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ABSTRACT
Much of the world’s electronic text is annotated with human-
interpretable labels, such as tags on web pages and subject
codes on academic publications. Effective text mining in
this setting requires models that can flexibly account for the
textual patterns that underlie the observed labels while still
discovering unlabeled topics. Neither supervised classifica-
tion, with its focus on label prediction, nor purely unsuper-
vised learning, which does not model the labels explicitly,
is appropriate. In this paper, we present two new partially
supervised generative models of labeled text, Partially La-
beled Dirichlet Allocation (PLDA) and the Partially Labeled
Dirichlet Process (PLDP). These models make use of the un-
supervised learning machinery of topic models to discover
the hidden topics within each label, as well as unlabeled,
corpus-wide latent topics. We explore applications with
qualitative case studies of tagged web pages from del.icio.us
and PhD dissertation abstracts, demonstrating improved
model interpretability over traditional topic models. We use
the many tags present in our del.icio.us dataset to quantita-
tively demonstrate the new models’ higher correlation with
human relatedness scores over several strong baselines.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; I.2.7 [Natural
Language Processing]: Text analysis

General Terms
Algorithms, Experimentation

1. INTRODUCTION
The world’s text is increasingly created and consumed

electronically, providing opportunities for tools to help make
sense of that text. As web technologies have evolved, the
amount of human-provided annotations on that text has
grown, too, becoming a source of information our text min-
ing tools should not ignore. In this paper, we address a set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

of related challenges presented by such datasets. How can
we understand and interpret the meaning of labels and the
different ways they are used? Can we model the labels while
simultaneously uncovering topics in the dataset that are not
labeled? Can we discover which words in documents should
be attributed to which of the documents’ labels? Or to none
at all? We take these challenges as examples of partially su-
pervised text mining, in which models discover textual topics
in a corpus that contains some labels, although those labels
may not be the primary object of study.

This form of partially supervised learning straddles the
boundary between unsupervised learning, in which models
discover unmarked statistical relationships in the data, and
supervised learning, which emphasizes the relationship be-
tween word features and a given space of labels for the pur-
pose of classifying new documents. Popular unsupervised
approaches like Latent Dirichlet Allocation [5], Latent Se-
mantic Indexing [11] and related methods [20, 3] are well
suited for exploratory text analysis—e.g. [13]—but most of
these models do not account for the label space. When they
do, it is usually to improve the quality of a shared set of
latent topics—such as in [19, 4, 16, 17, 34, 23]—rather than
to directly model the contents of the provided labels. As
a result, practitioners face challenges in interpreting what
these topics really mean, how they should be named, and to
what extent trends based on them can be trusted in qualita-
tive applications. While unsupervised topics are successful
in capturing broad patterns in a document collection, the
learned topics do not, in general, align with human provided
labels.

In contrast, supervised learning and (multi-) label pre-
diction explicitly model the label space for the purpose of
prediction (such as in [12, 18]), but by design do not discover
latent sub-structure or other latent patterns. Other learning
formulations exist in the space between supervised learning
and unsupervised learning, most notably semi-supervised
learning [10], in which the goal is to improve label classi-
fication performance by making use of unsupervised data
[35]. Another, similar learning paradigm is semi-supervised
clustering—such as [2, 33]—in which some supervised in-
formation is used to improve an unsupervised task. Usu-
ally this information comes in the form of human-provided
pair-wise similarity/dissimilarity scores or constraints. As
a result, these approaches can be used effectively for label
prediction or document clustering, but do not lend them-
selves to more fine-grained questions about how the terms
and label space interact. By contrast, the partially super-
vised approach pursued here is explicitly designed to im-



prove upon the exploratory and descriptive analyses that
draw practitioners to unsupervised topic models to begin
with—i.e. to discover and characterize the relationships be-
tween patterns, but with the added ability to constrain those
patterns to align with label classes that are meaningful to
people.

Our approach to the challenges of partially supervised
text mining is through methods that make use of the un-
supervised learning machinery of topic modeling, but with
constraints that align some learned topics with a human-
provided label. In this paper, we introduce two models,
unifying and generalizing the popular unsupervised topic
model, Latent Dirichlet Allocation (LDA) [5] as well as the
multinomial naive Bayes supervised text classifier’s event
model [22] and the more recent multi-label generative model
Labeled LDA [27]. As in LDA, Partially Labeled Dirichlet
Allocation (PLDA), assumes that each document’s words
are drawn from a document-specific mixture of latent top-
ics, where each topic is represented as a distribution over
words. Unlike LDA, PLDA assumes that each document
can use only those topics that are in a topic class associated
with one or more of the document’s labels. In particular, we
introduce one class (consisting of multiple topics) for each la-
bel in the label set, as well as one latent class that applies to
all documents. This construction allows PLDA to discover
large-scale patterns in language usage associated with each
individual label, variations of linguistic usage within a label,
and background topics not associated with any label. A par-
allel learning and inference algorithm for PLDA allows it to
scale to large document collections. Our second model, the
Partially Labeled Dirichlet Process (PLDP), extends PLDA
by incorporating a non-parametric Dirichlet process prior
over each class’s topic set, allowing the model to adaptively
discover how many topics belong to each label, at the ex-
pense of parallelizability. We evaluate our approach qualita-
tively on PhD dissertation abstracts and quantitatively on
a document-similarity task derived from tagged web pages
on del.icio.us.

Related work
Recently, researchers in the topic modeling community have
begun to explore new ways of incorporating meta-data and
hierarchy into their models, which is the approach to par-
tially supervised text mining that we take here. For instance,
Markov Random Topic Fields [16] and Markov Topic Mod-
els [32] both allow information about document groups to
influence the learned topics. There has also been a great
amount of work on simultaneously modeling relationships
among several variables, such as authors and topics in the
Author-Topic model [28], tags and words in [29], and top-
ics sentiment in [21]. All of these models assume a latent
topic space that is influenced by external label information
of some form. By contrast, we use topics to model the sub-
structure of labels and unlabeled structure around them.
Other ways to constrain and exploit topic models for text
mining tasks include recent work in mining product reviews
such as, Titov and McDonald [31] and later Branavan, et
al. [6] who extract ratable aspects of product reviews. And
recently, the Nubbi model of topics and social networks [8]
introduced by Chang, et al., constrains an LDA-like topic
model to learn topics that correspond to individual entities
(such as heads of state in Wikipedia) and the relationships
between them. Topic models that account for an extra level

of topic correlation have been studied as well, with notable
papers such as Blei et al.’s hierarchical topic models [3] and
Li and McCallum’s Pachinko Allocation [20]. These types
of models assume an extra hidden layer of abstraction that
models topic-topic correlation. The label classes in this work
can be seen as an analogous layer, but here they are super-
vised, hard assignments constraining only some topics to be
active depending on a document’s observed labels.

The work builds upon prior work the multi-label genera-
tive model, Labeled LDA, introduced by Ramage, et al. in
2009 [27], and similar models such as the extension of Rubin
et al. in [29]. Like PLDA and PLDP, Labeled LDA assumes
that each document is annotated with a set of observed la-
bels, and that these labels play a direct role in generating the
document’s words from per-label distributions over terms.
However, Labeled LDA does not assume the existence of
any latent topics (neither global nor within a label)—only
the documents’ distributions over their observed labels, as
well as those labels’ distributions over words, are inferred.
Labeled LDA borrows the machinery of LDA primarily for
the purpose of credit attribution—associating which words
in each document are best associated with each of the doc-
ument’s labels. As a result, Labeled LDA does not support
latent sub-topics within a given label nor any global latent
topics. In this sense, “Labeled Latent Dirichlet Allocation”
is not so latent: every output dimension is in one-to-one
correspondence with the input label space. In this work, we
introduce two new models, PLDA and PLDP, that by in-
corporating classes of latent topics extend, generalizes, and
unify LDA with Labeled LDA. This simple change opens
new opportunities in interpretable text mining and results
in a large and surprising boost in the models’ ability to cor-
relate with human similarity judgments, as we demonstrate
in Section 3.3.

2. PARTIALLY SUPERVISED MODELS
In our formalization of partially supervised text mining,

we are given a collection of documents D, each containing a
multi-set of words ~wd from a vocabulary V of size V and a
set of labels Λd from a space of labels L. We would like to
recover a set of topics Φ that fit the observed distribution of
words in the multi-labeled documents, where each topic is a
multinomial distribution over words V that tend to co-occur
with each other and some label l ∈ L. Latent topics that
have no associated label are optionally modeled by assuming
the existence of a background latent label L that is applied
to all documents in the collection. In the sections be-
low, we define PLDA and PLDP, both of which assume that
the word w at position i in each document d is generated
by first picking a label l from Λd and then a topic z from
the set of topics associated with that label. Then word w is
picked from the topic indexed Φl,z. In this way, both PLDA
and PLDP can be used for credit attribution of words to
labels by examining the posterior probability over labels for
a particular word instance. Both PLDA and PLDP are gen-
erative probabilistic graphical models, and so for each we
will use an approximate inference algorithm to re-construct
the per-document mixtures over labels and topics, as well
as the set of words associated with each label. By incor-
porating the latent class of topics in addition to the label
classes, the model effectively forces each word to decide if it
is better modeled by a broad, latent topic, or a topic that
applies specifically to one of its document’s labels.
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Figure 1: Graphical model for PLDA. Each document’s

words w and labels Λ are observed, with the per-doc

label distribution ψ, per-doc-label topic distributions θ,

and per-topic word distributions Φ hidden variables. Be-

cause each document’s label-set Λd is observed, its sparse

vector prior γ is unused; included for completeness.

2.1 Partially Labeled Dirichlet Allocation
Partially Labeled Dirichlet Allocation (PLDA) is a gener-

ative model for a collection of labeled documents, extending
the generative story of LDA [5] to incorporate labels, and
of Labeled LDA [27] to incorporate per-label latent top-
ics. Formally, PLDA assumes the existence of a set of L
labels (indexed by 1..L), each of which has been assigned
some number of topics Kl (indexed by 1..KL) and where
each topic φl,k is represented as a multinomial distribution
over all terms in the vocabulary V drawn from a symmetric
Dirichlet prior η. One of these labels may optionally denote
the shared global latent topic class, which can be interpreted
as a label “latent” present on every document d. PLDA as-
sumes that each topic takes part in exactly one label.

Figure 1 shows the Bayesian graphical model for PLDA.
Each document d is generated by first drawing a document-
specific subset of available label classes, represented as a
sparse binary vector Λd from a sparse binary vector prior.
A document-specific mix θd,j over topics 1..Kj is drawn from
a symmetric Dirichlet prior α for each label j ∈ Λd present
in the document. Then, a document-specific mix of observed
labels ψd is drawn as a multinomial of size |Λd| from a Dirich-
let prior ~αL, with each element ψd,j corresponding to the
document’s probability of using label j ∈ Λd when selecting
a latent topic for each word. For derivational simplicity, we
define the element at position j of ~αL to be αKj , so ~αL is
not a free parameter. Each word w in document d is drawn
from some label’s topic’s word distribution, i.e. it is drawn
by first picking a label j from ψd, a topic z from θd,l, and
then a word w from φl,k. Ultimately, this word will be picked
in proportion to how much the enclosing document prefers
the label l, how much that label prefers the topic z, and how
much that topic prefers the word w.

We are interested in finding an efficient way to compute
the joint likelihood of the observed words ~w with the un-

observed label and topic assignments, ~l and ~z, respectively:

P (~w, ~z,~l|~Λ, α, η, γ) = P (~w|~z, η)P (~z,~l|~Λ, α, γ). Later, we will
use this joint likelihood to derive efficient updates for the
parameters Θ, Ψ, and Φ (where the capital Greek letters

represent the full set of ~θ, ~ψ, and ~φ, respectively). First, we
note that the left term P (~w|~z, η) =

´
Φ
P (~w|~z,Φ)P (Φ|η)dΦ

is the same as for standard latent Dirichlet allocation and
ultimately contributes the same terms to the full conditional
as well as to the sampling formula for updating individual
topic assignments zd,i, so we use the same derivation as in
e.g. [13]. Using the model’s independence assumptions,
we consider the joint probability of the topics and labels,

P (~z,~l|~Λ, α, γ) = P (~z|~l, α)P (~l|~Λ, γ, α). We will examine each
half of this expression in turn. First, observe that:

P (~z|~l, α) =

ˆ
Θ

P (~z|~l,Θ)P (Θ|α)dΘ (1)

P (~z|~l,Θ) =

D∏
d=1

Wd∏
i=1

P (zd,i|ld,i, θd,ld,i) (2)

=

D∏
d=1

Wd∏
i=1

θd,ld,i,zd,i =

D∏
d=1

∏
j∈Λd

Kj∏
k=1

(θd,j,k)nd,j,k,·

Here we introduce nd,j,k,t as the number of occurrences
of label j ∈ Λd topic k ∈ Kj within document d as applied
to term t ∈ V. In this notation, we sum counts using “·”
and select a vector of counts using “:”, so for example nd,j,k,·
refers to

∑V
t=1 nd,j,k,t or the number of occurrences of la-

bel j and topic k in document d. Similarly, nd,j,:,·selects
the vector of size Kj with the term at position k equal to
nd,j,k,·. After multiplying by θ’s Dirichlet prior and apply-
ing the standard Dirichlet-multinomial integral, we see that

P (~z|~l, α) =
∏D
d=1

∏
j∈Λd

∆(nd,j,:,·+~α)

∆(~α)
making use of the no-

tation in [14] where ∆(~x) =
∏dim ~x

k=1 Γ(xk)

Γ(
∑dim ~x

k=1
xk)

and we treat ~α as

a vector of size Kj with each value equal to α. Note that
because each label has its own distinct subset of topics, the
topic assignment alone is sufficient to determine which label

was assigned, so there is no need to represent ~l explicitly in
order to compute nd,j,:,·.

Now let’s return to the computation of P (~l|~Λ, γ, α), which,

because ~Λ is considered observed, can be factorized into:

P (~l|~Λ,Ψ)P (Ψ|α, ~Λ) =´
Φ

∏D
d=1 P (ψd|α,Λd)

∏Wd
i=1 P (ld,i|Λd, ψd)dΦ

By re-indexing over label types, and applying the standard
Dirichlet prior and Dirichlet-multinomial integral to get our

final probability P (~l|~Λ, ~αL) =
∏D
d=1

∏
j∈Λd

∆(nd,:,·,·+ ~αL)

∆( ~αL)
.

Observing that the actual values of ~l are never used ex-
plicitly, and because every topic takes part in only a single
label, we can represent the model using a Gibbs sampler
tracking only the topic assignments ~z. We do not need to

allocate memory to represent which label ~l is assigned to
each token. After combining terms, applying Bayes rule,
and folding terms into the proportionality constant, the sam-
pling update formula for assigning a new label and topic to
a word token is defined as follows:
P (ld,i = j, zd,i = k|l¬d,i, z¬d,i, wd,i = t;α, η)

∝ I[j ∈ Λd ∧ k ∈ 1..Kj ]

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)
· (3)

(
n

(¬d,i)
d,j,·,· + ~(αL)j

n
(¬d,i)
d,·,·,· +

∑
j′∈Λd

~(αL)j

)
·

(
n

(¬d,i)
d,j,k,· + α

n
(¬d,i)
d,j,·,· +Kjα

)

∝ I[j ∈ Λd ∧ k ∈ 1..Kj ]

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)(
n

(¬d,i)
d,j,k,· + α

)
The notation n(¬d,i) refers to the corresponding count ex-

cluding the current assignment of topic z and label l in docu-
ment d position i. Here we have used the definition of ~αL at
position j is αKj , which allows the numerator in the second
fraction to cancel the denominator in the last term. Because
the denominator in the second fraction is independent of the
topic and label assignment, it is folded into the proportion-



ality constant. Interestingly, this sampler’s update rule is
like that of Latent Dirichlet Allocation [13] with the intu-
itive restriction that only those topics corresponding to the
document’s labels may be sampled.

The similarity of the model and the resulting sampling
equations suggests some interesting contrasts to existing mod-
els. In particular, if we use PLDA in a purely unsupervised
setting with no labels beyond the latent label class of k top-
ics, the model reduces exactly to traditional LDA. At the
other extreme, if every document has only a single label,
if we have no latent topic class, and if we give each label’s
class a single topic, our model’s per-class learning function
becomes the same count and divide of terms within a class
as used in the multinomial naive Bayes model [22]. Simi-
larly, if we have no latent topic class, and if we give each
label access to only a single topic by setting Kl = 1 for all
labels l, then the model reduces to Labeled LDA [27]. Inter-
estingly, Labeled LDA can be used to approximate PLDA
by the construction of a synthetic label space where, for any
given label l, we construct a class of labels of size Kl as
labels “l-1 l-2 l-3 ... l-Kl” with all those labels applied to
every document with label l. In this case, Labeled LDA will
output multiple versions of the same label which, if symme-
try is broken during initialization, may result in topics that
look like our latent sub-labels in PLDA but has no theoret-
ical guarantees as such. This construction was applied to
microblogging data from Twitter with in [26] to good effect,
seeding the development of the models in this paper.

Learning and Inference. An efficient Gibbs sampling al-
gorithm can be developed for estimating the hidden param-
eters in PLDA based on the collapsed sampling formula in
Equation 3. Efficient computation of the counts n can be
done by keeping histograms over the number of times each
term has been associated with each topic within each doc-
ument and how often each topic has been associated with
each term. The sampler loops over the corpus, re-assigning
topic assignment variables z and updating the corresponding
histograms. However, Gibbs sampling is inherently sequen-
tial and we would like this model scale to the size of modern
web collections, so we developed a parallelizable learning
and inference algorithm for PLDA based on the CVB0 vari-
ational approximation to the LDA objective as described in
[1]. For each word at position i in each post d, we store a dis-
tribution γd,i over the likelihood that each label and topic
generated that word in that document using the normal-
ized probabilities from the Gibbs sampling update formula
in Equation 3. These distributions are summed into frac-
tional counts of how often each word is paired with each
topic and label globally, denoted #j,k,w, and how often each
label appears in an each document, denoted #d,j,k. The al-
gorithm alternates between assigning values to γd,i,j,k and
then summing assignments in a counts phase. The update
equations are listed below. Initially, we use small random
values to initialize #j,k,w and #d,j,k.

Assign:

γd,i,j,k ∝ I[j ∈ Λd, k ∈ 1..Kj ] ·
#j,k,w−γd,i,j,k+η

#j,k−γd,i,j,k+Wη
·

(#d,j,k − γd,i,j,k + α)
Count:

#d,j,k =
∑
i γd,i,j,k

#j,k,w =
∑
d,i γd,i,j,k · I[wd,i = w]

#j,k =
∑
w #j,k,w

The references to γd,i,j,k on the right side of the pro-
portionality in the assignment phase refer to the value at
the previous iteration. This formulation allows for a data-
parallel implementation, by distributing documents across a
cluster of compute nodes. Assignments are done in parallel
on all nodes based on the previous counts #d,j,k, #j,k,w and
#j,k (initially small random values). The resulting assign-
ments γd,i,j,k are then summed in parallel across all compute
nodes in a tree sum, before being distributed to all compute
nodes for a new assignments phase. The process repeats
until convergence. Like in [1], we find that the CVB0 learn-
ing and inference algorithm converges more quickly than
the Gibbs sampler to a solution of comparable quality. In
practice, we find that this algorithm scales to very large
datasets—experiments on a corpus of one million PhD dis-
sertation abstracts resulted in models that trained in less
than a day on a cluster of twelve 4-core machines.

2.2 Partially Labeled Dirichlet Process
PLDA provides a great deal of flexibility in defining the

space of latent topics to effectively learn latent topics both
within labels and in a common background space. Unfortu-
nately, PLDA introduces an important new parameter for
each label, Kl, representing the number of topics available
within each label’s topic class. Fortunately, non-parametric
statistical techniques can help estimate an appropriate size
for each per-label topic set automatically. Concretely, we
replace PLDA’s per-label topic mixture θl with a Dirichlet
process mixture model [24], which can be seen as the infi-
nite limit of the finite mixture of topics per label used in
PLDA. Formally, PLDP assumes a generative process simi-
lar to PLDA, with a multi-set of words ~wd for each document
and an observed set of labels Λd. Like in PLDA, each word
wd,i has an associated label variable ld,i and topic variable
zd,i. Here, the label ld,i is drawn from a document-specific
multinomial over labels, which for efficiency we assume is
drawn from a symmetric Dirichlet prior with parameter α.
To generate a topic assignment zd,i, PLDP picks an exist-
ing topic within label ld,i for word wd,i in proportion to
how often it is used, or generates a new topic with held-out
mass parameter α (the same as the Dirichlet prior for the
document-specific multinomial over labels). The word wd,i,
is then generated according to the topic distribution φld,izd,i
as in PLDA. The Gibbs sampling formula for updating the
joint label and topic assignment ld,i and zd,i in PLDP is:
P (ld,i = j, zd,i = k|l¬d,i, z¬d,i, wd,i = t;α, η)

∝ I[j ∈ Λd] ·

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)(
n

(¬d,i)
d,j,·,· + α

n
(¬d,i)
d,·,·,· + α|Λd|

)
(4)

·


n
(¬d,i)
d,j,k,·

n
(¬d,i)
d,j,·,·+α

for k existing

α

n
(¬d,i)
d,j,·,·+α

for k new

∝ I[j ∈ Λd] ·

(
n

(¬d,i)
·,j,k,t + η

n
(¬d,i)
·,j,k,· + V η

)
·

{
n

(¬d,i)
d,j,k,· for k existing

α for k new

As in the Gibbs expression for PLDA in Equation 3, we
cancel the numerator in the second fraction with the de-
nominator in both versions of the final term. Again, the
denominator in the second fraction is independent of label
and topic assignments, so it is folded into the proportional-
ity constant. The Gibbs re-assignment parameters in Equa-
tion 4, paired with data structures updated to reflect the



appropriate counts of interest at reassignment, can be used
to create an efficient Gibbs sampling algorithm for the Par-
tially Labeled Dirichlet Process. Unfortunately, the embed-
ded Dirichlet process mixture model complicates the paral-
lelizability of learning and inference in this model.

It is worth noting that PLDP’s embedding of the Dirichlet
Process is, in some ways, an even more natural fit than in
standard topic modeling applications such as the Hierarchi-
cal Dirichlet Process [30]. HDPs and related models discover
a global set of latent topics within a corpus as a function of
both the concentration parameter α and the corpus being
analyzed. So for a known corpus of interest, text mining
practitioners still have a single parameter to choose—instead
of picking the number of topics, they pick a concentration
parameter. In practice, this is often no easier than picking
the number of topics directly. In contrast, for PLDP, a single
DP concentration parameter α selects the number of topics
for each label in L, effectively reducing the number of model
parameters related to topic cardinality from |L| to one, α.

3. CASE STUDIES
We illustrate applications of PLDA and PLDP to partially

supervised text mining tasks on two kinds of labeled corpora
with very different distributional properties: PhD disserta-
tion abstracts annotated with subject code designations and
tagged web pages from del.icio.us. Our PhD dissertation
dataset contains over 1 million United States PhD disserta-
tion abstracts from the ProQuest UMI database1, averaging
about just over 2 subject codes from a controlled vocabulary
of roughly 260 codes curated by ProQuest staff. These sub-
ject codes correspond to high-level field designations such as
biochemistry, public administration, cultural anthropology,
etc. Each document contains 179 non-stop words on aver-
age, corresponding to about two paragraphs of text from
each abstract. Our del.icio.us dataset is a subset of 3,200
popular, heavily tagged documents from the Stanford Tag
Crawl Dataset [15] collected in the Summer of 2007, with
an average length of 1263 words from a word vocabulary of
321,062 terms, and an average of 122 distinct tags out of a
vocabulary of 344,540 tags.

These datasets have very different distributional statistics,
both in terms of the underlying texts and the label spaces.
The del.icio.us documents are longer and have high overlap
in common tags, whereas the dissertations tend to be shorter
and carefully filed in a small number of subjects. In the
following subsections, we examine these datasets from the
partially supervised text mining perspective, finding that,
despite their differences, both datasets can be effectively
modeled. Because of the size of the dissertation dataset
in the case study below, we focus on qualitative results that
can be achieved through our parallelized PLDA model. Be-
cause of the smaller size of the del.icio.us data, we use the
del.icio.us case study to quantify our intuitions about the
model’s ability to approach text mining challenges and com-
pare PLDA with PLDP. Where not otherwise specified, we
used fixed hyperparameters of 0.1 for α and η.

3.1 PhD Dissertation Abstracts
Traditional digital libraries often annotate documents with

a controlled vocabulary maintained by domain experts to
ease indexing, searching, and browsing. While these collec-

1http://www.proquest.com/en-US/products/dissertations/

tions represent a shrinking fraction of all the world’s elec-
tronic text, they do contain some of the most focused and
important content within a limited domain. One such col-
lection is the UMI database of PhD dissertation abstracts
maintained by ProQuest, the official archival agency for dis-
sertations written in the United States as designated by
the US Library of Congress. In collaboration with social
scientists in Stanford’s School of Education, we collected
1,023,084 PhD dissertation abstracts from the Proquest UMI
database filed by US students since 1980 from any of 151
schools classified as research-intensive by the Carnegie Foun-
dation since 1994.2 These dissertations are an excellent basis
for the study of the history academia because they reflect
the entire academic output of universities, as seen through
their graduating students, and do not reflect the coverage
biases toward scientific or engineering publications found in
most databases of academic publications, such as ISI (with
a biomedicine) and CiteSeer (with computer science). A
more complete study of this dataset can be found in [25]
and warrants more space than is available here, so we use
the PhD dissertation database as a concrete illustration of
the advantages of partially supervised topic models in an
active computational social science collaboration.

While the subject codes in our data cover the full range
of academic fields, they are not evenly distributed in usage,
reflecting real differences in field sizes. Indeed, the most
common subject code in our dataset (electrical engineering)
has 44,551 instances, whereas the least common (African
literature) has only 1,041. Models like PLDA are a natural
fit for analyzing these controlled-vocabulary document col-
lections due to their ability to model both the text content
in terms of latent usages of the known indexing vocabulary.
By contrast, latent topics on this dataset collapse distinc-
tions between small fields (folding them into a single topic)
and overly emphasize the importance of larger ones, just
based on the amount of support in the data. For example,
one run of LDA on this dataset—using 100 latent topics—
associated topics to fields in proportion to their prevalence
in the data: electrical engineering was assigned three top-
ics, whereas African literature was split between one topic
related to all forms of race culture in America (“american,
black, white, ethnic, african”) and another on all forms of lit-
erature (“literari, novel, narr, text, writer”). By seeing which
subject codes appeared in each topic, we can see that these
two topics are themselves dominated by larger subjects: an-
thropology and political science for the former and modern
and classical literature for the latter. This result is reason-
able from the perspective of how much support there is for
topics in the dataset. But by losing smaller subject codes in
the tails of larger topics, we lose the ability to describe topic
dimensions in terms of the known, human interpretable ob-
jects of study (fields) while simultaneously losing all latent
sub-structure within each field.

As a modeling alternative, we could train an independent
topic model on all dissertations in each subject code. How-
ever, almost all dissertations have more than one subject
code. As a result, many words in the corpus will be double-
counted whereas PLDA will attribute each word in each dis-
sertation to the appropriate subject code’s latent topics. As
a modeling framework, PLDA further allows for the auto-
matic construction of shared latent background topics that

2http://classifications.carnegiefoundation.org/resources/
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Figure 2: PLDA output on dissertation abstracts (left) and del.icio.us tags (right). Computer Science and Linguistics

are two subject codes. “NB” (upper, left) refers to the naive Bayes term estimates associated with each respective

code, contrasted with the latent topics learned within each. The “(background)” class (for del.icio.us in upper right,

dissertations in lower-left) is the latent topic class shared by all documents in the respective collection.

extract common words found in most abstracts across all
per-field topics. The background topics in PLDA are ex-
plicitly labeled as such by the model and so do not need to
manually identified as they would if each subject code had
an independently trained model.

Examples of the topics learned by PLDA are in Figure 2.
At the top, we see the most common words associated with
each subject code by the simple count-and-divide multino-
mial naive Bayes estimate, as well as latent sub-topics dis-
covered for each subject code. We used a distributed im-
plementation of PLDA to learn a model with eight global
latent background topics and eight latent topics per subject
area, resulting in a total of 2,080 latent topics. The results
shown are representative of the quality of discovered topics
across all academic disciplines. Note that the major distinc-
tions within each subject code roughly correspond to the
broad areas of study within computer science and linguis-
tics. The latent topics capture shared common structure in
PhD dissertations,3 including basic things such as variables
that increase or decrease, rates of change, and structural
starting points about needs, problems, and goals.

A high quality topic space with labeled groups of latent
dimensions, as output by PLDA, can be used to ask and an-
swer questions about the nature of academia. For example,
we can re-run inference on any given dissertation (while al-
lowing it to use all subject labels) in order to compute a per-
dissertation distribution over fields of study—which words

3Note that common stopwords and very rare words were removed
before training. Terms were stemmed using a Porter stemmer to
further reduce the vocabulary size for memory efficiency.

might the dissertation have borrowed from which other fields.
This can tell us which dissertations within an area of inter-
est are more or less interdisciplinary. Did computational
biology get an earlier head start at public or private institu-
tions? Or, at a larger-scale, we can ask which schools tend
to have the most inter-disciplinary research in general, or
even whether interdisciplinary dissertations are more likely
to result in productive future research careers. As always,
external, dataset-specific validation metrics need to be in
place in order to trust the output of such analyses.

Although this section is merely descriptive, we hope it
serves to illustrate the practical impact that human-inter-
pretable topic dimensions can bring to text mining prac-
titioners and computational social scientists. In the next
section, we examine content from the social bookmarking
website del.icio.us, and use that dataset’s abundance of tags
as the basis for extrinsic comparison between models.

3.2 Tagged web pages
Users of social bookmarking websites like del.icio.us book-

mark the pages they encounter with single word tags [7]. In
contrast to more traditional supervised learning problems,
user-generated tags are not predetermined nor applied uni-
formly to all items. For example, the tag language on the
social bookmarking site http://del.icio.us/ might be applied
to web pages about human languages or programming lan-
guages. We call these variations in usage of the same tag
sub-tags. The right half of Figure 2 summarizes some of
the types of trends discovered within each tag on del.icio.us.
The model was run on a randomly selected 3,200 tagged



Table 1: HTJS within a tag (left) and within sub-tags

(right). % change is relative to the .0183 score for ran-

domly selected documents.
Docs by tag Docs by sub-tag

Tag HTJS Change HTJS Change
books .0254 39% .1292 605%

computer .0362 97% .1609 777%
culture .0259 41% .0780 326%
design .0269 47% .0510 178%

education .0206 12% .1784 873%
english .0263 44% .0531 189%
language .0314 71% .1996 989%
style .0290 58% .2244 1124%

Overall .0273 49% .1191 550%
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LDA (top) and PLDA (bottom) on tagged web pages.

PLDA is substantially faster than LDA at a compara-

ble number of topics because of the sparsity inherent to

PLDA’s sampling distribution.

web pages from [15], using 20 tags hand-selected to be rel-
atively common but also broad in scope: reference, design,
programming, internet, computer, web, java, writing, en-
glish, grammar, style, language, books, education, philoso-
phy, politics, religion, science, history and culture. We used
five latent topics and five topics for each tag. Qualitatively,
the figure illustrates the model’s ability to discover mean-
ingful sub-tags, even some with a common meaning.

Because the model was trained on only a subset of all tags,
we can use the remaining tags as a form of extrinsic model
evaluation for computing the correlation of our model’s out-
put with a surrogate human relatedness judgment. Such
an evaluation is preferable to the standard perplexity-based
evaluations common in topic modeling, which have been
shown to disagree with human judgments of topic quality,
such as in [9]. Here, we refer to the tags not explicitly
modeled as held-out tags. In our experiments, most tags
are held-out (128 / 132 per document, on average). Be-
cause two related documents are more likely to be tagged
the same way, overlap between their held-out tags is a nat-
ural surrogate gold-standard metric for those pages’ relat-
edness. Formally, we measure the relatedness of a pair of
documents d1 and d2 as their held-out tag Jaccard score
(HTJS), defined to be the Jaccard coefficient of overlap
in their held out tag sets, G(d1) and G(d2), respectively:

HTJS(d1, d2) = |G(d1)∩G(d2)|
|G(d1)∪G(d2)| . To measure the average re-

latedness within a group of documents, we randomly select
k pairs of distinct documents from within the group, with
replacement. Here we set k = 500, finding little deviation
in a set’s scores across different random initializations and
finding no significant impact from increasing k.

HTJS is a sensible basis for evaluating the effectiveness
of our model at capturing latent sub-structure in the data.
We computed HTJS on a random subset of documents in
our dataset, finding the average score to be 0.0183, showing
little overlap in tags of randomly chosen pages, as expected.
We expect that pairs of documents that are both tagged with
t will have higher held-out tag similarity than the baseline.
Columns 2 and 3 in Table 1 show the improvement in HTJS
scores from some of the 20 modeled tags in the dataset. In-
deed, we find that documents tagged with computer (which
is not a held-out tag) have an average HTJS score of .0362,
a 97% increase over the set of all documents (.0183). On
average, grouping by tag increases HTJS scores by 49%, in
line with our expectation that knowing the document’s tag
tells us something about its other tags.

We can further utilize HTJS to quantify our model’s abil-
ity to isolate coherent sub-tags within a tag. The HTJS
for sub-tag s of tag t is computed on all documents labeled
with tag t that use sub-tag s with at least as much proba-
bility as the sum of the other sub-tags of t. For example,
the HTJS of the documents using computer ’s first sub-tag
(“security news may version update network mac”) scores as
high as 0.312, improving the HTJS of just knowing computer
by another 31%. The right-most columns in Table 1 report
the HTJS averaged across all sub-tags of the tag named in
the left-most column. Not all documents tagged with t will
necessarily participate in one of these subsets, as not all doc-
uments will be guaranteed to be strongly biased toward one
sub-tag. The large improvements shown in Table 1 (550%
relative to the baseline and 336% relative to the single tag)
demonstrate PLDA’s ability to model coherent sub-usages
of tags.



3.3 Model comparison by HTJS Correlation
In this section we use HTJS to compare PLDA and PLDP

to several strong baselines. Better performing models should
have better agreement with HTJS similarity scores across a
wide range of document pairs. We quantify this intuition
with Pearson’s correlation coefficient: for any given model,
we compute the correlation of similarity scores generated
by the model with HTJS scores over 5,000 randomly se-
lected document pairs. Higher correlations mean that the
similarity score implied by the model better aligns with our
surrogate human judgments.

Figure 3 shows the correlation of PLDP, PLDA, LDA,
Labeled LDA, and tf-idf cosine similarity with HTJS scores
as the total number of latent topics changes. The way we
compute similarity scores depends on the model form: the
partially supervised models introduced here, like other topic
models, project documents into a lower dimensional topic
space through their per-document topic loadings. In the
case of standard topic models such as LDA, this loading is
just the per-document topic distribution θ. For PLDA and
PLDP, we take a document’s “θ” to be the concatenation of
the documents’ topic loading on all labels (even those not
present in the document), resulting in a vector that is dense
for topics corresponding to the document’s labels and zero
elsewhere. Values of these signature vectors are compared
using cosine similarity, which we have found to be a stable
and high performing metric in this context.

We also included two baselines: tf-idf cosine similarity (in
word space) and the Jaccard score of the modeled (i.e. not
held-out) tags. For all models, we used fixed hyperparam-
eters of α = .01 and η = .01. Along the x-axis is the total
number of latent topics used by PLDA (varying the number
of topics allocated per class from 1 to 16) and of LDA. La-
beled LDA has a horizontal line corresponding to using 20
topics, one per class (and no latent class) and performs sub-
stantially worse than the other models because of its inabil-
ity to model the sub-structure of each tag. PLDP demon-
strates a higher correlation with the HTJS scores across the
whole dataset by adapting to the label and word distribu-
tions in the data. PLDP’s embedded Dirichlet process al-
lows it to allocate different numbers of topics to each tag
as a function of its concentration parameter α. Here, our
PLDP model allocated 293 topics with substantial proba-
bility mass (and several hundred more occurring with very
low frequency). These topics were allocated differentially ac-
cording to the frequency of each tag and the variety of ways
in which it is used—most were given to the latent class and
common tags such as design, politics, and internet. Only
four topics were allocated to the least common tag in the
dataset (grammar). We experimented with several values
of α for PLDP, resulting in more or fewer topics, but with
similar ratios of topics allocated to each tag and similar (but
not always superior) overall performance results.

As the number of topics grows, the performance of PLDA
approaches that of PLDP, but with substantial computa-
tional advantages. In particular, our PLDA implementation
can be parallelized in a straightforward manner and PLDA
does not have the additional overhead of constructing (and
possibly pruning) new topics. On average, our PLDA im-
plementation is between 5 and 20 times faster per iteration
than our (much less optimized) PLDP implementation, and
takes fewer iterations to converge.

4. SCALABILITY
The expense of adding more label classes is directly pro-

portional to how many documents each label participates in,
and is always faster than modeling more global latent top-
ics. Indeed, the impact of a label l’s topics on running time
appears only in computing the sampling proportions in doc-
uments with l ∈ Λd. This allows PLDA models such as those
trained on the PhD dissertation dataset to scale to very large
topic spaces and in an appreciably shorter period of time—
indeed, training our 8 topics-per-subject PLDA model on
one million abstracts ran in under a day on a small clus-
ter of multi-core computers. Training a comparable number
of latent topics (2,080) on this dataset took, on average 82
times longer per iteration and more iterations to converge.
Like LDA, the running time of PLDA (for a fixed number
of iterations) is linear in the size of the input data.

On collections with more common labels that have a higher
degree of overlap, such as del.icio.us, incorporating more la-
bel classes or topics per class increases the computational
load, but at a rate much slower than the cost of adding
more global shared latent topics, as most tags are not ap-
plied to most documents. Figure 4 shows the running time
per iteration (in minutes) for the collapsed variational Bayes
learning algorithm on roughly twelve thousand documents
from del.icio.us as the effective number of topics increases
(using the same schedule of topics as in Figure 3). PLDA
is substantially faster to train, and also results in a better
correspondence with human similarity judgments. We note,
however, that practitioners should use models like PLDA
with care, choosing the set of labels modeled and topics per
label depending on the statistics of the dataset. PLDP can
help by automatically determining an appropriate number
of topics per label class, but its flexibility comes at the ex-
pense of speed, as the model takes substantially longer to
train than the Gibbs sampler for PLDA, and does not yet
have a data parallel implementation.

5. CONCLUSION
This work proposes two topic models that incorporate la-

bel supervision in novel ways: PLDA and PLDP, which learn
latent topic structure within the scope of observed, human-
interpretable labels. The models introduce high-level con-
straints on latent topics that cause them to align with hu-
man provided labels, essentially “filling in the details” with
the use of unsupervised machine learning. The addition of
these constraints improves interpretability of the resulting
topics, shortens running time, and improves correlation with
similarity judgments. And because these models fit into the
Bayesian framework, they can be extended to incorporate
other features, such as time or sequence information.

PLDA and PLDP provide a direct solution to the prob-
lem of label ambiguity: as in linguistic word usage, labels
on tagging sites like del.icio.us and social media sites like
Twitter are used with different meanings in different con-
texts. PLDA and PLDA can tease these meanings apart
into separate latent topics within each label. However, the
models do not directly address the inverse problem of syn-
onymy, where several labels may refer to the same thing.
Future work could look at recognizing (partially-) synony-
mous labels via a post-processing step or with explicit topic
sharing. However, the independence of topics across labels
is central to the favorable scalability of the models, as dis-



cussed in Section 4, so care must be taken when relaxing
this constraint. We believe that PLDA, PLDP, and simi-
lar future models hold promise for addressing the challenges
of partially supervised learning for more interpretable text
mining, where human provided labels are present but do not
always align with the needs of text mining practitioners.
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