Latent Fault Detection in Cloud Services

Mickey Gabel®P ! Ran Gilad-Bachrach?®, Nikolaj Bjgrner®, Assaf Schuster® !

% Microsoft Research, Redmond, USA
b Computer Science Department, Technion, Haifa, Israel

1. Introduction

Large scale internet cloud services comprising of thou-
sands of computers are ubiquitous. With so many ma-
chines, it is not reasonable to assume that all of them are
working properly and are well configured [13]. If faults are
left unnoticed they might accumulate to the point where
redundancy and fail-over mechanisms break. Therefore,
detecting latent faults is essential for preventing failures
and increasing the reliability of cloud services. This work
provides evidence that latent faults are common. We show
that these faults can be detected using domain indepen-
dent techniques, and with high precision.

Monitoring for faults is usually done by collecting and
analyzing performance counters [1, 4, 10]. Hundreds of
counters per machine are reported by the various service
layers, from service-specific information (such as the num-
ber of queries for a database) to general information (such
as CPU usage). Manual monitoring of large datacenters is
impractical due to the large number of machines to track
and the large number of counters to follow. Therefore,
some level of automation is necessary.

Existing automated techniques for detecting failures
are mostly rule-based. A set of watchdogs [10] is defined.
A watchdog typically monitors a single counter on a single
machine or service. For example, a watchdog may moni-
tor the temperature of the CPU or the amount of free disk
space. Whenever a predefined threshold is crossed a cer-
tain action is trigged. These actions range from notifying
the system operator to automatic recovery attempts.

Rule-based failure detection suffers from several key
problems. For example, thresholds need to be made low
enough such that faults will not be left unnoticed. At the
same time, they should not be set too low to avoid spuri-
ous detections. However, since the workload changes over
time, no fixed threshold is adequate. Moreover, different
services, or even different versions of the same service may
have different operating points. Therefore, maintaining
the rules requires constant, manual adjustments. Often,

IThis work was conducted while the author was visiting Mi-
crosoft Research

Microsoft Research — Technical Report

these are done only as a consequence of “postmortem”
examination.

Others have noticed the shortcomings of these rule-
based approaches. [5, 6] proposed training a detector on
historic annotated data. However, these approaches fall
short due to the difficulty in obtaining this data, as well
as the lack of flexibility of these approaches to deviations
in workloads and changes in the service itself. Others
proposed injecting code into the monitored service to pe-
riodically examine it [13]. This approach is intrusive and
hence prohibitive in many cases.

Thus, the challenge for designing latent fault detec-
tion mechanism is to design it in a way that will be agile
enough to handle the variations in the service and the dif-
ferences between services. It should also be non-intrusive
yet efficient in the sense that it will detect as many faults
as possible with only few false alarms. As far as we know,
we are the first to propose a framework and methods that
addresses all these issues simultaneously.

Contribution

We develop a domain independent framework for iden-
tifying latent faults. A machine is considered to have a
latent fault if it is defective but not yet failing. Not all
machine failures are the result of latent faults. Power
outages, network outages and malicious attacks can oc-
cur instantaneously with no incubation period. We make
no attempt at predicting these failures.

Our framework is unsupervised and non-intrusive. The
main idea behind it is to compare machines performing
the same task at the same time. A machine that deviates
from the common behavior is flagged as suspicious. This
technique is agile; we demonstrate its ability to work on
different services without need for any tuning. Moreover,
changes in the workload or even changes to the service it-
self do not affect its performance. We demonstrate three
tests within this framework and provide strong theoreti-
cal guarantees on the false detection rates of the proposed
tests. We also evaluate them on several production ser-
vices of various sizes and natures, including large scale
services, as well as a service that is using virtual ma-
chines.

July 18, 2011

2. Related Work

The problem of machine failure detection was stud-
ied by several researchers in recent years, and proposed
techniques have so far been mostly supervised.

Chen et al. [4] separate counter values into workload
counters and internal measurements (system output), and
analyze the correlation between these sets of measure-
ments. They introduce principle canonical correlation
analysis, and use it to transform the measurements into
two maximally correlated subspaces with high variance.
These correlations are then tracked over time. This ap-
proach requires training the system to model baseline cor-
relations, and requires domain knowledge when choosing
counters

Chen et al. [5] presented an approach based on learn-
ing decision trees. They successfully applied it to a large
real-world service. However their system is supervised,
requiring labeled examples of failures and domain knowl-
edge. Labeled examples are hard to obtain. Moreover,
supervised approaches are less adaptive to workload vari-
ations and changes to the software and hardware.

Pelleg et al. [14] explore failure detection in virtual
machines. They describe a supervised system based on
decision trees that monitors a set of 6 carefully selected
hypervisor counters, instead of monitoring the guest OS
and application counters directly. Though the basis is do-
main independent, it is supervised and requires training
on labeled examples. Moreover, counters are manually se-
lected from hypervisor counters. It is therefore not imme-
diately portable, and only suitable for well managed set-
tings that include predictable workloads and previously-
seen failures.

Bodik et al. [1] provide a technique to identify and
classify system performance crises — points in time where
the system performance falls below accepted values. They
produce fingerprints from aggregate counters that describe
the state of the entire datacenter, and use these finger-
prints to identify crises. Their technique also provides
direct control over the false positive rate. As with other
supervised techniques, the approach in [1] requires labeled
examples. In addition, Bodik et al. concentrate on quick
detection of existing failures, while we focus on detection
of latent faults ahead of machine failures. Finally, they
study service level faults, while we focus on machine level
faults.

Cohen et al. [6] similarly use machine learning ap-
proach to induce a tree-augmented Bayesian network clas-
sifier. This approach requires a training set with labels
but no other domain knowledge, and is effective without
service-specific counters. They also identify the relevant
counters to give insight into the problem with the ser-
vice. However the classifier is very sensitive to chang-
ing workloads, due to its reliance on a training set. As

with [4], it was designed for monitoring a system and is
not applicable to identifying failing machines in datacen-
ters. Likewise, it was evaluated on an experimental setup
with synthetic workloads, and not a real-world system.
Ensembles of models are used in [18] to reduce the sensi-
tivity of the former approach to workload changes, at the
cost of decreased accuracy when there are too many types
of problems ([9]).

Finally, Palatin et al. [13] employ a data mining ap-
proach and introduce GMS (Grid Monitoring System).
GMS uses a distributed version of the HilOut algorithm,
which detects outliers using the average distance to k
nearest neighbors. Similar to our method, GMS is based
on outlier detection and is unsupervised and requires no
domain knowledge. However GMS is intrusive - it requires
sending jobs to be run on the monitored hosts, essentially
modifying the running service. Moreover it provides no
statistical guarantees on false detection rates.

3. Framework and Methods

The scalability and reliability of cloud services is achieved

in many cases by means of duplication. That is, the ser-
vice is duplicated on multiple machines and there exists
some load balancing process that splits the workload be-
tween these machines. Therefore, we expect all machines
that perform the same role, using similar hardware, to
exhibit similar behavior as it is being reflected by perfor-
mance counters. Whenever we see a machine that consis-
tently differ from the rest of the machines, we flag it as a
suspect for having a latent fault.

To compare machines, we use performance counters.
Machines in datacenters often periodically report and log
a wide range of performance counters. These counters are
collected both from the hardware (e.g., temperature), the
operating system (e.g., number of threads) and from the
application. However, since we do not assume domain
knowledge, we treat all counters equally.

We model the problem in the following way: there are
M machines and each reports C performance counters at
every time unit. We denote the vector of counter values
for machine m at time ¢ as z(m, t). The hypothesis is that
the inspected machine is working properly and hence the
process that generated this sample for machine m is the
same process that generate the sample for any other ma-
chine m’. However, if we see that the sample for machine
m is significantly different than the sample for other ma-
chines, we reject the hypothesis and flag the machine as
suspicious.

In the context of the framework we propose three tests
to detect latent faults. We compare them in Section 4.
The tests are made of two stages. The preprocessing stage
(see Alg. 1) is common to all the tests. In this stage the
data is collected, and the vectors z(m,t) are formed. In

the second stage the data is analyzed and a p-value is com-
puted for each of the machines. The p-value for a machine
m is a bound on the probability that a random healthy
machine would exhibit such aberrant counter values. If
the p-value for a given machine falls below a predefined
significance level «, the null-hypothesis can be rejected,
and the test reports this machine as a suspect. We pro-
pose three possible ways to implement the second stage:
the sign test (Alg. 2), the Tukey test (Alg. 3) and the
LOF test (Alg. 4).

The rest of this section is devoted to describing the
rationale behind these algorithms and proving their cor-
rectness.

3.1. Notation

The cardinality of a set S is written |S|, while for a
scalar s, we use |s| as the absolute value of s. The Lo
norm of a vector z is ||z|| and « - 2’ is the inner product
of z and z’.

We use M as the set of all machines in a test, m, m’
refer to specific machines, and M = |M| is the number of
machines. In the same fashion, C is the set of all counters,
c refers to a specific counter, and C = |C|. We slightly
abuse notation where in Alg. 1, C refers to all the counters
available in the system while in the rest of the discussion,
C refers only to the counters that were selected by Alg. 1.
Finally, 7 are the time points where counters are sam-
pled, t,t' refer to specific time points, and 7' = |T|. In
our experiments time points are sampled every 5 minutes
during a 24 hours interval.

3.2. Framework Assumptions

While modeling the problem we make several assump-
tions that we will now make explicit.

e The majority of the machines are working properly
at any given point in time.

e Machines are homogeneous in the sense that they
perform a similar task and use similar hardware,
software, and operating system.

e Workload is balanced across all machines.

e All counters are ordinal and are reported in the same
rate.

e Counter values are memoryless in the sense that
they depend only on the current time period (and
independent of the identity of the machine).

Formally, we assume the xz(m,t) is a realization of a
random variable X (t) whenever the machine m is working
properly. The idea is that since all machines perform
the same task, and since the load balancer tries to split

4500
4000 [
3500 [
3000 [
2500 | g
2000 [
1500 |
1000 o
50O [

Periodic counter mmm
_....Event-driven counter .

Number of machines

260 280 300 320 340 360
Reports per day

Figure 1: Histogram of number of reports for two kinds
of counters. The report rate of the event-driven counter
has a higher variance.

the load evenly between the machines, we should expect
them to perform similarly. We do expect to see changes
over time due to changes of the workload for example.
However, we expect these changes to be reflected in all
machines in a similar way. Therefore, whenever we see
a machine which violates this assumption we flag it as a
suspect.

3.3. Preprocessing

From the outset it is clear that our model is simplified,
and in practice not all of its assumptions about counters
hold. We observe three key violations of the assumptions
we make. First, not all counters are reported on a fixed
period. Second, each periodic counters might have a dif-
ferent period. And third, some counters violate the as-
sumption of being memoryless. For example a counter
that reports the time since the last machine reboot can-
not be considered memoryless. In order to eliminate these
problems as much as possible, the preprocessing algorithm
(Alg. 1) creates a representation of the data which better
reflects the assumptions.

The first issue addressed is non-periodic counters, such
as event-driven counters. These might create biases from
the point of view of our statistical tests, so we detect and
remove these counters. Such counters will typically have
a different number of reports on different machines as is
demonstrated in Figure 1. The detection is done in the
following way: for a counter ¢, we measure the number of
times it is reported on every machine m and denote this
number by n.(m). We expect all machines to have similar
number of reports for a periodic counter. However, since
some machines might be faulty, we need a robust way to
detect that. Therefore, we compute the median of the
number of reports and denote it by n.. To compute the
amount of variability in the number of reports, we com-
pute the 90" percentile of |(ne(m)=nc)/n.| and eliminate
counters for which this number is too large. In our imple-
mentation this threshold is set to 0.01. The choice of the

number 90 represents our assumption that at least 90% of
the machines are working properly. We also eliminate in-
frequent counters. In our implementation, counters that
are being reported less than 6 times a day are ignored.

Even periodic counters are not necessarily being re-
ported at the exact same rate and exact same time across
all machines. To address that, we select a set of time
intervals, and record for each machine and counter the
last reported value before the end of each interval. This
creates an alignment of the reports across machines and
counters. In our implementation we use equal time inter-
vals of 5 minutes.

Next, we normalize each counter to have a zero mean
and a unit variance. This is done to eliminate artifacts of
scaling and numerical instabilities.

The last issue addressed is counters that violate the
memoryless assumption. We expect that a counter will
have similar mean when measured on different machines
(see, e.g. Figure 2). A counter that violates this assump-
tion is ignored. However, if we eliminate all counters on
which there are some deviations of the mean, we will not
be able to detect the deviations that are due to malfunc-
tioning machines. Therefore, we use robust statistics in
the following way; we compute the median u.(m) of the
value of the counter ¢ on the machine m. We compute
the median . of the median values. To provide the right
scaling for the distance, we use a robust version of stan-
dard deviations: the Median Absolute Deviation (MAD)
(see, e.g., [16]). The MAD of a sample S is defined as

MAD(S) = medianseg (|s — mediangeg(s)|) .
Finally, compute the 90*" percentile of

‘uc(m) — He
mad,.(m)

where mad.(m) = MAD;er({z.(m,t)}). We ignore coun-
ters for which this value is greater than a threshold (2 in
our experiments).

Although we eliminate counters during preprocessing,
we are left with many useful counters, typically more than
one hundred (see Table 4). Moreover, this process is of
great importance when monitoring virtual machines. It
allows eliminating counters that reflect cross-talk between
virtual machines running in the same physical machines,
and focus on the counters which are representatives of the
actual performance of the virtual machine of interest.

The preprocessing algorithm has few parameters that
need to be tuned. However, as demonstrated in Sec-
tion 4.6, the algorithm is robust and moderate changes
to their values do not affect its performance in any signif-
icant way.

Counter value
Counter value

Time Time

(a) Large mean diversity (b) Small mean diversity
Figure 2: Counter values for 8 machines. The counter in
2(a) shows different biases for individual machines. De-
spite the variance over time, in 2(b) all machines act in
tandem.

Algorithm 1: The preprocessing algorithm.
Receives the raw counters, eliminates problematic
counters and normalizes the data. We denote by
poo(S) the 90*-percentile of S.

Let 6' = 0.01,0% = 2,0" = 5;

Let z.(m,t) = the last value of counter ¢ on

machine m before time t;

Let n.(m) = number of reports for ¢ on m;

foreach counter c € C do

Ve ¢ meane M e (2c(m, 1)) ;

Oc < STDmGM,tGT(zc(mat)))

foreach machine m € M and time t € T do
‘ yc(mat) — ZC(m(;i)_VC3

end

foreach machine m € M do

te(m) < mediangc 7 (ye(m, t));

mad.(m) < MAD;e7(ye(m, t));

end

ne < median,,c pm(ne(m));

1/11FP90(2

e medlanmeM(te(m)

V2 + poo (mad (m))
if (! <0') and (n. > 0") and (¥? < 6?)
then
foreach machine m € M and timet € T
do
| ze(m,t) = yo(m, t);
end

Ne m) Ne

end
end

3.4. Statistical Tests

After preprocessing, we use statistical tests to detect
the outliers. We present three such tests and compare
them in Section 4.

3.4.1. The Sign Test

The sign test [8] is a classical statistical test. It verifies
the hypothesis that two samples share a common median.
It has been extended to the multivariate case [15]. We
extend it further to allow the comparison of multiple ma-
chines simultaneously.

Let m and m’ be two machines and let z(m,t) and
x(m/,t) be the vectors of their reported counters at time
t. Assuming that 0 divided by 0 is 0, the vector

x(m,t) —z (m',t)
[(m, t) =z (m/, 1)]]

has length at most 1. If the two machines, m and m’
are indeed working properly, the expected value of this
random variable is zero. The sum of several samples over
time is therefore also expected not to grow far from zero.

Algorithm 2: The sign test. Given a significance
level o, outputs a list of suspicious machines.

foreach machine m € M do

z(m,t)—x(m’,t
v(m) T(J\}—f) Dot 2 4|\z(m,t)—ac§m’,t2\|;
s(m) < [[v(m)[;
end
foreach machine m € M do
v + min (0, mean(s) — s(m));
__TMy?)

p(m) — (M +]-) exp (2(m+2)2 y
if p(m) < a then

‘ Report machine m as suspicious;
end

end

In our setting, we have a vector x(m,t) for every ma-
chine m € M and every time ¢t € 7. To test machine m,
we compute the vector

__ 1 z (m,t) — @ (m', 1)
00 = 7T 2 2 Tam) (D]

teT m'eM

The following theorem shows that if all machines are work-
ing properly, the norm of v(m) is expected to be close to
its empirical mean on all machines.

Theorem 1. Assume that Vm € M and ¥t € T, z(m,1t)
s sampled independently from X (t). Let v(m) be as de-
fined above. Then for every v > 0

Pr[Im € M st. [lu(m)l| = EfJo(m)|]+7] <

TM~?
(M +1)exp |~ |

2
2 (VM +2)
where E [||o(m)||] is the empirical mean of |[v(m)].

Theorem 1 provides p-values for the sign test. It shows
that if all machines are working properly |v(m)|| does
not deviate much between machines. Hence, Theorem 1
provides a guarantee that the amount of false detections
should be small. The main tool used in the proof of the
theorem is the bounded sequence inequality [12]. The
complete proof is omitted due to lack of space.

A beneficial property of the sign test is that whenever
it detects a suspect machine, it also provides a fingerprint
for the failure. The vector v(m) scores every counter. The
test provides high positive scores to counters on which the
machine m has higher values than the rest of the popula-
tion and negative scores to counters on which m is lower
than the rest of the population. This fingerprint can be
used as a way to identifying recurring types of failures [1].
It can also be used as a starting point for root cause anal-
ysis. The entries in v(m) with the highest absolute values
point to the counters with large deviations from normal
behavior. Hence, they can serve as a starting point for
investigation.

3.5. The Tukey Test

The Tukey test is based on a different statistical tool,
the Tukey depth function [17]. Given a sample of points,
the Tukey depth function gives high scores to points which
are at center positions in the sample and low scores to
points which are in the perimeter. For a point s, we go
over all possible half-spaces that contains the point s and
count the number of points of S in the half-space. The
depth is defined as the minimum number of points over
all possible half-spaces; formally let X be a set of points
in the vector space R? and x € R, then the Tukey depth
of z in X is:

Depth(z|X) = inf ({2’ € X s.t. z-w <z’ -w}|)

i
weR?
In our setting, we say that if the vectors x(m,t) for
a fixed machine m consistently have low depths, then m
is likely to be behaving differently than the rest of the
machines. However, there are two main obstacles. First
note that each point in time, the size of the sample is
exactly the number of machines M and the dimension is

Algorithm 3: The Tukey test. Given a signifi-
cance level « it outputs a list of suspicious machines.

Let I =5;
fori+1,...,1do
7; + random projection R¢ — R?;
foreach time t € T do
R(t) — {m(2(m, D) bmea
foreach m € M do
| d(i,m,t) < Depth (m;(x(m, t))|R(t));
end

end
end
foreach m € M do
| s(m) < gror—y 2 2. d (i,m, b);
end
foreach m € M do
v + max (0, mean(s) — s(m));

p(m) (M + 1) exp (_mw>;

(VM +3)*
if p(m) < o then
| Report machine m as suspicious
end

end

the number of available counters C. In many cases the
dimension C' is larger than the number of points M and
therefore, it is likely that all the points will be in a general
position and have a depth of 1. Moreover, computing
the Tukey depth in high dimension is computationally
prohibitive [3]. Therefore, similar to [7], we select few
projections of the data to low dimensions and compute
depths in the low dimension. In our case we project the
data to R? and compute the Tukey depth of the projected
points.

We randomly select a projection from R® to R? by cre-
ating a matrix C' x 2 such that each entry in the matrix is
selected at random from a normal distribution. For time
t we project z(m, t) for all the machines m € M and com-
pute the depth in the projected space. Note that in R?,
computing the depth of all M points has a complexity of
only O (M log(M)). We repeat the process several times,
with different projections to obtain the depth d(i, m,t) for
machine m at time ¢t with the ¢’th projection. Finally, we
compute the score for machine m to be

I
s(m) « ﬁzz:d(i,m,t) . (1)

i=1teT

If all machines behave appropriately, s(m) should be
concentrated around its mean. However, if a machine
m, has a much lower score than the empirical mean, this

machine is flagged. The following theorem shows the cor-
rectness of this approach.

Theorem 2. Assume that Ym € M and ¥Vt € T, x(m,t)
is sampled independently from X (t). Let s(m) be as de-
fined in (1). Then for every v > 0

Pr [Elm e M s.t. s(m) < E[s(m)] — ’y] <

2T M~?
(M + 1) exp et s

2
(VM +3)
where E [s(m)] is the empirical mean of s(m).

Theorem 2 provides the way to compute p-values for
the Tukey test. Similar to the proof of Theorem 1, it uses
the bounded sequence inequality [12]. Proof is omitted
due to lack of space.

3.6. The LOF Test

The LOF test is based on the Local Outlier Factor
(LOF) algorithm [2] which is a popular outlier detection
algorithm. The LOF function tries to find outliers by
only looking at local neighborhoods. The assumption is
that on different areas, the density of the sample might
be different and this does not imply that points in less
dense areas are outliers. The score of the LOF function
is not calibrated. The greater the LOF score is, the more
suspicious the point is. However, the precise value of the
score has no particular meaning.

Algorithm 4: The LOF test. Given a significance
level « it outputs a list of suspicious machines. This
test uses the LOF algorithm [2] to score the ma-
chines.

foreach timet € T do
R(t) « {z(m,)}, e 05
I(m,t) < LOF of z(m,t) in R(t);
foreach machine m € M do
d(m,t) < the rank of {(m,t) in
{Lm/ 1) ymre s
end

end
foreach machine m € M do

s(m) + max (1, % > r(m, t));
p(m) <+ M exp (7%)71)2);

if p(m) < « then
| Report machine m as suspicious
end

end

To avoid falsely flagging machines, we integrate the
LOF score over time in the following way: At every point
in time we compute I(m,t), the LOF score of machine
m at time t. Next, we record the rank d(m,t) of the
LOF score of machine m at time ¢. The rank r(m,t) is
such that the machine which had the lowest LOF score
will have rank 0, the second lowest will have the rank 1
and so on. If all machines are working properly, the rank
d(m,t) should be distributed uniformly on 0,1, ..., M —1.
Therefore, the statistic

2
s(m) = TOI=1) Z d(m,t) (2)

has an expected value of 1. If the score is much higher,
the machine is flagged. The correctness of this appraoch
is proven in the next theorem.

Theorem 3. Assume that Vm € M and ¥t € T, x(m, 1)
is sampled independently from X (t). Let s(m) be as de-
fined in (2). Then for every v >0

Pr[3meM st s(m)>1+4+1~] <

T 2
M exp (;)

Proof. Define X; = {x(m,t)}mem. Consider a fixed ma-
chine m, we can view s(m) as a random variable over
the X;’s. Note that if {X;} and {X/} differ only on X;-
then the value of s(m) changes by at most 2/7. Using the
bounded sequence inequality [12] we obtain the stated re-
sult. O

4. Empirical Evaluation

We conducted several experiments to validate our as-
sumptions about latent faults and to compare the different
methods. The main experiments were made on produc-
tion services of various sizes.

4.1. Production Services

The production services used in the experiments are
live, real-world, distributed services. These services have
different characteristics. The LG (“large”) service con-
sists of a large cluster (~ 4500 machines) which is a part
of the index service of a leading search engine. The PR
(“primary”) service runs on a mid-sized cluster (~ 300
machines) and provides information about previous inter-
actions of users. Technically, it holds a large key-value
table and supports reading and writing to this table. The
SE (“secondary”) service is a hot backup for the PR ser-
vice and is of similar size. It stores the same table as
the PR service but supports only write requests. Its main
goal is to provide hot swap for machines in the PR service
in cases of failures. The VM (“virtual machine”) service

provides a mechanism to collect data about users’ inter-
actions with advertisements in a large portal. It stores
this information for billing purposes. This service uses 15
virtual machines which share the same physical machine
with other virtual machines. We tracked the LG, PR and
SE services for 60 days and the VM service for 30 days.

These services run on top of a data center management
infrastructure which provides services such as deployment
of services, monitoring and automatic repair. We use the
automatic repair log to deduce information concerning the
machines’ health signals (clearly, this information is in-
complete in many ways). This infrastructure also collects
different performance counters both from the hardware
and the running software. We use these counters as the
source of information for our experiments.

4.2. Protocol Used for Experiments

We applied our methods to each service independently
and in a daily cycle. That is, a day’s worth of data was
collected and used to flag suspect machines using each of
the tests. To avoid overfitting, parameters where tuned
based on historical data of the SE service. The signifi-
cance level o was fixed at 0.01 and the threshold value for
the feature selection mechanism were fixed.

To evaluate the performance of our methods we com-
pared latent faults to machine health signals as reported
by the infrastructure at a later day. Health events are
raised based on rules for detecting software and hardware
failures. Our thesis is that some latent faults will evolve
over time to hard faults which will be detected by this
rule-based mechanism. Therefore, we checked the health
signal of each machine in a follow-up period (horizon) of
up to 14 days immediately following the day in which the
machine was tested for a latent fault. We use existing
health systems to verify the results. Where they are in-
complete we used manual inspection of counters and audit
logs

In our evaluation, we refer to machines that were re-
ported healthy during the follow-up horizon as healthy,
other machines are referred to as failing. Machines that
were flagged by a method are referred to as suspects. Bor-
rowing from the information retrieval literature [11], we
use precision to measure the fraction of failing machines
out of all suspect machines and recall (also called True
Positive Rate, or TPR) to measure the fraction of suspect
machines out of all failing machines. We also use the False
Positive Rate (FPR) to denote the fraction of healthy
machines out of all suspect machines. Formally speak-
ing, these are conditional probabilities where recall =
Pr(suspect | failing), FPR = Pr(suspect | healthy) and
precision = Pr(failing | suspect). A summary of the terms
used is provided in Table 1.

Term Description

Suspect machine flagged as having a latent fault

Failing machine failed according to infrastructure’s health signal
Healthy machine healthy according to infrastructure’s health signal
Precision

Recall (TPR)
False Positive Rate (FPR)

fraction of failing machines out of all suspects = Pr(failing | suspect)
fraction of suspects out of all failing machines = Pr(suspect | failing)
fraction of healthy machines out of all suspects = Pr(suspect | healthy)

Table 1: Summary of terms used in our experiment reports.

4.83. Results

We discuss the results for each services separately due
to their different nature. We do that despite the fact that
we applied the same techniques to each service with the
same choice of parameters.

4.8.1. The LG Service

Table 2 shows a summary of the results of the ex-
periment on the LG service. This table shows how well
the different methods predicted machine failures in the
service. The low false positive rate (FPR) reflects our
design choice to minimize false positives. Tracking the
precision results proves our assumption that latent faults
exist in the services. For example, the Tukey method has
precision of 0.135,0.497 and 0.653 when failures are con-
sidered in horizons of 1,7 and 14 days ahead respectively.
Therefore, most of the machines that are flagged as sus-
pects by this method will indeed fail during the next two
weeks. Moreover, the majority of these failures happen
in the second day or later, showing that the prediction
horizon is longer than the immediate day.

The recall numbers in Table 2 indicate that approxi-
mately 20% of the failures in the service where already
manifested in the environment for circa a week before
they were detected (see a more comprehensive study in
Section 4.4).

The cumulative failure graph (Figure 3) depicts the
fraction of suspect machines across all days that failed up
to n days after the detection of the latent fault. In other
words, it shows precision vs. prediction horizon. The “to-
tal” column is the fraction of all machines that failed,
demonstrating the normal state of affairs in the LG ser-
vice. This column is equivalent to a guessing “test” that
randomly selects suspects at random based on the failure
probability in the LG service. These graphs demonstrate
again the existence of latent faults in the environment.

To explore the tradeoffs between recall, false positive
rate, and precision, and to compare the different methods,
we present receiver operating characteristic (ROC) curves
and precision-recall (P-R) curves. These curves are gen-
erated by varying the significance level («). The resulting
curves are shown in Figure 4.

Tukey —— sign ---x--- LOF ---x%--- Total —&—
0.7
o
O 05 o .
8
5
s 0.3 A .
@
r 92r 7
0.1 |- ke .
« o g8 -
0 T T T T T T T T T T T T T T T
> 0 o n o n o n o n n n n nnnnnun
T O O O O o o o o o o o o o
TL Q20 2LQ0Q2022000209
L B e T SR G R o o S SR A U S e
O 0 0O 0O o oo oo oo o o o
N M T IO © ™~ 00 O+ N M I
I B B R I |

Days after test

Figure 3: Cumulative failures on LG service. Most
of the faults detected by the sign test and the Tukey test
become failures only several days after they have been
detected.

Both Tukey and sign tests successfully predict failures
up to 14 days in advance with a high degree of preci-
sion, with sign having a slight advantage. Both perform
significantly better than the LOF test, which is still some-
what successful. The results reflect our design tradeoft:
at significance level of 0.01, false positive rates are very
low (around 2 — 3% for Tukey and sign), and precision is
relatively high (especially for longer horizons). 2

The dips in the beginning of the P-R curves reflect ma-
chines that consistently get low p-values, but do not fail.
We have manually investigated some of these machines,
and they can be divided into (1) machines that have failed,
but the service did not notify the platform about it (in-
complete logs), and (2) machines that are misconfigured
or underperforming, but are not outright failing since the
LG service does not monitor for these conditions. In a

20ne might expect that with a significance level of 0.01 the false
positive rate will be less than 1%. However, we have manually
confirmed cases of actual latent faults that go unnoticed in the en-
vironment. Due to the verification protocol, such machines are con-
sistently considered false positives but are actually correctly flagged
as faulty machines.

Period | Test Recall | FPR
Tukey | 0.240 | 0.023

Precision
0.135

1 day | sign 0.306 | 0.037 0.109
LOF 0.248 | 0.095 0.038
Tukey | 0.151 | 0.014 0.497
7 days | sign 0.196 | 0.026 0.411

LOF 0.203 | 0.087 0.180
Tukey | 0.093 | 0.011 0.653
sign 0.126 | 0.022 0.563
LOF 0.162 | 0.082 0.306

14 days

Table 2: Prediction performance on LG with significance
level of 0.01

Precision -------
Recall
08 I I NS N AN ,(4‘ T
A \ i AN b - FPR --------
JAWAN) \ Py ong W AN
v 1 Py HRY v ~ A
- vy Ky \ "| AW
0.6 75 A =L B R e SN I A
\ [v "~
() i P 1
[v [l A
Al b V=== \
AV i 1 v
0.4 | o L oA I o v ~
n " iy
] v I
' U

Calendar day

Figure 5: Tukey performance on LG across 60 days,
with 14-day horizon. It shows the test is not affected
by changes in the workload. Test quickly recovers from
service updates on days 22 and 35. Lower performance
on days 45-55 is an artifact of gaps in counter logs and
updates on later days.

sense these are “soft” failures that may not result in ma-
chine failure.

Finally, we investigate the sensitivity of the different
methods to temporal changes in the workload. Since this
service is user facing, the workload changes significantly
between weekdays and weekends. We plot Tukey predic-
tion performance with 14-day horizon for each calendar
day (Figure 5). Note that the weekly cycle does not af-
fect the test. The visible dips at around days 22, 35 and
towards the end of the period are due to upgrades that
were made to the service during these times. Since the up-
grade is not done simultaneously on all machines, the test
detects the divergence between the versions and reports
these as failures. However, once the upgrade completed,
no tuning was necessary for the test to regain its perfor-
mance.

4.8.2. PR and SE Services
The SE service only mirrors data written to PE, but
serves no read requests. Since SE machines serve only

Test Recall | FPR | Precision
Tukey | 0.010 | 0.007 0.075
sign 0.023 | 0.029 0.044
LOF 0.089 | 0.087 0.054

Table 3: Prediction performance on SE with 14-day hori-
zon at significance level 0.01

write requests, they are not as loaded as PR machines
which serve both read and write requests. Hence, tradi-
tional rule-based monitoring system are less likely to de-
tect failures on these machines. Therefore, the existence
of latent faults on these machines is likely to be mani-
fested only when there is a failure in a primary machine
and the faulty SE machine is converted to the primary
(PR) role.

Unfortunately, the “health monitors” for the PR and
SE services are not as comprehensive as the ones for the
LG service. Since we use the “health monitors” as the ob-
jective signal against which we measure the performance
of our tests, these measurements are less reliable. To
compensate for that, in some cases, we have conducted
manual investigation of flagged machines. We are able to
provide objective measurements for SE service, as there
are enough real failures to successfully predict, despite the
presence of at least 30% spurious failures (verified manu-
ally).

Performance on SE service for significance level of 0.01
are summarized in Table 3. ROC and P-R curves are in
Figure 6. It is clear that our methods are able to detect
and predict machine failures, therefore we conclude that
latent faults do exist in this service as well, even if to
a lesser extent. Since this is a backup service, we believe
some of the failures go unreported to the service platform.
Therefore, the true performance is likely to be better than
shown.

The case of the PE service is similar to the SE but
even more acute. The amount of reported failures is so
low (0.26% machine failures per day), that it would be
impossible to verify positive prediction. Nevertheless, all
tests show very low FPR (about 1% for sign and Tukey,
7% for LOF) and in over 99% of healthy cases there were
no latent faults according to all tests.

4.8.8. VM Service

The VM service presents a greater challenge, due to
the use of virtual machines and small population of ma-
chines. The risk is that a test will flag machines as sus-
pects because of some artifacts related to other virtual
machines sharing the same host. Due to the small size
of this cluster, we resort to manually examining warning
logs, and examining the two machines with latent faults
found by the sign test. One of the machines had high

TPR (recall)

Precision

TPR (recall)

Precision

0.8

0.6

0.4

0.2

(S

|

et

FPR FPR

TPR (recall)
TPR (recall)

) I I]] 1 T | . L | 1 1
: | :
0.8 4 0.8
S 06 -V S 06
2 iy 7]
8 04 g
& 04 - & 0.4
0.2 0.2
Recall Recall
lday — at cutoff 0.01 o 1lday — at cutoff 0.01 ©
7 days --- Random guess 7 days --- Random guess
14 days --- 14 days ---
(a) Tukey (b) sign

FPR FPR

Figure 4: ROC and P-R curves on LG service

TPR (recall)
TPR (recall)

c H c
S 0.6 - S 0.6
o 3]
& 0.4 - x 0.4
0.2 =
Recall
1lday — at cutoff 0.01 o 1lday — at cutoff 0.01 ©
7 days --- Random guess 7 days --- Random guess
14 days --- 14 days ---
(a) Tukey (b) sign

Figure 6: ROC and P-R curves on the SE service

10

FPR

(ST I R P S

)
Py
4

Recall

lday — at cutoff 0.01 ©
7 days --- Random guess
14 days ---
(c) LOF

FPR

Recall
1lday — at cutoff 0.01 ©
7 days --- Random guess
14 days ---
(c) LOF

Counter value Counter value
Counter value Counter value

Time
(b) Warning day

hJ=

Time

Time Time

(a) Detection day

Figure 7: Aberrant counters for suspect VM machine
(black) compared to other 14 machines (gray).

CPU usage, thread count, disk queue length and other
counters indicating a large workload. Indeed, two days
after detection there was a watchdog warning indicating
that the machine is overloaded. The relevant counters for
this machine are plotted in Figure 7. The second machine
with detected latent fault appears to have had no relevant
warning, but our tests did indicate that it had low mem-
ory usage, compared to other machines performing the
same role.

4.4. Estimating the Amount of Latent Faults

We conducted a controlled experiment to estimate the
amount of latent faults in the LG service. As discussed
earlier, some failures do not have a period in which they
live undetected in the system. Examples include failures
due to software upgrades and failures due to network ser-
vice interruption. Hence, the goal of this experiment is to
estimate the percentage of failures which do have a latent
period in the current environment.

We selected 80 failure events at random and checked
if our methods detect them 24 hours before they are first
reported by the existing failure detection mechanism. As
a control, we also selected a random set of 73 machines
which are known to by healthy. For both sets we re-
quire that events come from different machines, and from
a range of times and dates.

For the sake of this experiment we define a failing ma-
chine to be a machine that is reported to be failing but
did not have any failure report in the preceding 48 hours.
We define a machine to be healthy if it did not have any
failure during the 60 days period of our investigation.

Figure 8 shows the ROC curves for this experiment.
Failing machines where latent faults are detected are true
positives. Healthy machines that are flagged as suspects
are counted as false positives. Both the sign test and
the Tukey test manage to detect 20% — 25% of the fail-
ing machines with very few false positives. Therefore, we

11

Random guess

] Tukey —
4] .

£ sign ---
£ LOF ---
'_

at cutoff 0.01 ©

Figure 8: Detection performance on LG service. At least
25% of failures have preceding latent faults.

conclude that at least 20% — 25% of the failures have a
significant period of time in which they are latent in the
environment.

4.5. Comparison of Tests

Figure 4 shows the ROC and P-R curves for the LG
service experiment. The outliers detected by LOF are
less correlated with real failures when compared to Tukey
and sign. The curves for Tukey and sign are very similar.
However, for the specific significance level of 0.01 Tukey
is slightly better as seen, for example, in Figure 3. On the
SE service, Tukey performs slightly better than the other
methods (see Figure 6), while on the VM service, Tukey
and sign are very similar in performance while LOF is the
least performing of the three.

To measure agreement between the different tests we
compared the scores they assign to the same machine.
Indeed, the tests tend to assign low p-values for similar
sets of suspect machines, despite being based on different
principles.

To better characterize the sensitivities of the different
tests we evaluated them on artificially generated data.
We generated random data equivalent to 500 machines,
each reporting 150 counters every five minutes for a full
day. Counters are based on a base offset to which we add
random normal noise of different scale (per counter) but
no offset. The base offset varies across the day to simulate
the daily workload changes that machines go through, and
each counter has a different workload scale and and offset.
Figure 9 shows several such counters.

We define three types of “faults”: location (offset),
scale, or both (location+scale). 25 machines were selected
as failing machines, and for these machines 10% of coun-
ters are noisy with either different offset, scale or both.
The strength of the difference varies across the failing ma-
chines, and we compare sensitivity of each test to different

FPR

FPR

FPR

= 3 3
[S] [S] [S]
L o L
04 o o
a a o ‘ ‘ ‘ ‘ ‘
= = = : : : : :
0.2 o
R i i i i
0 0.2
! 1 :
0.8 - i 08 -
c : ! c c :
2 06 - 1 2 £ 06 -
© : | i)) :
2 0.4 - 4 9 9_') 0.4 -
a ; ! a a ;
R e 02 -
N J :
Recall Recall
Tukey — LOF --- Tukey — LOF --- Tukey — LOF ---
sign --- Random guess sign --- Random guess sign --- Random guess
(a) Location (b) Scale (¢) Location+scale
Figure 10: Performance on types of synthetic fault.
° Counters LG | VM | PR | SE
= Event-driven 85 39 100 | 112
g Slow 68 12 19 24
|5 Constant 87 29 52 40
8 Varied means | 103 | 30 57 79
Remaining 211 | 106 | 313 | 89
Time Time Time Total 554 | 216 | 541 | 344

Figure 9: Several synthetic counters for 8 machines. The
highlighted machine has a “fault”.

kinds of faults by measuring its performance. The curves
are shown in Figure 10.

This experiment shows that the sign test is very sen-
sitive to changes in offsets. LOF has some sensitivity to
offset changes while the Tukey test has little sensitivity,
if any, to this kind of changes. When scaling is changed,
LOF is more sensitive at the regime of low false positive
rates but does not do well later on. Tukey is more sensi-
tive than sign to scaling changes.

4.6. Filtering Counters

In the first stage of processing, we filter out counters
based on their statistics. Table 4 reports the average num-
ber of counters used in each experiment.

When filtering counters, we only keep counters for
which the mean diversity 1?2 is equal or less than the
threshold 2. Because 1?2 is scaled using median abso-
lute deviation, it is reasonable to select small values as

12

Table 4: Average number of counters. The first rows
present counters that were eliminated in the preprocess-
ing. Despite the automated filtering, many counters re-
main for detections.

the threshold. The threshold value 2 was chosen based on
our conservative design choice to miss failures while re-
jecting counters with diverse means (since they can cause
false positives).

Figure 11 justifies this choice, as the majority of coun-
ters that were not filtered on earlier stages have 2 < 2 on
most services, and the range of 2-10 contains few coun-
ters.

To further explore the effect of different thresholds, we
measured the performance of the tests on a single day of
the LG service with different mean diversity thresholds
in the range 2-10. With strict significance level, higher
thresholds result in slightly better recall but slightly lower
precision, confirming our expectations.

Q
b 1 | o | 1 1 1 1 . 1
@
s VM &3
o]
8 1 1 1 1 1 1 |
£ I PR mm
4
o] ! ! ! | o | ! |
c
3 SE = ﬂ
o
1 | D | ’_| 1 ’_| 1 | I s N | 1
0-2 2-3 3-4 4-5 5-6 6-10 10-inf

Diversity range

Figure 11: Histogram of counter mean diversity for all
services. Majority of counters are below 2.

5. Conclusions

In this work we introduce a novel framework for de-
tecting latent faults and derive three tests that act in this
framework. The significance of this framework is that it
allows us to address the problem of latent fault detection
in a way that is agile enough to be used across different
systems and to withstand changes over time. As far as we
know, we are the first to address this issue.

We proposed tests to detect latent faults and proved
efficient guarantees on their false detection rates. These
methods were evaluated on several production services
of different nature. Our methods were able to detect
many latent faults days ahead of rule-based watchdogs.
Moreover, we have shown that our tests are versatile; the
same tests were able to detect faults in different environ-
ments without having to retrain or retune them. Our tests
handle workload variations and service updates naturally
and without intervention. Even services built on virtual
machines are monitored successfully without any modi-
fication. Moreover, our experiments validate that latent
faults are common even in well-managed datacenters.

Comparing the three proposed tests, we observed that
the sign test and the Tukey test were more accurate than
the LOF test. The differences between the sign test and
the Tukey test were not significant. Additionally, the sign
test can uniquely generate fingerprints for detected faults.
These fingerprints allow better understanding of the root
cause. They can be used both to group together similar
faults and to identify the counters that deviate the most.

There are many directions for future study; we would
like to be able to monitor non-homogeneous datacenters,
where machines are different or perform different tasks.
New tests can be introduced that will handle event-driven
counters and counters with varying report rates with a
greater rigor. Another interesting direction is to study
which types of faults tend to have long incubation time
as opposed to more sudden failures.

[1] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. An-

13

(10]
(11]
(12]

(13]

(14]

(15]

[16]

(17]

(18]

dersen. Fingerprinting the datacenter: Automated classifica-
tion of performance crises. In Proc. EuroSys, 2010.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF:
Identifying density-based local outliers. SIGMOD Rec., 2000.
T. M. Chan. An optimal randomized algorithm for maximum
Tukey depth. In Proceedings of SODA, 2004.

H. Chen, G. Jiang, and K. Yoshihira. Failure detection in large-
scale internet services by principal subspace mapping. IEEE
Trans. on Knowledge and Data Engineering, 2007.

M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.
Failure diagnosis using decision trees. Autonomic Computing,
International Conference on, 2004.

I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons. Correlating
instrumentation data to system states: A building block for
automated diagnosis and control. In OSDI, 2004.

J. A. Cuesta-Albertos and A. Nieto-Reyes. The random Tukey
depth. Journal of Computational Statistics €& Data Analysis,
2008.

W. J. Dixon and A. M. Mood. The statistical sign test. Journal
of the American Statistical Association, 1946.

C. Huang, I. Cohen, J. Symons, and T. Abdelzaher. Achiev-
ing scalable automated diagnosis of distributed systems perfor-
mance problems. Technical report, HP Labs, 2007.

M. Isard. Autopilot: automatic data center management.
SIGOPS Oper. Syst. Rev., 2007.

C. D. Manning, P. Raghavan, and H. Schiize. An Introduction
to Information Retrieval. Cambridge University Press, 2008.
C. McDiarmid. On the method of bounded differences. Surveys
in Combinatorics, 1989.

N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff. Mining
for misconfigured machines in grid systems. In Proceedings of
KDD, 2006.

D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and
T. Adeshiyan. Vigilant: out-of-band detection of failures in
virtual machines. SIGOPS Oper. Syst. Rev., 2008.

R. H. Randles. A distribution-free multivariate sign test based
on interdirections. Journal of the American Statistical Associ-
ation, 1989.

R. Serfling and S. Mazumder. Exponential probability inequal-
ity and convergence results for the median absolute deviation
and its modifications. Statistics & Probability Letters, 2009.
J. Tukey. Mathematics and picturing data. In Proceedings of
the ICM, 1975.

S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensembles of models for automated diagnosis of system perfor-
mance problems. In Proceedings of DSN, 2005.

