
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

SubPolyhedra: A family of numerical abstract domains for
the (more) scalable inference of linear inequalities

Vincent Laviron1, Francesco Logozzo2

1 École Normale Supérieure, 45, rue d’Ulm, Paris (France)
e-mail: Vincent.Laviron@ens.fr

2 Microsoft Research, Redmond, WA (USA)
e-mail: logozzo@microsoft.com

The date of receipt and acceptance will be inserted by the editor

Abstract. We introduce Subpolyhedra (SubPoly) a new
family of numerical abstract domains to infer and prop-
agate linear inequalities. The key insight is that the
reduced product of linear equalities and intervals pro-
duces powerful yet scalable analyses. Abstract domains
in SubPoly are as expressive as Polyhedra, but they drop
some of the deductive power to achieve scalability. The
cost/precision ratio of abstract domains in the SubPoly
family can be fined tuned according to: (i) the precision
one wants to retain at join pointsl; and (ii) the algorithm
used to infer tight bounds on intervals.

We implemented SubPoly on the top of Clousot,
a generic abstract interpreter for .Net. Clousot with
SubPoly analyzes very large and complex code bases in
few minutes. SubPoly can efficiently capture linear in-
equalities among hundreds of variables, a result well-
beyond state-of-the-art implementations of Polyhedra.

1 Introduction

The goal of an abstract interpretation-based static ana-
lyzer is to statically infer properties of the execution of a
program that can be used to check its specification. The
specification usually includes the absence of runtime ex-
ceptions (division by zero, integer overflow, array index
out of bounds . . .) and programmer annotations in the
form of preconditions, postconditions, object invariants
and assertions (“contracts” [30,2]). Proving that a piece
of code satisfies its specification often requires discover-
ing numerical invariants on program variables.

The concept of abstract domain is central in the de-
sign and the implementation of a static analyzer [10].
Abstract domains capture the properties of interest on
programs. In particular numerical abstract domains are
used to infer numerical relationships among program

class StringBuilder {

int m_ChunkLength; char[] m_ChunkChars;

// ...

public void Append(int wb, int count) {

Contract.Requires(wb >= 2 * count);

if (count + m_ChunkLength > m_ChunkChars.Length)

(*) CopyChars(wb, m_ChunkChars.Length - m_ChunkLength);

// ... }

private void CopyChars(int wb, int len) {

Contract.Requires(wb >= 2 * len);

// ...

Fig. 1. An example extracted from mscorlib.dll. The function
Contract.Requires(. . .) expresses method preconditions. Proving
the precondition of CopyChars requires propagating an invariant
involving three variables and non-unary coefficients.

variables. Cousot and Halbwachs introduced the Polyhe-
dra numerical abstract domain (Poly) in [14]. Poly infers
all the linear equalities on the program variables. The
application and scalability of Poly has been severely lim-
ited by its performance which is worst-case exponential
(easily attained in practice). To overcome this shortcom-
ing and to achieve scalability, new numerical abstract
domains have been designed moving in two orthogonal
directions: either only considering inequalities of a par-
ticular shape (weakly relational domains) or fixing ahead
of the analysis the maximum number of linear inequali-
ties to be considered (bounded domains). The first class
includes Octagons (which capture properties in the form
±x± y ≤ c) [31], TVPI (a · x+ b · y ≤ c) [38], Pentagons
(x ≤ y∧ a ≤ x ≤ b) [29], Stripes (x+ a · (y+ z) > b) [17]
and Octahedra (±x0 · · · ± xn ≤ c) [8]. The latter in-
cludes constraint template matrices (which capture at
most m linear inequalities) [36,21] and methods to gen-
erate polynomial invariants e.g. [33,34,24].

Although impressive results have been achieved us-
ing weakly relational and bounded abstract domains, we
experienced situations where the full expressive power
of Poly is required. As an example, let us consider the
code snippet of Fig. 1, extracted from mscorlib.dll, the
main library of the .Net framework. Checking the pre-
condition at the call site (∗) involves:

(i) propagating the given constraints:

wb ≥ 2 · count

count + m ChunkLength > m ChunkChars.Length

(ii) deducing the precondition for CopyChars:

wb ≥ 2 · (m ChunkChars.Length− m ChunkLength)

The aforementioned weakly relational domains cannot
be used to check the precondition: Octahedra do not cap-
ture the first constraint (it involves a constraint with a
non-unary coefficient); TVPI do not propagate the sec-
ond constraint (it involves three variables); Pentagons
and Octagons cannot represent any of the constraints;
Stripes can propagate both constraints, but because of
the incomplete closure it cannot deduce the precondi-
tion. Bounded domains does the job, provided we fix be-
fore the analysis the template for the constraints. This
is inadequate for our purposes: The analysis of a sin-
gle method in mscorlib.dll may involve hundreds of
constraints, whose shape cannot be fixed ahead of the
analysis, e.g. by a textual inspection. Poly easily propa-
gates the constraints. However, in the general case the
price to pay for using Poly is too elevated: the analysis
will be limited to few tens of variables.

1.1 Subpolyhedra

We propose a new family of numerical abstract domains,
Subpolyhedra (SubPoly), which has the same expressive
power as Poly, but it drops some inference power to
achieve scalability: SubPoly exactly represents and prop-
agates linear inequalities containing hundreds of vari-
ables and constraints. SubPoly is based on the funda-
mental insight that the reduced product of linear equali-
ties, LinEq [22], and intervals, Intv [10], can produce very
powerful yet efficient program analyses. SubPoly can rep-
resent linear inequalities using slack variables, e.g. wb ≥
2 · count is represented in SubPoly by wb − 2 · count =
β∧β ∈ [0,+∞]. As a consequence, SubPoly easily proves
that the precondition for CopyChars is satisfied at the
call site (∗). In general the join of SubPoly is less pre-
cise than the one on Poly, so that it may not infer all
the linear inequalities. The reason for that is that the
pairwise join on LinEq and Intv is in general less precise
than the join on Poly. To mitigate this loss of precision,
we introduce a technique called hints [25] which enable
recovering some of the precision. This technique is not

void Foo(int i, int j) {

int x = i, y = j;

if (x <= 0) return;

while (x > 0) { x--; y--; }

if (y == 0)

Assert(i == j);

}

Fig. 2. An example from [35]. SubPoly infers the loop in-
variant x − i = y − j ∧ x ≥ 0, propagates it and prove the
assertion.

limited to SubPoly, and indeed we show that several ex-
isting refinement techniques can be seen as a particular
case of hints.

The cardinal operation for SubPoly is the join, which
computes a compact yet precise upper approximation
of two incoming abstract states. The join of SubPoly
is parameterized by the: (i) the reduction algorithm,
which propagates the information between LinEq and
Intv; and (ii) the hints, which recover information lost at
join points. Every instantiation of the (reduction, hints)
produces a new abstract domain in the SubPoly family,
allowing the fine tuning of the cost/precision ratio. The
most imprecise yet fast abstract domain in the SubPoly
family is the one in which the reduction is the simple
identity (no interval is refined) and the no hints are used.
The most precise yet expensive abstract domain is one
where the reduction is a complete linear programming
algorithm and the hints are the usual Poly join.

1.2 Reduction

Let us consider the example in Fig. 2, taken from [35].
The program contains operations and predicates that
can be exactly represented with Octagons. Proving that
the assertion is not violated requires discovering the loop
invariant x−y = i−j∧x ≥ 0. The loop invariant cannot
be fully represented in Octagons: it involves a relation on
four variables. Bounded numerical domains are unlikely
to help here as there is no way to syntactically figure out
the required template. The LinEq component of SubPoly
infers the relation x− y = i− j. The Intv component of
SubPoly infers the loop invariant x ∈ [0,+∞], which in
conjunction with the negation of the guard implies that
x ∈ [0, 0]. The simplification of SubPoly propagates the
interval, refining the linear constraint to y = j− i. This
is enough to prove the assertion (in conjunction with the
if-statement guard). It is worth noting that unlike [35]
SubPoly does not require any hypothesis on the order of
variables to prove the assertion.

1.3 Join and Hints

Let us consider the code in Fig. 3, taken from [19]. The
loop invariant required to prove that the assertion is
unreached (and hence that the program is correct) is

2

int x = 0, y = 0, w = 0, z = 0;

while (...) {

if (...) { x++; y += 100; }

else if (...) { if (x >= 4) { x++; y++; } }

else if (y > 10 * w && z >= 100 * x) { y = -y; }

w++; z += 10;

}

if (x >= 4 && y <= 2) Assert(false);

Fig. 3. An example from [19]. SubPoly infers the loop invariant
x ≤ y ≤ 100 · x ∧ z = 10 · w, propagates it out of the loop, and
proves that the assertion is unreached.

x ≤ y ≤ 100 · x ∧ z = 10 · w. Without hints, SubPoly can
only infer z = 10 · w. Template hints, inspired by [36], are
used to recover linear inequalities that are dropped by
the imprecision of the join: In the example the template
is x − y ≤ b, and the analysis automatically figures out
that b = 0. Planar Convex hull hints, inspired by [38],
are used to introduce at join points linear inequalities
derived by a planar convex hull: In the example it helps
the analysis figure out that y ≤ 100 ·x. It is worth noting
that SubPoly does not need any of the techniques of [19]
to infer the loop invariant.

2 Abstract Interpretation

2.1 Abstract domains

We assume the concrete domain to be the complete Bool-
ean lattice of environments, C = 〈P(Σ),⊆, ∅, Σ,∪,∩〉,
where Σ = [Vars→ Z]. An abstract domain A is a tuple
〈D̄, γ, v̄, ⊥̄, >̄, t̄, ū,O, ρ, σ〉. The set of abstract elements
D̄ is related to the concrete domain by a monotonic con-
cretization function γ ∈ [D̄→ C̄]. With an abuse of nota-
tion, we will not distinguish between an abstract domain
and the set of its elements. The approximation order is
v̄ is a sound approximation of the concrete order:

∀d̄0, d̄1 ∈ D. d̄0v̄d̄1 =⇒ γ(d̄0) ⊆ γ(d̄1)

The smallest element is ⊥̄, the largest element is >̄. The
join operator t̄ satisfies:

∀d̄0, d̄1 ∈ D̄. d̄0v̄d̄0t̄d̄1 ∧ d̄1v̄d̄0t̄d̄1

The meet operator ū satisfies:

∀d̄0, d̄1 ∈ D̄. d̄0ūd̄1v̄d̄0 ∧ d̄0ūd̄1v̄d̄1

The widening O ensures the convergence of the fixpoint
iterations, i.e. it satisfies:

(i) ∀d̄0, d̄1 ∈ D̄. d̄0v̄d̄0Od̄1 ∧ d̄1v̄d̄0Od̄1

(ii) for each sequence of abstract elements d̄0, d̄1, . . . d̄k
the sequence defined by:
d̄O0 = d̄0, d̄

O
1 = d̄O0 Od̄1 . . . d̄

O
k = d̄Ok−1Od̄k

is ultimately stationary.

In general, we do not require abstract elements to be
in some canonical or closed form, i.e. there may exist
d̄0, d̄1 ∈ D, such that d̄0 6= d̄1, but γ(d̄0) = γ(d̄1). The
reduction operator ρ ∈ [D̄ → D̄] puts an abstract ele-
ment into a (pseudo-)canonical form without adding or
losing any information: ∀d̄. γ(ρ(d̄)) = γ(d̄) ∧ ρ(d̄)v̄d̄.
We do not require ρ to be idempotent. The simplifica-
tion operator σ ∈ [D̄ → D̄] removes redundancies in an
abstract state. It may introduce some loss of precision:
∀d̄. γ(d̄) ⊆ γ(σ(d̄)).

In most of the literature, reduction and simplification
are not given the status of lattice operation. However,
several domains use internally some specific operations
that gives a more adapted representation of the abstract
state, for a given operation. For instance, there is an op-
eration on Octagons that is called closure, and which has
the properties of a reduction operator. We believe that
this is general enough to warrant adding two operators
to the standard abstract domain definition. Of course,
the identity is always a reduction operator and a simpli-
fication operator, so it can be defined even for domains
which have no corresponding specific operation. Those
operators are particularly important when the abstract
elements considered are representations of mathematical
objects, such that some objects have multiple equivalent
representations.

New abstract domains can be systematically derived
by cartesian composition or functional lifting [11]. Fol-
lowing [9], we use the dot-notation to denote point wise
or functional extensions.

2.2 Transfer functions

It is common practice for the implementation of an ab-
stract domain A to provide three abstract transfer func-
tions: one for the assignment, one for the handling of
tests, and one to perform abstract checking. The ab-
stract transfer function for assignment, A.assign, is an
over-approximation of the states reached after the con-
crete assignment (EJEK(σ) denotes the evaluation of the
expression E in the state σ) :

∀x, E.∀ē ∈ A.
{σ[x 7→ v] | σ∈γ(ē),EJEK(σ) = v} ⊆ γ(A.assign(ē, x, E))

The test abstract transfer function, A.test, filters the in-
put states (BJBK(σ) denotes the evaluation of a Boolean
expression B in the state σ):

∀B.∀ē ∈ A. {σ ∈ γ(ē) | BJBK(σ) = true} ⊆ γ(A.test(ē, B)).

The abstract checking A.check verifies if an assertion
A holds in an abstract state ē. It has four possible out-
comes: true meaning that A holds in all the concrete
states γ(ē); false, meaning that !A holds in all the con-
crete states γ(ē); bottom, meaning that the assertion is
unreached; top, meaning that the validity of A cannot be
decided in γ(ē). Formally, A.check satisfies ∀A. ∀ē ∈ A:

3

Order: [a1, b1]v̄Intv[a2, b2]⇐⇒ a1 ≥ a2 ∧ b1 ≤ b2
Bottom: [a, b] = ⊥̄Intv ⇐⇒ a > b

Top: [a, b] = >̄Intv ⇐⇒ a = −∞∧ b = +∞
Join: [a1, b1]t̄Intv[a2, b2] =[min(a1, a2),max(b1, b2)]

Meet: [a1, b1]ūIntv[a2, b2] =[max(a1, a2),min(b1, b2)]
Widening: [a1, b1]OIntv[a2, b2] =

[if a1 > a2 then a2 else −∞,
if b1 < b2 then b2 else +∞]

Fig. 4. Lattice operations over single intervals

A.check(A, ē) = v ⇒ ∀σ∈γ(ē). BJAK(σ) = v , v ∈{true, false}
A.check(A, ē) = bot ⇒ γ(ē) = ∅
A.check(A, ē) = top ⇒ ∃σ0, σ1 ∈ γ(ē). BJAK(σ0) 6= BJAK(σ1)

2.3 Intervals

The abstract domain of interval environments is 〈Intv, γIntv,
˙̄vIntv,

˙̄⊥Intv,
˙̄>Intv, ˙̄tIntv, ˙̄uIntv, ȮIntv〉. The abstract elements

are maps from program variables to open intervals. The
concretization of an interval environment ī is

γIntv (̄i) = {s ∈ Σ | ∀x ∈ dom(̄i). ī(x) = [a, b]∧a ≤ s(x) ≤ b}.

The lattice operations are the functional extension of
those in Fig. 4. The reduction and the simplification for
intervals are the identity function. All the domain oper-
ations can be implemented in linear time.

2.4 Linear Equalities

The abstract domain of linear equalities is 〈LinEq, γLinEq,
v̄LinEq, ⊥̄LinEq, >̄LinEq, t̄LinEq, ūLinEq〉. The elements are sets
of linear equalities, their meaning is given by the set of
concrete states which satisfy the constraints, i.e.

γLinEq = λ̄l. {s ∈ Σ | ∀(
∑

ai·xi = b) ∈ l̄.
∑

ai·s(xi) = b}.

The order is sub-space inclusion, the bottom is the empty
space, the top is the whole space, the join is the small-
est space which contains the two arguments, the meet
is space intersection. LinEq satisfies the ascending chain
condition, so that the join suffices to ensure analysis ter-
mination. The reduction and the simplification are just
Gaussian elimination. The complexity of the domain op-
erations is subsumed by the complexity of Gaussian elim-
ination, which is cubic.

2.5 Polyhedra

The abstract domain of linear inequalities is 〈Poly, γPoly,
v̄Poly, ⊥̄Poly, >̄Poly, t̄Poly, ūPoly,OPoly〉. The elements are sets
of linear inequalities, the concretization is the set of con-
crete states which satisfy the constraints i.e.

γPoly = λp̄. {s ∈ Σ | ∀(
∑

ai·xi ≤ b) ∈ p̄.
∑

ai·s(xi) ≤ b},

the order is the polyhedron inclusion, the bottom is the
empty polyhedron, the top is the whole space, the join
is the convex hull, the meet is just the union of the
set of constraints, and the widening preserves the in-
equalities stable among two successive iterations. The
reduction and the simplification respectively infers the
set of generators and removes the redundant inequali-
ties. The cost of the Poly operations is subsumed by the
cost of the conversion between the algebraic representa-
tion (set of inequalities) and the geometric representa-
tion (set of generators) used in the implementation [1].
In fact, some operations require the algebraic represen-
tation (e.g. ūPoly), some require the geometrical repre-
sentation (e.g. t̄Poly), and some others require both (e.g.
v̄Poly). The conversion between the two representations
is exponential in the number of variables, and it cannot
be done better [23].

3 Subpolyhedra

We introduce the numerical abstract domain of Subpoly-
hedra, SubPoly. The main idea of SubPoly is to combine
Intv and LinEq to capture complex linear inequalities.
Slack variables are introduced to replace inequality con-
straints with equalities.

3.1 Variables

A variable v ∈ Vars can either be a program variable
(x ∈ VarP) or a slack variable (β ∈ VarS). A slack
variable β has an associated information, denoted by
info(β), which is a linear form a1 · v1 + · · ·+ ak · vk.

Let κ ≡
∑
ai · xi +

∑
bj · βj = c be a linear equality:

sκ =
∑

xi∈VarP ai ·xi denotes the partial sum of the mono-
mials involving just program variables; VarP(κ) = {xi |
ai ·xi ∈ κ, ai 6= 0} and VarS(κ) = {βj | bj ·βj ∈ κ, bj 6= 0}
denote respectively the program variables and the slack
variables in κ. The generalization to inequalities and sets
of equalities and inequalities is straightforward.

3.2 Domain structure

The elements of SubPoly belong to the reduced product
LinEq× Intv [11]. Inequalities are represented in SubPoly
with slack variables:∑

ai · xi ≤ c⇐⇒
∑

ai · xi − c = β ∧ β ∈ [−∞, 0]

(β is a fresh slack variable with the associated informa-
tion info(β) =

∑
ai · xi).

3.3 Concretization

An element of SubPoly can be interpreted as a poly-
hedron by projecting out the slack variables: γPolyS ∈

4

[SubPoly→ Poly] is

γPolyS = λ〈̄l; ī〉. πVarS (̄l ∪ {a ≤ v ≤ b | ī(v) = [a, b]}),

where π denotes the projection of variables in Poly. The
concretization γS ∈ [SubPoly → P(Σ)] is then γS =

γPoly ◦ γPolyS .

3.4 Approximation Order

The order on SubPoly may be defined in terms of or-
der over Poly. Given two subpolyhedra s̄0, s̄1, the most
precise order relation v̄∗S is

s̄0v̄∗S s̄1 ⇐⇒ γPolyS (s̄0)v̄Polyγ
Poly
S (̄s1).

However, v̄∗S may be too expensive to compute: it in-
volves mapping subpolyhedra in the dual representation
of Poly. This can easily cause an exponential blow up.
We define a weaker approximation order relation which
first tries to find a renaming θ for the slack variables,
and then checks the pairwise order. Formally:

〈̄l0; ī0〉v̄S 〈̄l1; ī1〉 ⇐⇒

∃θ. VarS(〈̄l0; ī0〉)
inj−→ VarS(〈̄l1; ī1〉).

∀β ∈ VarS(〈̄l0; ī0〉). info(β) = info(θ(β))

∧ θ(〈̄l0; ī0〉) ˙̄v 〈̄l1; ī1〉.

In general v̄S (v̄∗S . In practice, v̄S is used to check
if a fixpoint has been reached. A weaker order relation
means that the analysis may perform some extra widen-
ing steps, which may introduce precision loss. However,
we found the definition of v̄S satisfactory in our experi-
ence.

One other important consequence of using a weak
approximation order is that we are not always able to
tell whether two abstract elements are actually equiva-
lent representations of the same geometric shape. This is
why, unlike some other domains like Poly, in SubPoly the
elements do not correspond to a geometrical shape, even
up to equivalence; there are some elements that corre-
spond to the same polyhedron, but are not comparable
with our weak ordering.

3.5 Bottom

An element of SubPoly is equivalent to bottom if after a
reduction one of the two components is bottom:

s̄ = ⊥S ⇐⇒ ρ(̄s) = 〈̄l, ī〉 ∧ (̄i = ⊥̇Intv ∨ l̄ = ⊥LinEq).

3.6 Top

An element of SubPoly is top if after the simplification
both components are top:

s̄ = >S ⇐⇒ σ(̄s) = 〈̄l, ī〉 ∧ ī = >̇Intv ∧ l̄ = >LinEq.

Algorithm 1 The join tS on Subpolyhedra

input 〈̄li; īi〉 ∈ SubPoly, i ∈ {0, 1}

let 〈̄l
′
i; ī
′
i〉 = 〈̄li; īi〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(̄li) \ VarS(̄li) do

〈̄l
′
i; ī
′
i〉 := 〈̄l′i uLinEq {β = info(β)}; ī′i〉

{Step 2. Perform the point-wise join on the saturated
operands}
let 〈̄lt; īt〉 = ρ(〈̄l

′
0; ī
′
0〉)ṫρ(〈̄l

′
1; ī
′
1〉)

{Step 3. Hints: Recover the lost information }
let Di be the linear equalities dropped from l̄′i at the pre-
vious step
for all κ ∈ Di do

if κ contains no slack variable then
let īsκ = JsκK〈̄l

′
i; ī
′
i〉

if īsκ 6= >Intv then
let β be a fresh slack variable
〈̄lt; īt〉 := 〈̄lt uLinEq {β = κ}; ītu̇Intv{β =
īsκ tIntv [0, 0]}〉

else if κ contains exactly one slack variable β then
let īsκ = JsκK〈̄l

′
i; ī
′
i〉

if īsκ 6= >Intv then
〈̄lt; īt〉 := 〈̄ltuLinEq {κ}; ītu̇Intv{β = īsκ tIntv

īi(β)}〉
else {κ contains strictly more than one slack vari-
able}

continue
return 〈̄lt; īt〉

3.7 Linear form evaluation

Let s be a linear form: JsK ∈ [SubPoly → Intv] de-
notes the evaluation of s in an element of SubPoly af-
ter that the reduction has inferred the tightest bounds:
J
∑

ai · viK 〈̄l; ī〉 = let 〈̄l∗; ī∗〉 = ρ(〈̄l; ī〉) in
∑
ai · ī∗(vi).

3.8 Join

As with the order, one could define a most precise join
operation by concretizing on Poly, doing the convex hull,
then abstracting again to SubPoly. However, this is a
very expensive operation, and the aim of SubPoly is to
give faster, but potentially less precise, operations. So we
define instead a specific join algorithm tS in three steps.
First, inject the information of the slack variables into
the abstract elements. Second, perform the pairwise join
on the saturated arguments. Third, add the constraints
that are implied by the two operands of the join, but
that were not preserved by the previous step. The join
is defined by the Algorithm 1 (We let 0 = 1, 1 = 0). We
illustrate it with examples.

Example 1 (Steps 1 & 2). Let us consider the code in
Fig. 5(a). After the assumption, the abstract states on
the left branch and the right branch are respectively:

5

if(...)

{ assume x - y <= 0; }

else

{ assume x - y <= 5; }
(a)

if(...)

{ assume x == y; assume y <= z; }

else

{ assume x <= y; assume y == z; }
(b)

Fig. 5. Examples illustrating the need for Step 1 in the join algo-
rithm

s̄0 = 〈x − y = β0; β0 ∈ [−∞, 0]〉 and s̄1 = 〈x − y =
β1; β1 ∈ [−∞, 5]〉. The information associated with the
slack variables is info(β0) = info(β1) = x − y. At the
join point we apply Algorithm 1. Step 1 refines the ab-
stract states by introducing the information associated
with the slack variables: s̄′0 = 〈x − y = β0 = β1; β0 ∈
[−∞, 0]〉 and s̄′1 = 〈x−y = β1 = β0; β1 ∈ [−∞, 5]〉. Step
2 requires the reduction of the operands. The interval for
β1 (resp. β0) in s̄′0 (resp. s̄′1) is refined: ρ(s̄′0) = 〈x− y =
β0 = β1; β0 ∈ [−∞, 0], β1 ∈ [−∞, 0]〉 and ρ(̄s′1) =
〈x−y = β1 = β0; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. The pair-
wise join gets the expected invariant: s̄t = ρ(̄s′0)ṫρ(̄s′1) =
〈x− y = β0 = β1; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. ut

Example 2 (Non-trivial information for slack variables).
Let us consider the code snippet in Fig. 5(b). The ab-
stract states to be joined are 〈x−y = 0, y−z = β0;β0 ∈
[−∞, 0]〉 and 〈y − z = 0, x − y = β1;β1 ∈ [−∞, 0]〉.
The associated information are info(β0) = y − z and
info(β1) = x − y. Step 1 allows to refine the abstract
states with the slack variable information, and hence to
infer that after the join x ≤ y and y ≤ z. ut

The two examples above show the importance of in-
troducing the information associated with slack variables
in Step 1 and the reduction in Step 2. Without those,
the relation between the slack variables and the program
point where they were introduced would have been lost.

The join of LinEq is precise in that if a linear equality
is implied by both operands, then it is implied by the
result too. The same for the join of Intv. The pairwise
join in LinEq× Intv may drop some inequalities. Some of
those can be recovered by the refinement step. The next
example illustrates it.

Example 3 (Step 3). Let us consider the code in Fig. 6(a).
The analysis of the two branches of the conditional pro-
duces the abstract states: s̄0 = 〈x− 3 · y = 0; >̇Intv〉 and
s̄1 = 〈x = 0, y = 1; x ∈ [0, 0], y ∈ [1, 1]〉. The reduction
ρ does not refine the states (we already have the tight-
est bounds). The point-wise join produces the abstract
state >S . Step 3 identifies the dropped constraints: D0 =
{x− 3 · y = 0} and D1 = {x = 0, y = 1}. The algorithm
inspects them to check if the corresponding linear form

if(...) { assume x == 3 * y; }

else { x = 0; y = 1; }
(a)

i := k;

while(...) i++;

assert i >= k;
(b)

Fig. 6. Examples illustrating the need for the Step 3 in the join
and the widening.

can be bounded by the “other” branch. The linear form
in D0 is also bounded in the right branch: Jx− 3 · yK(̄s1)
= [−3,−3] (6= >̇Intv). Therefore it is meaningful to add a
slack variable β corresponding to this linear form to the
result. The linear formss of D1 cannot be bounded on
the left branch,so they are discarded. The abstract state
after the join is then s̄t = 〈x− y = β; β ∈ [−3, 0]〉. ut

3.9 Meet

The meet uS is simply the pairwise meet on LinEq×Intv.

3.10 Widening

The algorithm for the widening is similar to the join,
with the main differences that: (i) the information asso-
ciated to slack variables is propagated only in one direc-
tion; (ii) only the right argument is saturated; and (iii)
the recovery step is applied only to one of the operands.
Those hypotheses avoid the well-known problems of in-
teraction between reduction, refinement and convergence
of the iterations [32,37].

Example 4 (Refinement step for the widening). Let us
consider the code snippet in Fig. 6(b). The entry state
to the loop is s̄0 = 〈i−k = 0; >̇Intv〉. The state after one
iteration is s̄1 = 〈i− k = 1; >̇Intv〉. We apply the widen-
ing operator. Step 1 does not refine the states as there
are no slack variables. The pairwise widening of Step 2
lose all the information. Step 3 recovers the constraint
k ≤ i: D0 = {i− k = 0} contains no slack variables and
Ji− kK(̄s1) = [1, 1] so that s̄O = 〈i−k = β; β ∈ [0,+∞]〉.
ut

Theorem 1 (Fixpoint convergence). The operator
defined in Algorithm 2 is a widening. Moreover, v̄S can
be used to check that the fixpoint iterations eventually
stabilize.

Proof sketch. Algorithm 2 ensures that the number of
linear equalities at any step is at most the number of
equalities in the first step. So there exists a point from
which no more slack variables will be added. Existing
slack variables may be renamed to fresh ones to avoid
conflicts. In the definition of v̄S the renaming θ takes

6

Algorithm 2 The widening OS on Subpolyhedra

input 〈̄li; īi〉 ∈ SubPoly, i ∈ {0, 1}

let 〈̄l
′
i; ī
′
i〉 = 〈̄li; īi〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(̄l0) \ VarS(̄l1) do

〈̄l
′
0; ī
′
0〉 := 〈̄l′0 uLinEq {β = info(β)}; ī′0〉

{Step 2. Perform the point-wise widening}
let 〈̄lO; īO〉 = 〈̄l

′
0; ī
′
0〉Ȯρ(〈̄l

′
1; ī
′
1〉)

{Step 3. Recover the lost information }
let D0 be the linear equalities dropped from l̄′0 at the pre-
vious step
for all κ ∈ D0 do

if κ contains no slack variables then
let īsκ = JsκK〈̄l

′
1; ī
′
1〉

if īsκ 6= >Intv then
let β be a fresh slack variable
〈̄lO; īO〉 := 〈̄lO uLinEq {β = κ}; īOu̇Intv{β =
[0, 0]Ōisκ}〉

else if κ contains exactly one slack variable β then
let īsκ = JsκK〈̄l

′
1; ī
′
1〉

if īsκ 6= >Intv then
〈̄lO; īO〉 := 〈̄lO uLinEq {κ}; īOu̇Intv{β =
ī0(v)Ōisκ}〉

else {κ contains strictly more than one slack vari-
able}

continue

return 〈̄lO; īO〉

care of those. Up to the renaming, the widening is the
pairwise widening, which is convergent and whose sta-
bility can be checked by the pairwise partial order. ut

4 Reduction for Subpolyhedra

The reduction in SubPoly infers tighter bounds on lin-
ear forms and hence on program variables. Reduction is
cardinal to fine tuning the precision/cost ratio. We pro-
pose two reduction algorithms, one based on linear pro-
gramming, ρLP , and the other on basis exploration, ρBE .
Both of them have been implemented in Clousot, our
abstract interpretation-based static analyzer for .Net [16].

4.1 Linear programming-based reduction

A linear programming problem is the problem of max-
imizing (or minimizing) a linear function subject to a
finite number of linear constraints. We consider upper
bounding linear problems (UBLP) [7], i.e. problems in
the form (n is the number of variables, m is the number

of equations):

maximize c · vk k ∈ 1 . . . n, c ∈ {−1,+1}

subject to

n∑
j=1

aij · vj = bj (i = 1, . . .m)

and lj ≤ vj ≤ uj (j = 1, . . . n).

The Linear programming-based reduction ρLP is triv-
ially an instance of UBLP: To infer the tightest upper
bound (resp. lower bound) on a variable vk in an el-
ement of SubPoly 〈̄l; ī〉 instantiate UBLP with c = 1
(resp. c = −1) subject to the linear equalities l̄ and the
numerical bounds ī.

UBLP can be solved in polynomial time [7]. However,
polynomial time algorithms for UBLP do not perform
well in practice. The Simplex method [15], exponential
in the worst-case, in practice performs a lot better than
other known linear programming algorithms [39]. The
Simplex algorithm works by visiting the feasible bases
(informally, the vertices) of the polyhedron associated
with the constraints. At each step, the algorithm visits
the adjacent basis (vertex) that maximizes the current
value of the objective by the largest amount. The itera-
tion strategy of the Simplex guarantees the convergence
to a basis which exhibits the optimal value for the ob-
jective.

The advantages of using Simplex for ρLP are that:
(i) it is well-studied and optimized; (ii) it is complete in
R, i.e. it finds the best solution over real numbers; and
(iii) it guarantees that all the information is propagated
at once: ρLP ◦ ρLP = ρLP .

The drawbacks of using Simplex are that (i) the com-
putation over machine floating point may introduce im-
precision or unsoundness in the result; and (ii) the re-
duction ρLP requires to solve 2 · n UBLP problems to
find the lower bound and the upper bound for each of
the n variables in an abstract state. We have observed
(i) in our experiences (cf. Sect. 7). There exists methods
to circumvent the problem at the price of extra compu-
tational cost, e.g. using arbitrary precision rationals, or
a combination of machine floating arithmetic and pre-
cise arithmetic. Even if (i) is solved, we observed that
(ii) dominates the cost of the reduction, in particular in
presence of abstract states with a large number of vari-
ables: the 2 · n UBLP problems are disjoints and there
is no easy way to share the sequence of bases visited
by the Simplex algorithm over the different runs of the
algorithm for the same abstract state.

4.2 Basis exploration-based reduction

We have developed a new reduction ρBE , less subject
to the drawbacks from floating point computation than
ρLP , which enables a better tuning of the precision/-
cost ratio than the Simplex. The basic ideas are: (i) to
fix ahead of time the bases we want to explore; and (ii)

7

Algorithm 3 The reduction algorithm ρBE , para-
metrized by the oracle δ

input 〈̄l; ī〉 ∈ SubPoly, δ ∈ P({ζ | ζ is a basis change})

Put l̄ into row echelon form. Call the result l̄′

let 〈̄l∗, ī∗〉 = 〈̄l′, ī〉
for all ζ ∈ δ do

l̄∗ := ζ(̄l∗)
for all vk + ak+1 · vk+1 + · · ·+ an · vn = b ∈ l̄∗ do

ī∗ := ī∗[vk 7→ ī∗(vk) uIntv Jb− ak+1 · vk+1 + · · ·+
an · vnK(̄i∗)]

return 〈̄l∗, ī∗〉

to refine at each step the variable bounds. The reduc-
tion ρBE , parametrized by a set of changes of basis δ,
is formalized by Algorithm 3. First, we put the initial
set of linear constraints into triangular form (row ech-
elon form). Then, we apply the basis changes in δ and
we refine all the variables in the basis. With respect to
ρLP , ρBE is faster: (i) the number of bases to explore is
statically bounded; (ii) at each step, k variables may be
refined at once.

In theory, ρBE is an abstraction of ρLP , in that it
may not infer the optimal bounds on variables (it de-
pends on the choice of δ). In practice, we found that
ρBE is much more numerically stable and it can infer
better bounds than ρLP . The reason is in the handling
of numerical errors in the computation. Suppose we are
seeking a (lower or upper) bound for a variable using
the Simplex. If we detect a numerical error (i.e. a loss
of precision in floating point computations or a huge co-
efficient in the exact arithmetic computation), the only
sound solution is to stop the iterations, and return the
current value of the objective function as the result. On
the other hand, when we detect a numerical error in
ρBE , we can just skip the current basis (abstraction),
and move to the next one in δ.

4.2.1 Linear Explorer (δL)

The linear bases explorer is based on the empirical obser-
vation that in most cases, to infer the tightest bounds for
some variable v0, you need to have it in the basis while
some other variable v1 is out of the basis. Following this,
the linear explorer generates a sequence of bases δL with
the property that for each unordered pair of distinct vari-
ables 〈v0, v1〉, there exists ζ ∈ δL such that v0 is in the
basis and v1 is not. The sequence δL is defined as δL =
{ζi | i ∈ [0, n], vi . . . v(i+m−1) modn are in basis for ζi}.

Example 5. (Reduction with the linear explorer) Let the
initial state be s̄ = 〈v0+v2+v3 = 1, v1+v2−v3 = 0; v0 ∈
[0, 2], v1 ∈ [0, 3]〉, so that δL = {{v0, v1}, {v1, v2}, {v2, v3},
{v3, v0}}. The reduction ρBE (̄s) contains the tightest
bounds for v2, v3: 〈v2+ 1

2 ·v0+ 1
2 ·v1 = 0, v3+ 1

2 ·v0− 1
2 ·v1 =

0; v0 ∈ [0, 2], v1 ∈ [0, 3], v2 ∈ [− 5
2 , 0], v3 ∈ [−1, 3

2]〉. ut

void AbsEl(int x)

{ if(...) x =-1;

else x = 1;

assert x != 0;

}
(a)

void Transfer(int x, y)

{ assume 2 <= x <= 3;

assume -1 <= y <= 1;

int z = (x + y) * y;

assert -2 <= z;

}
(b)

Fig. 7. Examples of orthogonal losses of precision in abstract in-
terpretations: (a) a convex domain cannot represent x 6= 0; and
(b) a compositional transfer function does not infer the tightest
lower bound for z

Properties of δL are that: (i) each variable appears ex-
actly m times in the basis; (ii) it can be implemented ef-
ficiently as the basis change from ζi to ζi+1, i ∈ [0, n−1]
requires just one variable swap; (iii) in general it is not
idempotent: it may be the case that ρL ◦ ρL 6= ρL; (iv)
the result may depend on the initial order of variables,
as shown by the next example.

Example 6 (Incompleteness of the linear explorer). Let
us consider an initial state s̄ = 〈v0+v1+v2 = 0, v3+v1 =
0; v2 ∈ [0, 1], v3 ∈ [0, 1]〉. The reduced state ρBE (̄s) =
〈v3+v1 = 0, v2+v0−v1 = 0; v1 ∈ [−1, 0], v2 ∈ [0, 1], v3 ∈
[0, 1]〉 does not contain the bound v0 ∈ [−1, 1]. ut

4.2.2 Combinatorial Explorer (δC)

The combinatorial explorer δC systematically visits all
the bases. It generates all possible combinations of m vari-
ables trying to minimize the number of swaps at each ba-
sis change. It is very costly, but it finds the best bounds
for each variable: it visits all the bases, in particular the
one where the optimum is reached. The main advantage
with respect to the Simplex is a better tolerance to nu-
merical errors. However it is largely impractical because
of (i) the huge cost; and (ii) the negligible gain of preci-
sion w.r.t. the use of δL that it showed in our benchmark
examples.

5 Hints

The relative loss of precision of the join operator incited
us to search some ways to recover precision on imprecise
operators. We discovered several of those, and they share
some properties that led us to define a new concept called
hints, which generalizes all of them as well as several
known refining techniques.

Hints are precision improving operators which can be
used to systematically refine and improve the precision
of domain operations in abstract interpretation. Domain
operations are either basic domain operations (e.g., g or
f) or their compositions (e.g., λ(ē0, ē1, ē2). (ē0 f ē1) g
(ē0 f ē2)).

Definition 1 (Hint, h). Let � ∈ [Cn → C] be a con-
crete domain operation defined over a concrete domain

8

〈C,v,t,u〉. Let �̄ ∈ [An → A] be the abstract counter-
part for � defined over the abstract domain 〈A,�,g,f〉.
A hint h�̄ ∈ [An → A] is such that:

h�̄(ē0 . . . ēn−1) � �̄(ē0 . . . ēn−1) (Refinement)

�(γ(ē0) . . . γ(ēn−1)) v γ(h�̄(ē0 . . . ēn−1)) (Soundness).

The first condition states that h�̄ is a more precise op-
erations than �̄. The second condition requires h�̄ to be
a sound approximation of �. An important property of
hints is that they can be designed separately and the
combined to obtain a more precise hint.

Lemma 1 (Hints combination). If h1
�̄ and h

2
�̄ are

hints, then

h
f
�̄ (ē0 . . . ēn−1) = h

1
�̄(ē0 . . . ēn−1) f h

2
�̄(ē0 . . . ēn−1)

is a hint.

Proof. (Refinement) follows from the definition of f.
(Soundness) is because �(γ(ē0), . . . γ(ēn−1)) v γ (h1

�̄
(ē0, . . . ēn−1)) uγ(h2

�̄(ē0, . . . ēn−1)) v γ(h1
�̄(ē0, . . . ēn−1)f

h
2
�̄(ē0, . . . ēn−1)). ut

The next theorem states that hints improve the preci-
sion of static analyses without introducing unsoundness
and preserving termination:

Theorem 2 (Refinement of the abstract seman-
tics). Let hO and hg be two hints refining respectively
the widening and the abstract union, and let hO be a
widening operator. Let s̄∗J·K be the abstract semantics
obtained from s̄J·K by replacing Owith hO and g with
hg. Let P be a program. Then, ∀e ∈ P(Σ).∀ē ∈ A.

s̄∗JPK(ē) � s̄JPK(ē) (Refinement)

e ⊆ γ(ē) =⇒ JPK(e) ⊆ γ(̄s∗JPK(ē)) (Soundness).

Proof sketch. The cases to consider are those for the
conditional and the while loop. The conditional can be
proven by structural induction. The while loop by in-
stantiating the abstract fixpoint transfer theorem of [12].
ut

5.1 Syntactic hints

Syntactic hints use some part of the program text to re-
fine the operations of the abstract domain. They exploit
user annotations to preserve as much information as pos-
sible in gathering operations (user-provided hints), and
systematically improve the widening heuristics to find
tighter loop invariants (thresholds hints).

5.1.1 User-provided hints

They are the easiest, and probably cheapest form of
hints. First, we collect all the predicates appearing as as-
sertions or as guards. Then, the gathering operations are
refined by explicitly checking for each collected predicate

pred(skip;) = ∅
pred(x = E;) = ∅

pred(assert B;) = atomize(B)
pred(assume B;) = atomize(B)

pred(C C′) = pred(C) ∪ pred(C′)
pred(if(B) {C}else {C′}) = atomize(B) ∪ pred(C) ∪ pred(C′)

pred(while(B) {C}) = atomize(B) ∪ pred(C)

atomize(B1 ∧ B2) = atomize(B1) ∪ atomize(B2)
atomize(B1 ∨ B2) = atomize(B1) ∪ atomize(B2)

atomize(B) = {B} otherwise.

Fig. 8. The functions pred and atomize collect the atomic predi-
cates in statements and Boolean expressions.

void DomOp()

{ int x = 0, y = 0;

while (...)

{ if (...) { x++; y += 100; }

else if (...)

if (x >= 4) { x++; y++; }

}

(*) assert x <= y;

assert y <= 100 * x;

}

Fig. 9. Example requiring user-provided hints

B, if it holds for all the operands. If this is the case, B is
added to the result. The predicate seeker pred ∈ [Stm→
P(BExp)] is defined in Fig. 8. User provided hints do not
affect the termination of the widening as we can only
add finitely many new predicates.

Lemma 2 (User-provided hints).
Let � ∈ {g,O}, and let P be a program. Then: (i)

h
pred
� defined below is a hint; and (ii) hpred

O is a widening
operator.

h
pred
� (ē0, ē1) = let S = {B∈pred(P) | A.check(B, ē0) = true

∧ A.check(B, ē1) = true}
in A.test(

∧
B∈S B, �(ē0, ē1)).

Proof sketch. Note that (2.2) implies that A.test(b1 ∧
b2, ē) � A.test(b1, ē), which is enough to prove (Refine-
ment). The soundness condition (2.2) of check guaran-
tees that no inconsistent predicate is added to the result,
implying (Soundness). ut

Example 7 (Refined SubPoly operations). In example of
Fig. 9, pred(DomOp) = {x ≤ y, 4 ≤ x, y ≤ 100 ·x}. The re-
fined domain operations keep the predicate x ≤ y, which
is stable among loop iterations, and hence is a loop in-
variant. ut

We found user-provided hints very useful in Clousot,
our abstract interpretation based static analyzer for .Net.
Clousot analyzes methods in isolation, and supports as-
sume/guarantee reasoning (“contracts” [30]) via exe-
cutable annotations [3]. Precision in propagating and

9

checking program annotations is crucial to provide a
satisfactory user experience. User-provided hints help to
reach this goal as the analyzer makes sure that at each
joint point no user annotation is lost, if it is implied
by the incoming abstract states. They make the ana-
lyzer more robust w.r.t. incompleteness of g or a buggy
implementation which may cause g to return a more
abstract element than the one predicted by the theory.
The downside is that user-provided hints are syntacti-
cally based:

Example 8 (Fragility of user-provided hints). Let us con-
sider again the code in Fig. 9. If we replace the asser-
tion at (∗) with if 10 <= x then assert 5 <= y, then

pred(DomOp) = {10 ≤ x, 5 ≤ y}, so that hpred
OPoly

cannot fig-
ure out that x ≤ y, and hence the analyzer cannot prove
that the assertion is valid. Semantic hints (Sect. 5.2.3)
will fix it. ut

5.1.2 Thresholds hints

Widening with threshold has been introduced in [5] to
improve the precision of standard widenings over non-
relational or weakly relational domains. Roughly, the
idea of a widening with thresholds is to stage the extrap-
olation process, so that before projecting a bound to the
infinity, values from a set T are considered as candidate
bounds. The set T can be either provided by the user or
it can be extracted from the program text. The widen-
ing with thresholds is just another form of hint. Let ē0

and ē1 be abstract states belonging to some numerical
abstract domain. Without loss of generality we can as-
sume that the basic facts in ē0, ē1 are in the form p ≤ k,
where p is some polynomial. For instance x ∈ [−2, 4]
is equivalent to {−x ≤ 2, x ≤ 4}. The standard widen-
ing preserves the linear forms with stable upper bounds:
O(ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0, p ≤ k1 ∈ ē1, k =
if k1 > k0 then +∞ else k0}. Given a finite set of values
T, threshold hints refine the standard widening by:

h
T
O (ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0, p ≤ k1 ∈ ē1,

k = if k1 > k0 then

min{t ∈ T ∪ {+∞} | k1 ≤ t}
else k0}.

Lemma 3. h
T
O is: (i) a hint; and (ii) a widening.

Proof sketch. Refinement and Soundness are a direct
consequence of definition of hTO . Termination follows from
the fact that T is finite. ut

Example 9 (Widening with thresholds). Let us consider
the code snippets in Fig. 10 to be analyzed with Inter-
vals. In the both cases, the (post-)fixpoint is reached
after the first iteration O([0, 0], [1, 1]) = [0,+∞]. In the
first case, the invariant can be improved by a narrowing
step to M ([0,+∞], [−∞, 1000]) = [0, 1000] (see [10] for

void LessThan() {

int x = 0;

while (x < 1000) {

x++;

}

}
(a) Narrowing

void NotEq() {

int x = 0;

while (x != 1000) {

x++;

}

}
(b) Thresholds

Fig. 10. Two programs to be analyzed with Intervals. The itera-
tions with widening infer the loop invariant x ∈ [0,+∞]. In the first
case, the narrowing step refines the loop invariant to x ∈ [0, 1000].
In the second case, the narrowing fails to refine it.

a definition of narrowing of Intv). In the second case, the
narrowing is of no help as M ([0,+∞], g([−∞, 1000],
[1002,+∞])) = [0,+∞]. A widening with Thresholds
T = {1000} helps discovering the tightest loop invari-
ant for both examples in one step as hTO([0, 0], [1, 1]) =
[0, 1000]. ut

Please note that user-provided hints are of no help in the
previous example, as pred(NotEq) = {x 6= 1000} does not
hold for all the operands of the widening.

We are left with problem of generating the set T of
thresholds. A common practice in static analyzers is to
have T = {−1, 0, 1}. A better solution is to have the
user provide T , left as parameter of the analyzer. This
is the approach of [5]. In Clousot we chose a slightly
different solution, which consists in populating T with
the constants appearing in the program text. Constants
are fetched from the source using a function const ∈
[Stm → P(int)] defined as one may expect. We found
h
const
O very satisfactory. The hint hconst

O : (i) helps inferring
precise numerical loop invariants without requiring the
extra iteration steps required for applying the narrowing;
and (ii) improves the precision of the analysis of code
involving disequalities, e.g., Fig. 10(b). A drawback of
threshold hints is that the set T may grow too large,
slowing down the convergence of the fixpoint iterations.
In Clousot, we infer thresholds on a per-method basis,
which helps maintaining the cardinality of T quite small.

5.2 Semantic hints

Semantic hints provide a more refined yet more expen-
sive form of operator refinement. For instance, they ex-
ploit information in the abstract states to materialize
constraints that were implied by the operands (satura-
tion hints, die-hard hints and template hints) or they
iterate the application of operators to get a more precise
abstract state (reductive hints).

5.2.1 Saturation hints

A common way to design abstract interpreters is to build
the abstract domain as a composition of basic abstract
domains, which interact through a well-defined inter-
face [13,6,20]. Formally, given two abstract domains A0,

10

A1, the Cartesian product A× = A0 × A1 is still an ab-
stract domain, whose operations are defined as the point-
wise extension of those over A0 and A1. Let �̄i ∈ [Ani →
Ai], i ∈ {0, 1}, then

�̄×((ē0
0, ē

0
1). . .(ēn−1

0 , ēn−1
1))=(�̄0(ē0

0. . .ē
n−1
0), �̄1(ē0

1. . .ē
n−1
1))

The Cartesian product enables the modular design (and
refinement) of static analyses. However, a naive design
which does not consider the flow of information between
the abstract elements may lead to imprecise analyses, as
illustrated by the following example.

Example 10 (Cartesian join). Let us consider the ab-
stract domain Z = Intv×LT, where LT = [Var→ P(Var)]
is an abstract domain capturing the “less than” relation
between variables. For instance, x < y ∧ x < z is repre-
sented in LT by [x 7→ {y, z}]. The domain operations
are defined as one may expect [29]. Let z̄0 = ([x 7→
[−∞, 0], y 7→ [1,+∞]], [·]) and z̄1 = ([·], [x 7→ {y}]) be
two elements of Z ([·] denotes the empty map). Then
the Cartesian join loses all the information: g×(z̄0, z̄1) =
([·], [·]). ut

A common solution is: (i) saturate the operands; and
(ii) apply the operation pairwise. The saturation mate-
rializes all the constraints implicitly expressed by the
product abstract state. Let ρ ∈ [A× → A×] be a satu-
ration (a.k.a. closure) procedure. Then the next lemma
provides a systematic way to refine an operator �̄×.

Lemma 4. The operator hρ�× below is a hint.

h
ρ

�̄×((ē0
0, ē

0
1) . . . (ēn−1

0 , ēn−1
1)) =

let r̄i = ρ(ēi0, ē
i
1) for i ∈ 0 . . . n− 1 in �̄×(̄r0 . . . r̄n−1).

Example 11 (Cartesian join, continued). The saturation
of z̄0 materializes the constraint x < y : r̄0 = ([x 7→
[−∞, 0], y 7→ [1,+∞], [x 7→ {y}]), and it leaves z̄1 un-
changed. The constraint x < y is now present in both
the operands, and it is retained by the pairwise join. ut

It is worth noting that in general hρO does not guar-
antee the convergence of the iterations, as the saturation
procedure may re-introduce constraints which were ab-
stracted away from the widening (e.g., Fig. 10 of [31]).

Saturation hints can provide very precise operations
for Cartesian abstract interpretations: They allow the
analysis to get additional precision by combining the
information present in different abstract domains. The
quality of the result depends on the quality of the satura-
tion procedure. The main drawbacks of saturation hints
are that: (i) the iteration convergence is not ensured, so
that extra care should be put in the design of the widen-
ing; (ii) the systematic application of saturation may
cause a dramatic slow-down of the analysis. In our ex-
perience with the combination of domains implemented
in Clousot, we found that the slow-down introduced by
saturation hints was too high to be practical. Die-hard
hints, introduced in the next section, are a better solu-
tion to achieve precision without giving up scalability.

5.2.2 Die-hard hints

These hints are based on the observation that often the
constraints that one wants to keep at a gathering point
often appears explicitly in one of the operands. For in-
stance in Ex. 10 the constraint x < y is explicit in z̄1,
and implicit in z̄0 (as x ≤ 0 ∧ 1 ≤ y =⇒ x < y). There-
fore x < y holds for all the operands of the join so it
is sound to add it to its result. Die-hard hints general-
ize and formalize it. They work in three steps: (i) apply
the gathering operation, call the result r̄; (ii) collect the
constraints C that are explicit in one of the operands,
but are neither present nor implied by r̄; and (iii) add to
r̄ all the constraints in C which are implied by all the
operands. Formally:

h
d
(�̄,I)(ē0, ē1) = let r̄ = �̄(ē0, ē1),

C = ∪i∈I{κ ∈ ēi | A.check(κ, r̄) = top}
let S = {κ ∈ C | A.check(κ, ē0) =

A.check(κ, ē1) = true}
in A.test (∧κ∈Sκ, r̄) .

In defining the die-hard hint for O, one should pay
attention to avoid loops which re-introduce a constraint
that as been dropped by the widening. One way to do it
is to have an asymmetric hint, which restricts C only to
the first operand (e.g., the candidate invariant):

Lemma 5. h
d
(g,{0,1}) and hd(O,{0}) are hints and hd(O,{0})

is a widening.

5.2.3 Computed hints

Hints can be inferred from the abstract states them-
selves. By looking at some properties of the elements
involved in the operation, one can try to guess useful
hints.

Lemma 6 (Computed hints). Let ē0, ē1 ∈ A, Ξ ∈
[A × A → A] a function which returns a set of likely
bounds of ē0 g ē1. Then h

Ξ
g below is a hint.

h
Ξ
g (ē0, ē1) = let S = {B ∈ Ξ(ē0, ē1) | A.check(B, ē0) = true

∧ A.check(B, ē1) = true}
in A.test(

∧
B∈S B, ē0 g ē1).

Computed hints are useful when the abstract join g
is not optimal. Otherwise, hΞg is no more precise than
t̄. For instance, in a Galois connections-based abstract
interpretation, t̄ is optimal, in that it returns the most
precise abstract element overapproximating the concrete
union. As a consequence, no further information can be
extracted from the operands. It is worth noting that in
general hΞO is not a widening. However, one can extend
the arguments of the previous section to define an asym-
metric hint hΞO .

The next two kinds of hints (template hints and 2D-
convex hull hints) are examples of computed hints.

11

5.2.4 Template hints

Let A.range ∈ [Exp×A→ Intv] be a function that returns
the range for an expression in some abstract state, e.g.,
it satisfies: ∀E. ∀ē ∈ A. A.range(E, ē) = [l, u] =⇒ ∀σ ∈
γ(ē). l ≤ EJEK(σ) ≤ u. If A.range(E, ēi) = [li, ui] for i ∈
{0, 1}, then γ(tIntv([l0, u0], [l1, u1])) is an upper bound
for E in ∪(γ(ē0), γ(ē1)). As a consequence given a set P of
polynomial forms, one can design the guessing function
ΞP :

ΞP (ē0, ē1) = {l ≤ p ≤ u | p ∈ P ∧ [l, u]

= tIntv(A.range(p, ē0),A.range(p, ē1)}.

The main difference between hΞ
P

g and syntactic hints
is that the bounds for the polynomials in P are seman-
tic, as they are inferred from the abstract states and not
from the program text. For instance, computed hints in-
fer the right invariant in Ex. 8 using the set of templates
Oct ≡ {x0 − x1 | x0, x1 are program variables}. In gen-
eral, template hints with Oct refine SubPoly so to make
it as precise as Oct.

5.2.5 2D-Convex Hull hints

New linear inequalities can be discovered at join points
using the convex hull algorithm. For instance, the stan-
dard join on Poly is defined in that way [14]. However the
convex hull algorithm requires an expensive conversion
from a tableau of linear constraints to a set of vertices
and generators, which causes the analysis time to blow
up. A possible solution is to consider a planar convex
hull, which computes possible linear relations between
pairs of variables by: (i) projecting the Intvpart of the
abstract states on all the two-dimensional planes; and
(ii) computing the planar convex hull (of two rectan-
gles, a particularly simple case) on those planes. Planar
convex hull, combined with a smart representation of
the abstract elements allows us to automatically discover
complex invariants without giving up performances.

Example 12 (2D-Convex hull). Let us consider the code
in Fig. 11 from [14]. At a price of exponential complexity,
Poly can infer the correct loop invariant, and prove the
assertion correct. SubPoly refined with 2D-Convex hull
hints can prove the assertion, yet keeping a worst-case
polynomial complexity [26]. ut

5.2.6 Reductive hints

Intuitively, one way to improve the precision of a unary
operator is to iterate its application [18]. However, an
unconditional iteration may be source of unsoundness,
as shown by the following example.

void Foo() {

int i = 2, j = 0;

while (...) {

if (...) { i = i + 4; }

else { i = i + 2; j++; } }

assert 2 <= i - 2 * j; }

Fig. 11. Example requiring the use of 2D-convex hull hints to
infer the right invariant, expressed by the assertion

Example 13 (Unsoundness of unconditional iterations).
Let − ∈ [Intv → Intv] be the operator which applies the
unary minus to an interval. In general, ∀n ∈ N. ē =
−2n(ē) 6= −2n+1(ē) so that the iterations are unstable.
ut
We say that a function f is reductive if ∀x.f(x) v x; and
closing if it is reductive and ∀x.f(f(x)) = f(x).

Lemma 7 (Reductive hints). Let � ∈ [C → C] be a
unary operator and �̄ ∈ [A→ A] its abstract counterpart.
Let � be closing, �̄ be reductive, and n ≥ 0. Then h�̄(ē) =
�̄n(ē) is a hint.

Proof. (Sketch) (Refinement) follows from the defini-
tion. To prove (Soundness), it is enough to prove that
�(γ(ē)) ⊆ γ(�̄2(ē)). It holds as �(γ(ē)) = �2(γ(ē)) ⊆
�(γ(�̄(ē))) ⊆ γ(�̄2(ē)). ut

The main application of reductive hints is to improve
the precision in handling the guards in non-relational
abstract domains. Given a Boolean guard B and an ab-
stract domain A, ψ ≡ λē. A.test(B, ē) is an abstract op-
erator which satisfies the hypotheses of Lemma 7. Ab-
stract compilation can be used to express ψ in terms of
domain operations, their compositions and state update.
Lemma 7 justifies the use of local fixpoint iterations to
refine the result of the analysis.

Example 14. Let us consider the following Boolean ex-
pression :

b1 == b2 ∧ b2 == b3

Its abstract compilation in an abstract domain [Var →
{true, false,>,⊥}] is :

ψ ≡ λb.(b[b1, b2 7→ b(b1) ∧ b(b2)])
∧̇(b[b2, b3 7→ b(b2) ∧ b(b3)])

where ∧̇ denotes the pointwise extension of ∧. In an ini-
tial abstract state b0 = [b1, b2 7→ >; b3 7→ true], ψ(b0) =
[b1 7→ >; b2, b3 7→ true], and ψ2(b0) = [b1, b2, b3 7→
true] = ψn(b0), n ≥ 2. ut

6 Refinements for Subpolyhedra

6.1 Precision improvement: Hints

Many of the hints presented above can be used to im-
prove the precision of SubPoly. User-provided hints pro-
vide a simple but efficient way to deal with programs

12

that are not too complicated, and the intervals part of
SubPoly can of course use the threshold hints.

Saturation hints are impractical for SubPoly, but die-
hard hints are very useful; indeed, step 3 of the join
algorithm (1) can be seen as a particular case of die-hard
hints, with the difference that the constraints marked as
deleted in the join of the linear equalities domain migth
not have been actually present in the initial states, but
have been introduced in place of an equivalent one by
Karr’s algorithm.

Both kinds of computed hints are useful, but in a dif-
ferent way : they can be used for tricky programs that
require some complex reasoning, but in most cases the
algorithm already returns a good enough result, and use
of those hints only slows down the analysis. As an ex-
ample, template hints can be used to manually set the
invariants to infer on a complicated program. They can
also be used to guarantee some minimal precision (e.g.,
at least the precision of octagons) if one can afford the
extra time it costs. 2D-convex hull hints are useful in the
case of pointer access validation, to infer bounds with
non-unary coefficients between pairs of variables.

Reductive hints can also be used on cases involving
reduction, because our reduction is not idempotent; how-
ever, reduction is rather expensive and there is no guar-
antee of an actual gain of precision in this case, so we do
not use it in practice. Instead, when precision matters,
we use reduction with the combinatorial explorer, which
does have guarantees on the precision of the result.

6.2 Speed Improvement: Simplification

The simplification operator σ removes redundant infor-
mation from an abstract element. It is required neither
for soundness nor completeness nor to improve the pre-
cision of the analysis (unlike ρ), but it is cardinal to the
implementation of scalable analyses. The simplification
σ of an element of SubPoly 〈̄l; ī〉 reduces the number of
variables in l̄, which is the more expensive domain, with-
out losing any precision. It consists in the application of
the following three rules:

(Const) If an equality v = b is detected,
v is projected from l̄ and added to ī;

(Slack) If a slack variable β does not appear in 〈̄l; ī〉,
then it should be removed;

(Dep) If 〈̄l; ī〉 implies β0 + a · β1 = b,
then one between β0 and β1 can be removed.

The rationale behind (Const) is that constants are very
expensive when represented in LinEq but very cheap if
represented with Intv; (Slack) performs a kind of garbage
collection, by removing slack variables β which are in
the domain of 〈̄l; ī〉, but such that β does not appear
in any of the constraints of l̄ and ī(β) = >Intv; (Dep) is
justified by the fact that after refining the intervals for
both variables, removing one of the slack variables does

not change the concretization of the abstract element.
(Const) is useful when we introduce a new slack variable;
(Slack) helps reducing the number of slack variables after
joins; and (Dep) is applied as a pre-step of the reduction,
to reduce the number of variables and hence make it
faster.

7 Experience

We have implemented SubPoly on the top of Clousot,
our modular abstract interpretation-based static ana-
lyzer for .Net. Clousot directly analyzes MSIL, a byte-
code target for more than seventy compilers (including
C#, Managed C++, VB.NET, F#, . . .). Prior to the
numerical analysis Clousot performs a heap analysis
and an expression recovery analysis [28]. Clousot per-
forms intra-procedural analysis and it supports assume-
guarantee reasoning via Foxtrot annotations [3,17]. Con-
tracts are expressed directly in the language as method
calls and are persisted to MSIL using the normal compi-
lation process of the source language (cf. Appendix A).
Classes and methods are annotated with class invariants,
preconditions and postconditions. Preconditions are as-
serted at call sites and assumed at the method entry
point. Postconditions are assumed at call sites and as-
serted at the method exit point. Clousot also checks
the absence of specific errors, e.g. out of bounds array
accesses, null dereferences, buffer overruns, and divisions
by zero.

Figure 12 summarizes our experience in analyzing
array creations and accesses in four libraries shipped
with .Net. The test machine is an ordinary 2.4Ghz dual
core machine, running Windows Vista. The assemblies
are directly taken from the standard .NET directory of
our PC. The shipped versions of the assemblies do not
contain contracts (We are actively working to annotate
the .Net libraries). On average, we were able to validate
almost 89.5% of the proof obligations. We manually in-
spected some of the warnings issued for mscorlib.dll.
Most of them are due to lack of contracts, e.g. an ar-
ray is accessed using a method parameter or the return
value of some helper method. However, we also found
real bugs (dead code and off-by-one). That is remark-
able considering that mscorlib.dll has been tested in
extenso. We also tried SubPoly on the examples of [14,
35,19], proving all of them.

7.1 Reduction Algorithms

We run the tests using the Simplex-based and the Linear
explorer-based reduction algorithms. We used the Sim-
plex implementation shipped with the Microsoft Auto-
matic Graph Layout tool, widely tested and optimized.
The results in Fig. 12 show that ρLP is significantly
slower than ρBE , and in particular the analysis of five

13

Bounds Simplex ρLP Linear Explorer ρBE Max
Assembly Methods Checked Valid % Time Valid % Time Vars

mscorlib.dll 18 084 17 181 14 432 84.00 73:48 (3) 14 466 84.20 23:19 (0) 373
System.dll 13 776 11 891 10 225 85.99 58:15 (2) 10 427 87.69 14:45 (0) 140

System.Web.dll 22 076 14 165 13 068 92.26 24:41 (0) 13 078 92.33 6:33 (0) 182
System.
Design.dll 11 419 10 519 10 119 96.20 26:07 (0) 10 148 96.47 5:18 (0) 73

Average 89.00 89.51

Fig. 12. The experimental results of checking array creation and accesses. SubPoly is instantiated with two reductions ρLP and ρBE .
Time is expressed in minutes, the time-out per method is set to two minutes (in parentheses). The last column reports the maximum
number of variables related by an element of SubPoly.

methods was aborted as it reached the two minutes time-
out. Larger time-outs did not help.

SubPoly with the reduction ρLP validates less ac-
cesses than ρBE . Two reasons for that. First, it is slower,
so that the analysis of some methods is aborted and
hence some proof obligations cannot be validated. Sec-
ond, our implementation of the Simplex uses floating
point arithmetic which induces some loss of precision.
In particular we need to read back the result (a float)
into an interval of ints containing it. In general this may
cause a loss of precision and even worse unsoundness.
We experienced both of them in our tests. For instance
the 39 “missing” proof obligations in System.Web.dll
and System.Design.dll (validated using ρBE , but not
with ρLP) are due to floating point imprecision in the
Simplex. We have considered replacing a floating point-
based Simplex with one using exact rationals. However,
the Simplex has the tendency to generate coefficients
with large denominators. The code we analyze contains
many large constants which cause the Simplex to pro-
duce enormous denominators.

SubPoly with ρBE instantiated with the linear bases
explorer perform very well in practice: it is extremely
fast and precise. However, the result may depend on the
variables order. A “bad” variable order may cause ρBE
not to infer bounds tight enough. Possible solutions are:
(i) to reduce the number of variables using σ (less bases
to explore); (ii) to mark variables which can be safely
kept in the basis at all times: In the best case, only
one basis needs to be explored. In the general case, it
still makes the reduction more precise because the bases
explored are more likely to give bounds on the variables.

7.2 Max Variables

It is worth noting, that even if Clousot performs an
intra-procedural analysis, the methods we analyze may
be very complex, and they may require tracking linear
inequalities among many abstract locations. Abstract
locations are produced by the heap analysis [27], and
they abstract stack locations and heap locations. Fig-
ure 12 shows that it is not uncommon to have methods
which requires the abstract state to track more than 100
variables. One single method of mscorlib.dll required

to track relations among 373 distinct variables. SubPoly
handles it: the analysis with ρBE took a little bit more
than a minute. To the best of our knowledge those per-
formances in presence of so many variables are largely
beyond state-of-the-art Poly implementations.

7.3 Hints

Figure 13 focuses on the analysis of mscorlib using
SubPoly refined with hints and no-reduction. The first
column in the table shows the results of the analysis with
no hints. This is roughly equivalent to precisely prop-
agating arbitrary linear equalities and intervals, with
limited inference and no propagation of information be-
tween linear equalities and intervals. User-provided hints
and die-hard hints add more inference power, at the
price of a still acceptable slow-down. Computed hints
(with Octagons and 2D-Convex hull) further slow-down
of the analysis, causing the analysis of various methods
to time out. We manually inspected the analysis logs
to investigate the differences. Ignoring the methods that
timed-out, with respect to SubPoly∗, 〈SubPoly∗,hΞOct

g 〉
and 〈SubPoly∗,hΞ2DCH

g 〉 report respectively 125 and 124
less false positives. Out of those, only 13 overlap.

One may wonder if computed hints are needed at all.
We observed that, when considering annotated code (un-
fortunately, just a small fraction of the overall codebase
at the moment of writing), one needs to refine the op-
erations of the abstract domains with hints in order to
get a very low (and hence acceptable) false alarms ratio
(around 0.5%) . In fact, even if (relatively) rare, asser-
tions as in Fig. 7(b) and Fig. 11 are present in real code.
Thanks to the incremental structure of Clousot, we do
not need to run SubPoly with all the hints on all the an-
alyzed methods, but we can focus the highest precision
only on the few methods which require it.

8 Conclusions

We introduced SubPoly, a new numerical abstract do-
main based on the combination of linear equalities and
intervals. SubPoly can track linear inequalities involv-
ing hundred of variables. We defined the operations of

14

SubPoly SubPoly∗ Slow SubPoly∗ + h
ΞOct

g Slow SubPoly∗ + h
Ξ2DCH

g Slow
Valid Time Valid Time down Valid Time down Valid Time down

14 230 4:29(0) 14 432 20:22(0) 4.5x 13 948 81:24(20) 18.2x 14 396 36:33(7) 8.1x

Fig. 13. The experimental results analyzing mscorlib with SubPoly and different semantic hints and no-reduction. SubPoly∗ denotes

SubPoly refined with h
pred
� and h

d
g,O. Computed hints significantly slow-down the analysis, but they are needed to reach a very low false

alarm ratio.

the abstract domain (order, join, meet, widening); the
simplification operator (to speed up the analysis); and
two reduction operators (one based on linear program-
ming and another based on basis exploration). We found
Simplex-based reduction quite unsatisfactory for pro-
gram analysis purposes: because of floating point errors
the result may be too imprecise, or worse unsound. We
introduced then the basis exploration-based reduction,
in practice more precise and faster.

SubPoly precisely propagates linear inequalities, but
it may fail to infer some of them at join points. Pre-
cision can be recovered using hints either provided by
the programmer in the form of program annotations; or
automatically generated (at some extra cost). SubPoly
worked fine on some well known examples in literature
that required the use of Poly. We tried SubPoly on shipped
code, and we showed that it scales to several hundreds
of variables, a result far beyond existing Poly implemen-
tations.

Acknowledgments Thanks to Lev Nachmanson for pro-
viding us the Simplex implementation. Thanks to Manuel
Fähndrich, Jérôme Feret, Corneliu Popeea for the useful
discussions.

References

1. R. Bagnara, P.M. Hill, and E. Zaffanella. The Parma
Polyhedra Library. http://www.cs.unipr.it/ppl/.

2. M. Barnett, M. Fähndrich, and F. Logozzo. Embedded
contract languages. In SAC’10. ACM Press, 2010.

3. M. Barnett, M. A. Fähndrich, and F. Logozzo. Fox-
trot and Clousot: Language agnostic dynamic and static
contract checking for .Net. Technical Report MSR-TR-
2008-105, Microsoft Research, 2008.

4. M. Barnett, M. Fändrich, D. Garbervetsky, and F. Lo-
gozzo. Annotations for (more) precise points-to analysis.
In IWACO 2007, jul 2007.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Miné, D. Monniaux, and X. Rival. A
static analyzer for large safety-critical software. In
PLDI’03. ACM Press.

6. B.-Y. E. Chang and K. R. M. Leino. Abstract inter-
pretation with alien expressions and heap structures. In
VMCAI’05. Springer-Verlag, 2005.

7. V. Chvátal. Linear Programming. W. H. Freeman, 1983.
8. R. Clarisó and J. Cortadella. The octahedron abstract

domain. In SAS’04.
9. P. Cousot. The calculational design of a generic abstract

interpreter. In Calculational System Design. NATO ASI
Series F. IOS Press, Amsterdam, 1999.

10. P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL’77.

11. P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In POPL ’79.

12. P. Cousot and R. Cousot. Abstract interpretation and
application to logic programs. Journal of Logic Program-
ming, 13(2–3):103–179, July 1992.

13. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Combination of abstractions
in the ASTRÉE static analyzer. In ASIAN’06, volume
4435 of LNCS, pages 272–300. Springer-Verlag.

14. P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In POPL
’78.

15. G. B. Dantzig. Programming in linear structures. Tech-
nical report, USAF, 1948.

16. M. Fähndrich and F. Logozzo. Static contract checking
with abstract interpretation. In FoVeOOS’10, LNCS.
Springer-Verlag, 2010.

17. P. Ferrara, F. Logozzo, and M. A. Fähndrich. Safer un-
safe code in .Net. In OOPSLA’08.

18. P. Granger. Improving the results of static analyses
programs by local decreasing iteration. In FSTTCS’92.
Springer-Verlag.

19. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Ra-
jamani. Automatically refining abstract interpretations.
In TACAS’08.

20. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting ab-
stract interpreters to quantified logical domains. In
POPL’08. ACM Press, 2008.

21. S. Gulwani, S. Srivastava, and R. Venkatesan. Program
analysis as constraint solving. In PLDI’08.

22. M. Karr. On affine relationships among variables of a
program. Acta Informatica, 6(2):133–151, July 1976.

23. L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, and
M. Gurvich. Generating all vertices of a polyhedron is
hard. In SODA’06.

24. L. Kovács. Reasoning algebraically about p-solvable
loops. In TACAS’08. Springer-Verlag, 2008.

25. V. Laviron and F. Logozzo. Refing abstract
interpretation-based static analyses with hints. In
APLAS’09.

26. V. Laviron and F. Logozzo. Subpolyhedra: a (more) scal-
able approach to infer linear inequalities. In VMCAI’09.

27. F. Logozzo. Cibai: An abstract interpretation-based
static analyzer for modular analysis and verification of
Java classes. In VMCAI’07, 2007.

28. F. Logozzo and M. A. Fähndrich. On the relative com-
pleteness of bytecode analysis versus source code analy-
sis. In CC’08.

29. F. Logozzo and M. A. Fähndrich. Pentagons: A weakly
relational abstract domain for the efficient validation of
array accesses. In SAC’08.

15

30. B. Meyer. Object-Oriented Software Construction (2nd
Edition). Professional Technical Reference. Prentice
Hall, 1997.

31. A. Miné. The octagon abstract domain. In WCRE 2001.

32. A. Miné. Weakly Relational Numerical Abstract Do-
mains. PhD thesis, École Polythechnique, 2004.

33. M. Müller-Olm and H. Seidl. Precise interprocedural
analysis through linear algebra. In POPL’04.

34. E. Rodŕıguez-Carbonell and D. Kapur. Automatic gener-
ation of polynomial invariants of bounded degree using
abstract interpretation. Sci. Comput. Program., 64(1),
2007.

35. S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program
analysis using symbolic ranges. In SAS’07.

36. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scal-
able analysis of linear systems using mathematical pro-
gramming. In VMCAI’05.

37. A. Simon. Value-Range analysis of C Programs.
Springer-Verlag, 2008.

38. A. Simon, A. King, and J. Howe. Two variables per linear
inequality as an abstract domain. In LOPSTR’02.

39. D. A. Spielman and S.-H. Teng. Smoothed analysis of al-
gorithms: Why the simplex algorithm usually takes poly-
nomial time. J. ACM., 51(3), 2004.

A Foxtrot

Foxtrot is a language independent solution for contract
specifications in .Net. It does not require any source lan-
guage support or compiler modification. Preconditions
and postconditions are expressed by invocations of static
methods (Contract.Requires and Contract.Ensures)
at the start of methods. Class invariants are contained in
a method with an opportune name (ObjectInvariant)
or tagged by a special attibute ([ObjectInvariant]).
Dummy static methods are used to express meta-variables
such as e.g. Contract.Old(x) for the value in the pre-
state of x or Contract.WritableBytes(p) for the length
of the memory region associated with p. These contracts
are persisted to MSIL using the standard source lan-
guage compiler.

Contracts in the Foxtrot notation (using static method
calls) can express arbitrary boolean expressions as pre-
conditions and post-conditions. We expect the expres-
sions to be side effect free (and only call side-effect free
methods). We use a separate purity checker to optionally
enforce this [4].

A binary rewriter tool enables dynamic checking. It
extracts the specifications and instruments the binary
with the appropriate runtime checks at the applicable
program points, taking contract inheritance into account.
Most Foxtrot contracts can be enforced at runtime.

For static checking, Foxtrot contracts are presented
to Clousot as simple assert or assume statements. E.g.,
a pre-condition of a method appears as an assumption
at the method entry, whereas it appears as an assertion
at every call-site.

B Simplex algorithm

We recall some basic facts about the Simplex algorithm,
and in particular the notion of basis. The Simplex algo-
rithm finds the best solution to the problem:

maximize cT v

subject to A v = b

There may be also interval constraints (li ≤ vi ≤ ui),
but they are not important for the notion of basis. The
problem above can be rewritten in matricial form as(

A b
)(v

−1

)
= 0

We let S = (A|b). There are infinitely many matrices S
with the same space of solutions as S v = 0, so we can
make a few assumptions on S. First, we can use Gaussian
elimination get an upper triangular matrix (row eche-
lon form). Gaussian elimination updates the matrix by
adding to a row a linear combination of the other rows
of the matrix, which does not change the space of so-
lutions; after several of such updates, the result is tri-
angular. We can then remove all zero rows and divide
each row by its leading coefficient (which is the left-most
non-zero coefficient). These operations do not change the
space of solutions. As Gaussian elimination guarantees
that the leading coefficient of each row is strictly right of
the leading coefficients of the rows above it, there is at
most one leading coefficient in each column. The vari-
ables whose columns contain a leading coefficient are
called basic variables, the ones whose columns do not
contain a leading coefficient are called non-basic vari-
ables. The set of basic variables is the basis. It is also
convenient to have the columns corresponding to basic
variables containing only zeros except for a single one
(the leading coefficient). This can be achieved from the
previous matrix by a way similar to Gaussian elimina-
tion.

The Simplex algorithm starts with a matrix in this
form, and at each iteration changes the basis. Changing
the basis consists in choosing a basic variable, vb, with
the associated row r (the row whose leading coefficient
is in the column for vb), then choosing a non-basic vari-
able vn whose coefficient c in the row r is non-zero, then
divide the row r by c, and use row operations to make
all the other coefficients in the column for vn zeros. The
basis is now the previous basis plus vn minus vb (and
so vb is now non-basic and vn is now basic). Note that
the matrix may not be triangular anymore; this is not
required for the simplex algorithm. The simplex algo-
rithm uses the cost function c and the bounds li and ui
on variables to change the basis. Furthermore the sim-
plex chooses the variables to ensures that c will not be
zero; if this is not the case, a zero coefficient means that
a particular exchange is not possible.

16

