ac-
curate power control. However, since it relies on feed-
back measurements to reach the desired setting (i.e., tier
power budget), it is slower than an open loop control
leading to longer control intervals at higher levels of the
hierarchy. Also, since it manipulates a single variable, it
does not incorporate any notion of optimality for appli-
cation performance.

3.4.3 Model Predictive Control

The third design option used is based on model predic-
tive control (MPC). MPC allows computing an optimal
setting among multiple power control knobs. The opti-
mum is defined in terms of application performance, and
hence this design option requires a mechanism to mea-
sure application performance.

The cost function optimized by MPC typically con-
sists of two terms: an error term that quantifies the dif-
ference from the desired state, and a performance term.
The MPC objective function includes not just the current
time step but the system state at future time steps, requir-
ing a system model that relates the control knobs to the
system state, in this case the target power level and per-
formance. At each time step, the controller solves for the
optimal outputs for the next N time steps, applies the so-
lution for only the next time step, and repeats the process
to ensure smooth convergence to the desired state.

7



Cost Function: Suppose dvfs(i) denotes the DVFS,
and v(i) denotes the VM CPU time limit, at time step i
for a VM. Suppose fpower denotes the power model, e.g.,
equation (4), and fperf the performance model. The cost
function, J , is:

J =

N∑
i=1

||fpower(dvfs(i), v(i))− PVM ||+

w

N∑
i=1

||fperf (dvfs(i), v(i))− αmax|| (5)

where PVM is the VM power to be tracked, αmax is the
maximum possible performance, and w is a weight that
determines the relative importance of the two terms. The
first term optimizes the error between the target and pre-
dicted power levels, and the second term optimizes per-
formance along the predicted N step control trajectory.

The cost function is minimized to find dvfs(i) and
v(i) for best performance. The optimization is solved in-
dividually for each VM to keep the size of the optimiza-
tion search space independent of the number of VMs,
ensuring scalability to applications with large number of
VMs within a tier.

Hardware Coordination: A block diagram of the
control system is shown in Figure 7. The DVFS knob
acts at the hardware level and may not respect VM
boundaries. Thus, the settings computed above are
not applied directly but through a coordination service,
hosted at each physical server. The service receives
DVFS requests from the MPC output for each VM on the
server (potentially belonging to different applications)
and sets the server DVFS to the highest frequency among
the DVFS levels requested. This ensures that no VM is
unduly throttled down. The applied DVFS level is re-
ported back. The MPC controllers that receive back a
different DVFS setting than the one requested, solve their
optimization problem again, with the reported DVFS set-
ting added as a constraint, tuning the VM CPU time knob
for the current DVFS setting. The process is repeated at
each control iteration yielding the combination of DVFS
and VM CPU time allocations that maximizes perfor-
mance within hardware sharing constraints.

MPC 
Optimizer 

VM Power 
Budget 

PVM 

VM 
Server 

dvfs 
v  

fpower 

Figure 7: Tier level controller MPC block diagram.

While the MPC based design can yield higher per-
formance than the previous two options, it requires the

application performance to be exposed to VPS. Cer-
tain cloud platforms such as Microsoft Azure do pro-
vide APIs for applications to expose custom performance
counters and can be used when available. Power and
performance models are also needed. A third considera-
tion is that while the PID controller will always provide a
best effort solution within the range of the power settings
available, the optimization step in MPC can fail if the
optimization is infeasible, and a backup control method
may have to be employed. Table 1 summarizes the pros
and cons of the above design options.

Pros Cons
Open Fast Needs power models
Loop Higher error
PID Low error No performance optimization

Slower
MPC Optimizes Needs system models

performance Needs performance measurement

Table 1: Summary of controller design options.

3.5 Implementation

VPS controllers are implemented as network services
on the same physical servers as running the workload.
The tier level controller also runs a service in the priv-
ileged VM (root VM in Windows Hyper-V) on each
physical server to actuate the VM CPU time allocations
and DVFS. The network services implementing the con-
trollers also log power and performance data for the ex-
periments. The various parameters and system models
needed in the implementation as acquired as follows.

Controller Parameters: The feedback controllers
used in the implementation are tuned using known meth-
ods from control system design literature. For the PID
controllers employed at various layers, the parameters
Kp, Ki, and Kd are tuned using the Ziegler-Nichols
method [25], on test runs with one of our applications.
This method is known to yield robust parameters, keep-
ing the controller stable as workloads change. However,
this method does not necessarily yield the fastest con-
vergence or minimum overshoot. Other tuning heuristics
available for control system design may be employed as
desired. The MPC controller is tuned to operate with a
prediction horizon of N = 1. Longer time horizons are
helpful for ensuring smoother convergence. In VPS, the
MPC control is applied only at the individual VM level,
where the models are relatively accurate, and hence a
short time horizon suffices. The optimization effectively
uses the error term as a constraint and maximizes the per-
formance, implying a weight factor w that emphasizes

8



accurate power tracking over application performance.
The detailed optimization and tuning of controller pa-
rameters is beyond the scope of this work.

Power and Performance Models: For MPC, the per-
formance model fperf (dvfs(i), v(i)) is learned using a
test run where each dvfs(i) and v(i) setting is exercised.
For each application, this is simply represented as a ta-
ble with the performance metric listed at each DVFS
and VM CPU time setting of the controlled tier. Only
a few discrete DVFS levels are available in hardware,
and for VM CPU time, nine discrete levels ranging from
10% to 100% are measured. The power model fpower

is learned using the methods from [8] and is represented
using an equation of the form (4). These models need
to be learned for each application only if the MPC de-
sign option is used. The models depend on hardware
used. Large data centers typically have a large numbers
of servers for each configuration, and servers are updated
in bulk with a single configuration. This means that the
models have to be learned on a small number of servers
and updated only incrementally.

Additionally, the server infrastructure provides for
measuring the total power (from the circuits supplying
the servers, cooling, and network equipment). The root
VM in each server implements the VM power measure-
ment technique from [8]. The maximum power allowed
for each application, denoted P 0

Ai, is assumed known and
may be determined using the technique described in Sec-
tion 3.2.1. If multiple applications have different prior-
ities, these are assumed known. In practice, customer
facing interactive applications may be assigned one pri-
ority level, and batch processing tasks such as MapRe-
duce jobs, data mining, test and development, and inter-
nal enterprise applications, could be assigned a second,
lower, priority level.

Coordination Across Levels: The controllers at mul-
tiple levels are coordinated by setting the control inter-
val of the higher layer controllers to be larger than the
convergence time of the lower layer ones. This ensures
that the lower layer controller has converged before the
higher layer controller receives feedback and actuates,
thus avoiding instability. In our prototype, we found the
lowest layer controller, when using PID, has a conver-
gence time of 6 seconds and hence, the application level
controller uses 6 seconds as its control interval. The
application level controller also uses 6 control steps to
converge, leading to a control interval of 36 seconds at
the data center layer controller. The control algorithm
at each layer updates its output at the assigned control
interval.

4 Evaluation

4.1 Workloads and Experiment Setup

We use two types of applications for our experiments –
an interactive multi-tier application that represents online
services subjected to variable user workload, and a set of
computationally-intensive batch processing tasks:

StockTrader: StockTrader [17] is an open source
multi-tier clustered web application benchmark that
mimics a stock trading website, provided for Windows
platforms. It is functionally and behaviorally equiva-
lent to IBM WebSphere Trade 6.1 benchmark that runs
on other platforms. The application has two significant
tiers: a middle tier that implements business logic and
a database tier that provides the storage backend. The
front-end is a lightweight presentation layer. The incom-
ing requests can be load balanced among multiple VMs
hosting the application.

We modified the workload generator provided with the
Stocktrader source code to generate workload volume
based on a trace file. The application reports its perfor-
mance in a graphical user interface that we modified to
expose the performance as a performance counter sent to
the relevant network services implementing the control
algorithms in our experiment.

SPEC: We use multiple applications from the SPEC
CPU 2006 benchmark suite [15] to represent background
jobs that would typically run with lower priority in a data
center.

To simulate realistic workloads that vary with time,
we use real world data center traces from Windows
Live Messenger, an online service with millions of users
worldwide. Sample traces from two of its servers are
shown in Figure 8. Each instance of the StockTrader ap-
plication was loaded using a separate data center trace.
While the StockTrader application is different from Live
Messenger, generating load proportional to production
traces helps simulate realistic variations in workload vol-
ume.

0

50

100

W
o

rk
lo

ad
 (

%
) 

Time (s) 

Figure 8: Windows Live Messenger workload trace.

Our testbed consists of seventeen servers, eleven of
which host the applications and are subjected to VPS,
while the others generate user workload. These are quad
core HP ProLiant servers, virtualized using Windows
Hyper-V.

9



Application Deployment: The testbed hosts 4 clus-
tered applications: 3 instances of StockTrader labeled A,
B, and C, and a SPEC CPU task set. StockTrader A and
StockTrader B are each composed of 13 VMs. Stock-
Trader C is composed of 6 VMs, and the SPEC CPU task
set is given 10 VMs. Each VM is assigned one core on
one of the quad core servers. StockTrader VMs are al-
located to multiple tiers such that each tier reaches high
resource utilization at peak load.

Stocktrader B and C are treated as high priority ap-
plications while StockTrader A and SPEC are given low
priority. The VMs are mixed up across servers such that
some servers host both high and low priority VMs while
others host VMs only from a single priority level. Each
server hosts VMs from more than one application.

Measurements: Power measurements for the hosted
VMs are obtained using [8]. This technique obtains a
mapping between resource usage, which can be moni-
tored for each VM by the hypervisor, to actual VM power
use, since VM power cannot be measured in hardware.
Power measurements for the entire testbed are obtained
in hardware, using a set of WattsUp PRO [24] meters,
connected to each of the servers. This hardware measure-
ment includes the base power consumption of the servers
(power consumed when powered on but idle) that is not
attributed to any specific VM, and is treated as PM (t)
for equations (1) and (2). Cooling equipment is not part
of this testbed. When using MPC at the tier level, the
SPEC application’s tier level controller is still PID, be-
cause the SPEC CPU applications does not expose per-
formance metrics in real time.

Comparison: In addition to the VPS controllers with
multiple options from Table 1, we also implemented a
power budgeting system that simply follows the hierar-
chy of the physical layout of the testbed, for compari-
son. This controller uses only DVFS as its power con-
trol knob and operates at the server level, similar to prior
works [22]. Servers that are exceeding their allocated
budget, i.e., the ones with highest resource usage, are
throttled first.

Illustrative Run: We conduct multiple runs with dif-
ferent workload traces and take an average of the mea-
sured metrics (5 runs in each experiment). As an illus-
tration, Figure 9 shows the power consumption with and
without VPS controllers, for part of a run. Tracking is
enforced during time intervals where uncontrolled con-
sumption (dashed line) is above the tracked power level
(solid black line). Only two of the controllers are shown
for clarity. The controllers do exceed the tracked power
level at times, leading to tracking errors. Also, even
when the uncontrolled curve exceeds the tracked power
level, implying that the workload is high, the controllers
sometimes leave power unused below the tracked level,
taking an unnecessary performance hit.

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150

0 1000 2000 3000 4000

Po
w

er
 (

W
at

t)
 

Time (s) 

Uncapped

PID

MPC

Total Power
Budget

Uncontrolled 

Figure 9: A workload run against various control systems
with dynamic power budget.

The figure also illustrates the use of a time varying
power capacity availability, as may be useful in scenar-
ios where the utility power is supplemented with envi-
ronmentally harvested power [16, 2].

4.2 Results
The performance metrics of interest are: total (data cen-
ter level) and application level power budgeting errors,
application performance differentiation (ability to oper-
ate interactive applications on shared infrastructure with
low priority tasks), and performance achieved within the
power budget.

4.2.1 Power Budgeting Errors

Error is defined as the excess power consumed above the
assigned power budget, normalized by the power budget:

TrackingError = MAX

{
PM (t)− PT (t)

PT (t)
, 0

}
where PM (t) represents the measured data center power
consumption. Consumption below the target level may
result from workload being low or the controller being
overly conservative. Being overly conservative is not
an error from a budgeting perspective, but penalizes the
controller in terms of achieved application performance.

Figure 10 shows the average and standard deviation
of the mean error across all experiment runs, for each
design choice. The PID-based system has higher error
because the PID controller has higher overshoots during
its convergence time, compared to MPC and Open Loop
systems, and is as expected. Higher oscillations for PID
compared to MPC were also seen in [21]. The physi-
cal hierarchy based controller has higher error primarily
because the control knob it uses, DVFS, is not as fine
grained as VM CPU time allocation. Processors have
only a few discrete DVFS levels as opposed to CPU time
allocation that can varied in fine grained steps. Over-
all however, each of the design choices yields fairly low
error and the choice will thus depend on the other im-
plementation constraints or performance considerations.

10



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Open Loop PID MPC Physical Hierarchy

O
ve

rs
h

o
o

t 
Er

ro
r 

(%
) 

Figure 10: Total power errors of each control system.

It is worth noting that the overall error is low even
when using open loop control, because some of its er-
ror is compensated by higher layer controllers. The error
in open loop control is more apparent at the lower lay-
ers. Figure 11 shows the mean error for each hosted ap-
plication (ST-x refers to StockTrader-x). Here, the PID
and MPC based systems have similar application power
errors, and both fare better than the open loop VPS sys-
tem. ST-A and SPEC being the lower priority applica-

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

SPEC ST-A ST-B ST-C

Er
ro

r 
(%

) 

Open Loop % PID(%) MPC (%)

Figure 11: Application power enforcement errors.

tion are subject to greater power reduction. However,
the open loop controller has a poorer power model for
StockTrader applications than SPEC (the power model
accuracy can vary across applications since different ap-
plications may use resources differently [8]). As a re-
sult, it underestimates the power consumption of ST-A,
and does not throttle it sufficiently, leading to high error.
Due to this error, the higher layer controller reduces the
total power available to all applications, resulting in the
higher priority applications, StockTrader B and C, see-
ing lower budgets under open loop design than their ac-
tual limits in other designs. These are throttled more than
necessary and stay well below the target level, resulting
in tracking error being virtually eliminated for B and C.
The physical hierarchy based controller does not apply
to individual applications and is omitted in this figure.

4.2.2 Power Differentiation

VPS is designed to respect application priorities and QoS
constraints in a shared infrastructure. Figure 12 shows
the differentiation between different applications enabled
by VPS. Power reduction compared to uncontrolled op-
eration is shown, normalized by the uncontrolled con-
sumption.

0

5

10

15

20

25

30

35

40

Open Loop PID MPC Physical Hierarchy

Po
w

er
 R

ed
u

ct
io

n
 (

%
) 

SPEC ST-A

ST-B ST-C

Figure 12: Average application power reduction under
each control system. SPEC and ST-A are the lower pri-
ority applications and ideally only these two should have
their power reduced.

The physical hierarchy based controller, which oper-
ates at the hardware level without consideration of appli-
cation VM boundaries, is unable to differentiate between
applications: higher and lower priority applications have
their power reduced by similar amounts. In contrast, the
PID and MPC based VPS systems show marked applica-
tion power differentiation.

The open loop system does differentiate, and SPEC is
throttled by similar amount as with MPC and PID. How-
ever, the power model used does not work as well for the
StockTrader applications and we see that StockTrader A
is throttled much less, causing the higher priority appli-
cations to be throttled more, as explained with Figure 11.

4.2.3 Application Performance

We saw above that both the PID and MPC based VPS
systems can perform appropriate application differentia-
tion and achieve low errors. The distinguishing feature of
MPC however, is its ability to improve application per-
formance by intelligently selecting the appropriate com-
bination of power settings that yields higher performance
for a given power level.

An illustration of this effect is shown in Figure 13,
which shows the throughput and response time achieved
by StockTrader A, under both MPC and PID based ap-
proaches, for the same power budget. MPC yields higher
throughput and lower response times, showing a notice-
able performance advantage.

Quantitatively, the performance difference is mea-
sured as follows. The degradation, δ, in performance is
defined as the fractional reduction in performance com-
pared to when run with unlimited power:

δ =

∣∣∣∣Perfunlimited − PerfV PS

Perfunlimited

∣∣∣∣
for both response time and throughput. For each experi-
ment run, we calculate the mean degradation for each ap-
plication. The degradations in throughput and response
time are compared in Figure 14. In each case, the MPC
based system shows lower performance degradation, im-
plying higher performance. StockTrader B and C being

11



2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000

Th
ro

u
gh

p
u

t 
(T

P
S)

 

Time (s) 

PID MPC

(a) Application Throughput.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

R
es

p
o

n
se

 T
im

e 
(s

) 

Time (s) 

PID MPC

(b) Application Response Time.

Figure 13: Application performance of a low priority
(throttled) application, for MPC and PID, with the same
power budget.

higher priority applications, are not affected much in ei-
ther PID or MPC, but StockTrader A shows a marked
performance advantage for using MPC.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

ST-A ST-B ST-C

Th
ro

u
gh

p
u

t 
D

eg
ra

d
at

io
n

 
(%

) 

PID MPC

(a) Throughput Degradation

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

ST-A ST-B ST-C

R
es

p
o

n
se

 T
im

e 
D

eg
ra

d
at

io
n

 (
%

) 

PID MPC

(b) Response Time Degradation

Figure 14: Performance degradation: MPC vs PID.
The high priority applications (ST-B and ST-C) are not
throttled much but ST-A suffers lower degradation when
throttled using MPC than with PID for the same power
budget.

We also noted in Section 3.4.3 that MPC is restricted
in its use of the DVFS control knob because the hard-
ware is shared among multiple VMs. While the VM
CPU time limit can be applied to any VM, the DVFS
knob can only be used when allowed by the coordina-
tion service. To study the impact of coordination, we
track the DVFS and VM CPU time limit settings used
at two of StockTrader A’s VMs. One of these VMs, la-

beled VM1, is co-located with VMs from higher priority
applications while the other, VM2, is placed on a server
where all other VMs belong to lower priority applica-
tions. Figures 15(a) and 15(b) show the power control
knob settings used by these two VMs during the MPC
experiment, at different times during an entire run. We
see that VM1 is unable to use the DVFS knob (DVFS is
always 100%) because the other VMs on that server re-
quire the highest DVFS setting. VM2 on the other hand
does use multiple DVFS levels, and its spread of VM
CPU time limits is thus different from VM1.

0

20

40

60

80

100

120

0 1 2 3 4 5 6

Po
w

er
 S

et
ti

n
g 

(%
) 

Power (W) 

DVFS VM CPU Time

(a) VM1 power settings

0

20

40

60

80

100

120

0 1 2 3 4 5 6

Po
w

er
 S

et
ti

n
g 

(%
) 

Power (W) 

DVFS VM CPU Time

(b) VM2 power settings

Figure 15: Power control knob settings used for VM1
(co-located with high priority application VMs) and
VM2 (co-located with low priority application VMs).

The performance advantage shown by MPC in Fig-
ures 14(a) and 14(b) is obtained using the DVFS knob
only in cases where the VM placement allowed its use.
The performance advantage may be higher in scenarios
where all low priority VMs do not share servers with
higher priority VMs.

5 Discussion and Future Work

VPS enables performance aware power budgeting in
multi-application virtualized scenarios. The system can
be extended to incorporate additional features and appli-
cation scenarios, as follows.

Server Shutdown: In this paper, we only used two
power control knobs: DVFS and VM CPU time allo-
cation. Both these knobs can be applied in real time
with low latency. However, these knobs only influence
the portion of server power consumption that varies with
processor power settings. A significant portion of server
power, as high as 50-60%, is spent to simply power up
a server, and is referred to as idle power. Therefore, an
effective means to reduce power is to shut down some

12



servers, instead of throttling down servers that are pow-
ered up. Consider as a toy example, a set of 10 servers,
each of which consumes 50W at idle and 100W at peak
load (i.e., server power increases from 50W to 100W as
CPU utilization increases from 0 to 100%). The total
power consumption is 1000W at peak load. Suppose a
reduction of 250W is desired. One option is to reduce the
CPU utilization of each server from 100% to 50%, reduc-
ing the power level of each server to 75W. The number of
CPU cycles available is reduced by 50% in this case. An-
other option is to shut down three of the servers, reducing
the power by 300W but reducing the CPU cycles by only
30% (instead of 50%). The second approach achieves
part of its power reduction by eliminating idle power of
three servers and can offer higher performance.

Clearly, exploiting server shutdown as a power con-
trol knob has a performance advantage. However, server
shutdown has high latency. Also, since it is a hardware
level knob, coordination among all VMs located on a
server to be shut down is required. Commercial prod-
ucts that can automatically migrate or shutdown VMs
and servers as resource utilization changes are already
available [20]. Incorporating such techniques into ap-
plication power budgeting presents interesting research
challenges and will likely yield significant performance
benefits when power throttling is required for longer time
durations.

Additional Applications: We explained the choice of
control intervals in Section 3.5. The latencies achieved
are acceptable for over-subscription with a static power
capacity, since the only dynamics come from user work-
loads and these vary only gradually over the course of a
day [1]. Such latencies are also acceptable for additional
power budgeting scenarios. VPS may be used to control
power usage in a multi-application server cluster pow-
ered wholly or in part from environmentally-harvested
energy, such as solar power, since it varies relatively
slowly. VPS may also be employed when the data cen-
ter wishes to change its power budgets with demand re-
sponse based or time of day based power prices. The
power prices are adjusted for periods of at least an hour
or 30 minutes in most electricity markets, allowing am-
ple time for controller convergence.

6 Related Work

Several prior works have considered the problem of
power and performance control of data center servers.
Power budgeting for a single server has been considered
in [9]. Multi-server power budgeting, sometimes referred
to as power shifting, has also been discussed [23, 21,
3, 22]. The power controllers proposed in [21, 23] dis-
tribute power proportional to CPU utilization in a cluster
of servers. In [3], workload differences among multiple

nodes are used to allocate different power limits. In [22],
a hierarchical approach is used where the controller hi-
erarchy follows the physical server and rack layout. In
all these works, only DVFS is used as the power con-
trol knob and application differentiation is not consid-
ered. The use of multiple power control knobs is also
not considered. The controller centrally measures and
actuates each server, limiting scalability. Optimal allo-
cation of available power to maximize performance was
also considered in [4], where a choice was made be-
tween the number of active servers and their processor
frequencies. A single application running on homoge-
neous servers was considered and power allocations were
made centrally. We extend the above works to allow
multiple applications sharing a common server infras-
tructure. We also design a method to select an optimal
combination of power settings when multiple options ex-
ist for achieving the same power level, rather than always
using DVFS. We further adapt power allocations dynam-
ically across applications and application tiers to improve
performance.

The performance of multi-tier applications has also
been considered in [7, 10]. The method in [7] tunes
the power settings at each tier to meet an overall perfor-
mance objective by determining coordinated frequency
levels for each tier. In [10], one controller is used
to set the processor frequency of one of the tiers to
meet performance requirements and another controller
tunes the frequency of the other tier to minimize over-
all energy. These methods require detailed performance
models across multiple tiers. We optimize performance
across multiple tiers using low overhead mechanisms
that do not require learning multi-tier performance mod-
els. Our methods work with dynamic workloads and can
also use multiple power control knobs.

Partitioning of power due to limitations of power dis-
tribution may also lead to inefficient operation because
unused power capacity in one part of the data center can-
not be delivered to other parts. Solutions to this prob-
lem have been discussed before [13]. We assume that
such solutions have been deployed, and the distribution
infrastructure is not a limiting factor.

In addition to the above works, several others have
addressed various related aspects of power control. Co-
ordination of multiple controllers for joint objectives of
power capacity, energy consumption, and thermal man-
agement was presented in [14]. Our solution addresses
multi-application scenarios with dynamic workloads and
application performance optimization. Design time anal-
ysis of coordinated controllers for detecting unwanted
positive feedbacks and instability was presented in [6].
We use multiple coordinated controllers in a hierarchy
such that they do not lead to positive feedbacks and
ensure stability through known methods. Design time

13



methods for efficient power provisioning, based on sta-
tistical profiling, have also been studied [5] but are com-
plementary to our work. VPS power tracking methods
are designed to be employed at run time, after the design
time provisioning limits have been determined. Model-
ing and control of application performance and resource
usage in a virtualized infrastructure has also been con-
sidered before [12]. Our focus is specifically on power
tracking, with appropriate mechanisms for performance
differentiation and optimization.

We also consider several practical aspects not previ-
ously considered. For instance, the platform providing
and controlling the power limits has very limited visibil-
ity into the application performance metrics. This is es-
pecially true for cloud environments where the applica-
tions may not be owned by the same entity that manages
the data center and its power usage. Further, the work-
load for one application may change, causing the power
availability for other applications to change and hence we
dynamically adapt to such changes. We also do not as-
sume that detailed models for power distribution across
multiple application tiers can always be learned.

7 Conclusion

We presented a power budgeting system, VPS, for virtu-
alized data centers hosting multiple applications. VPS
can significantly improve the power capacity utiliza-
tion by providing effective power budgeting in multiple
scenarios including over-subscription, energy harvesting
data centers, and variable power pricing. VPS allocates
available power efficiently among multiple applications
sharing the same servers and adapts to dynamic work-
load variations. The pipelined organization of large scale
applications into tiers is used to automatically distribute
power among the application tiers in appropriate propor-
tions. Multiple power control knobs are exploited for
optimizing performance. The algorithms used are based
on control theoretic techniques to help ensure stable and
robust operation. VPS offers multiple implementation
options to adapt to practical design constraints such as
lack of detailed system models and limited visibility into
application performance.

8 Acknowledgments

The authors are grateful to Prof Xenofon Koutsoukos
(Vanderbilt University) for his insightful comments.

References
[1] CHEN, G., HE, W., LIU, J., NATH, S., RIGAS, L., XIAO,

L., AND ZHAO, F. Energy-aware server provisioning and load
dispatching for connection-intensive internet services. In NSDI
(2008), pp. 337–350.

[2] CLIDARAS, J., STIVER, D. W., AND HAMBURGEN, W. Water-
based data center. US Patent Application, February 2007.

[3] E. FEMAL, M., AND W. FREEH, V. Boosting data center perfor-
mance through non-uniform power allocation. In ICAC (2005).

[4] GANDHI, A., HARCHOL-BALTER, M., DAS, R., AND LE-
FURGY, C. Optimal power allocation in server farms. In SIG-
METRICS (2009).

[5] GOVINDAN, S., CHOI, J., URGAONKAR, B., SIVASUBRAMA-
NIAM, A., AND BALDINI, A. Statistical profiling-based tech-
niques for effective power provisioning in data centers. In Eu-
roSys (2009).

[6] HEO, J., HENRIKSSON, D., LIU, X., AND ABDELZAHER,
T. Integrating adaptive components: An emerging challenge in
performance-adaptive systems and a server farm case-study. In
RTSS (2007).

[7] HORVATH, T., ABDELZAHER, T., SKADRON, K., AND LIU, X.
Dynamic voltage scaling in multitier web servers with end-to-end
delay control. IEEE Trans. Comput. 56, 4 (2007), 444–458.

[8] KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND BHAT-
TACHARYA, A. A. Virtual machine power metering and provi-
sioning. In SoCC (2010).

[9] LEFURGY, C., WANG, X., AND WARE, M. Server-level power
control. In ICAC (2007).

[10] LEITE, J. C., KUSIC, D. M., AND MOSSÉ, D. Stochastic ap-
proximation control of power and tardiness in a three-tier web-
hosting cluster. In ICAC (2010).

[11] NATHUJI, R., ENGLAND, P., SHARMA, P., AND SINGH,
A. Feedback driven qos-aware power budgeting for virtualized
servers. In FeBID (2009).

[12] PADALA, P., HOU, K.-Y., SHIN, K. G., ZHU, X., UYSAL, M.,
WANG, Z., SINGHAL, S., AND MERCHANT, A. Automated con-
trol of multiple virtualized resources. In EuroSys (2009).

[13] PELLEY, S., MEISNER, D., ZANDEVAKILI, P., WENISCH,
T. F., AND UNDERWOOD, J. Power routing: dynamic power
provisioning in the data center. In ASPLOS (2010).

[14] RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG,
Z., AND ZHU, X. No “power” struggles: coordinated multi-level
power management for the data center. In ASPLOS (2008).

[15] SPEC CPU2006. http://www.spec.org/cpu2006.
[16] STEWART, C., AND SHEN, K. Some joules are more precious

than others: Managing renewable energy in the datacenter. In
HotPower (2009).

[17] .NET StockTrader Sample Application.
http://msdn.microsoft.com/en-us/netframework/bb499684.aspx.

[18] STOESS, J., LANG, C., AND BELLOSA, F. Energy management
for hypervisor-based virtual machines. In USENIX Annual Tech-
nical Conference (2007).

[19] URGAONKAR, B., SHENOY, P., AND ROSCOE, T. Resource
overbooking and application profiling in a shared internet host-
ing platform. ACM Trans. Internet Technol. 9, 1 (2009), 1–45.

[20] VMWARE. VMware distributed power management concepts and
use. http://www.vmware.com/files/pdf/DPM.pdf.

[21] WANG, X., AND CHEN, M. Cluster-level feedback power con-
trol for performance optimization. In HPCA (2008).

[22] WANG, X., CHEN, M., LEFURGY, C., AND KELLER, T. W.
Ship: Scalable hierarchical power control for large-scale data
centers. In PACT (2009).

[23] WANG, X., AND WANG, Y. Coordinating power control and
performance management for virtualized server clusters. IEEE
Transactions on Parallel and Distributed Systems 99 (2010).

[24] WattsUp PRO ES. https://www.wattsupmeters.com/secure/index.php.
[25] ZIEGLER, J., AND NICHOLS, N. B. Optimum settings for auto-

matic controllers. Transactions of the ASME 64 (1942), 759–768.

14


