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Abstract
This paper addresses the problem of learning multiple spoken
language understanding (SLU) tasks that have overlapping sets
of slots. In such a scenario, it is possible to achieve better slot
filling performance by learning multiple tasks simultaneously,
as opposed to learning them independently. We focus on pre-
senting a number of simple multi-task learning algorithms for
slot filling systems based on semi-Markov CRFs, assuming the
knowledge of shared slots. Furthermore, we discuss an intra-
domain clustering method that automatically discovers shared
slots from training data. The effectiveness of our proposed ap-
proaches is demonstrated in an SLU application that involves
three different yet related tasks.
Index Terms: spoken language understanding, slot filling,
multi-task learning

1. Introduction
Spoken language understanding (SLU) systems have tradition-
ally focused on narrowly restricted domains. In the past a few
years, the burgeoning development of voice search technologies
opens up opportunities for developing web-scale SLU systems.
For example, Siri [1] enables SLU for a dozen task domains
such as restaurants, movies and weather. A similar application
has been deployed in Bing for iPhone [2]. Since each task de-
fines a different set of slots, one needs to have tailored training
data for a supervised slot filling system.

Often times, one may find semantic correspondence be-
tween slots defined in different tasks. Consider these examples:

• Find an [priceexpensive] [cuisineitalian] restaurant in
[locationnew york city].

• Showtimes of [titleharry potter and the deathly hallows]
near [placeredmond washington]

The first query requests a restaurant search, and the second asks
about movie showtimes. We can see that location in the first
task and place in the second task represent a similar semantic
concept, although they are named differently. We let a shared
slot denote a semantic concept that occurs in multiple tasks.
When building multiple SLU systems with shared slots, it is
possible that we achieve better performance by leveraging such
information, as opposed to learning each system individually
using task-specific training data.

Multi-task learning (MTL), originally introduced by [3] for
performing multiple classification tasks jointly using neural net-
works, has been applied to various models and problems. In the
area of SLU, [4] studied MTL for the problem of intent classi-
fication where labeled data is reused across tasks. In this work,
we exploits MTL for slot filling and in particular for systems

based on semi-Markov CRFs. Perhaps the closest work to ours
is [5] which transfers information between linear-chain CRFs.
Their work, however, does not explicitly define correspondence
between CRF slots. Instead, they train a cascade of CRF model
independently, using the prediction of the previous model as a
feature, and perform joint decoding by a composition of CRFs.
In this paper, in contrast, we first assume that the shared slots are
given, and presents four MTL approaches that explicitly lever-
age such information. We then describe a clustering algorithm
that automatically discovers shared slots from training data.

2. Semi-Markov CRFs
We start by providing a background of semi-Markov CRFs
[6], upon which our slot filling models are constructed. Semi-
Markov CRFs jointly model the segmentation of an input se-
quence and the classification of the segments. This enables the
use of segment-level features, which brings great convenience
and flexibility in feature engineering. Many works have shown
the effectiveness of this model in information extraction from
text [6, 7, 8] and in SLU [9, 10].

We let Y denote the set of labels (slots) for a given
task. Given an input sequence x, our goal is to obtain s =
(s1, s2, . . . , sN ), where each segment si is represented by a tu-
ple (ui, vi, yi). Here ui and vi are the indices of the starting
and ending word tokens respectively; and yi ∈ Y is a seg-
ment label. We further augment the segment sequence with
two special segments: (0, 0, Start) and (N+1, N+1, End), rep-
resenting s0 and sN+1 respectively. We further let f(i,x, s)
denote a vector of feature functions, which takes on the form
f(x, ui, vi, yi, yi−1). There are usually two subtypes of fea-
ture functions, f(yi−1, yi) and f(x, ui, vi, yi). While the for-
mer solely depends on the label set Y , the latter is usually
defined based on data observations. We will discuss the fea-
tures used in our task in Section 5.2. Furthermore, we define
F (x, s) =

∑|s|
i=1 f(i,x, s). Similar to CRFs, semi-Markov

CRFs are parameterized by a weight vector λ, each dimen-
sion corresponding to a feature function in f (and hence in F ).
Given training data, λ is estimated to maximize

p(s|x) =
1

Z(x)
expλ · F (x, s) (1)

where Z(x) =
∑

s
′∈S|x|,Y

expλ · F (x, s′) is a partition func-
tion that sums over all possible segmentations and all possible
labelings of the segments. Apparently the hypothesis space S
depends on the input length |x| and the label set Y .
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3. Multi-Task Learning Algorithms
When learning multiple tasks, k = 1, . . . ,K, we let Yk and fk
(and hence Fk) represent the task-specific label set and feature
function set respectively. For each k, we can estimate λk fol-
lowing a single-task learning scheme, i.e., to maximize Equa-
tion (1) using task-dependent training data only.

If there are slots from different tasks representing a similar
semantic concept, it is reasonable to believe that we can transfer
information across tasks to improve the overall slot filling per-
formance. In this section, we assume that the slot sharing infor-
mation is given, which is represented by pairwise intersections
Yk

⋂
Yl, and propose four simple MTL algorithms. Notice that

in all approaches we assume the knowledge of the task ID of
each training/test sample.

3.1. Soft evidence (SE)

We define Y 0 =
⋃

k,l
(Yk

⋂
Yl) which represents the entire

set of shared slots including the special slot Other. Our first
approach constructs a global auxiliary model on Y 0, and then
uses its prediction as SE in each slot filling system.

Specifically, we first learn λk, k = 1, . . . ,K, indepen-
dently based on Equation (1) using their respective training
data. As a separate process, we convert the labels of training
data based on the following rule: a label is kept as it is if be-
longing to Y 0 and is otherwise converted to Other. In this way,
the training data in all tasks will now have exactly the same la-
bel set, i.e., Y 0. An auxiliary model is then learned using the
converted training data from all tasks, which will presumably
provide more reliable detection of the shared slots.

At decode time, we run an input sequence x through
the auxiliary model, producing a segment sequence e =
(e1, . . . , eM ), where e ∈ S|x|,Y 0 . Similar to the use of SE
in CRFs [11], we condition s on two observation, x and e, as
well as the task ID k:

p(s|x, e, k) ∝ exp{λk ·Fk(x, s)+ω

|s|∑

i=1

|e|∑

j=1

I(si = ej)} (2)

where ω is a positive scalar controlling the importance of the
SE. This model favors a hypothesis that is consistent with the
prediction of the auxiliary model (w.r.t. both segment bound-
aries and labels). When ω = 0, Equation (2) is equivalent to
Equation (1). When ω = +∞, on the other hand, e becomes
hard evidence, meaning that we fully trust the decision made by
the auxiliary model.

3.2. Parameter tying (PT)

When there are shared slots, it is likely that the feature sets fk
have intersections as well. The PT approach still aims at learn-
ing multiple models λk, but the weights of the same feature
functions are tied across tasks. PT can be considered as a form
of regularization on model parameters.

Using an optimization scheme based on stochastic gradi-
ent descent, PT can be efficiently implemented by jointly esti-
mating all task-dependent models. Specifically, we merge all
training data and randomize the sample order. For a training
sample from task k, we compute the gradient of λk based on
Equation (1). When updating element in λk, we simultaneously
update its counterpart elements in λl, l �= k, if available.

3.3. Joint model (JM)

Alternatively, we learn a single joint model on the union set
Y u =

⋃
k Yk. The set of feature functions is also a union of

task-dependent ones, which we denote as F u; and we use λu to
represent the corresponding weight vector.

The joint model λu is estimated from training data from
all tasks, with the constraint that transitions can only occur be-
tween slots of the same task. In other words, we have

p(s|x, k) =
1

Z(x, k)
expλu · Fu(x, s) (3)

where Z(x, k) =
∑

s
′∈S|x|,Yk

expλu · Fu(x, s′). At decode
time, we use λu·F u(x, s) as a single decision function to search
for the most likely segment sequence in each task.

The JM approach can be advantageous over PT in that it
introduces new features to each task. Both approaches, how-
ever, are computationally expensive, which may not be feasible
in practice whenK is large.

3.4. Auxiliary data (AD)

In our last approach, we build task-dependent models using
their own training data plus segments with “in-domain” labels
from other tasks.

Consider k as the task of interest. For a training sample
(x, s) from any task, we extract all segment subsequences s̄,
where all labels in s̄ belong to Yk and where the labels immedi-
ately preceeding and following s̄ do not belong to Yk. In other
words, s̄ is the locally longest subsequence with “in-domain”
labels. s may have multiple such subsequences which form a
set, which we denote as sub(s). Apparently if (x, s) comes
from task k, sub(s) will contain one single sequence which is
s itself. Given all such segments, we extract additional features
that are absent from fk. We let fu

k denote the union of fk and
the set of new features. For task k, we estimate the correspond-
ing weight vector λu

k by maximizing

1

Z(x, k)

∏

s̄∈sub(s)
expλu

k · Fu
k (x, s̄) (4)

whereZ(x, k) =
∑

s
′∈S|s̄|,Yk

expλu
k ·F

u(x, s′). We can alter-
natively view this learning scheme as optimizing Equation (1)
on task-specific training data, and optimizing Equation (4) on
segments with “in-domain” labels from other tasks. At decode
time, λu

k · Fu
k (x, s) is used as the decision function for task k.

Unlike PT and JM that require learning multiple tasks all at
once, AD decouples the optimization of task-dependent models
and is hence scalable to a large number of tasks.

4. Discovering Shared Slots
Up to this point, we have assumed that the slot sharing infor-
mation is given; and we yet need to discuss how to identify
the intersections between Y1, . . . , YK . In other words, starting
withK mutually exclusive sets of slots, our goal is to find intra-
domain clusters; here by an “intra-domain cluster” we mean that
no two elements in a cluster are from the same task domain.

We first construct a vector space representation for each
slot. The dimensions of the vector space correspond to the fea-
ture functions of the form f(x, ui, vi, ·) (yi is left out). The
coordinates of a slot y, denoted by λ(y), is determined by the
weights associated with f(x, ui, vi, yi = y). We learn the
weights in a single-task learning setting following Equation (1).
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In this way, λ(y) naturally reflects the importance of each fea-
ture dimension in slot filling.

With this vector space representation, our next step is to
group the slots into intra-domain clusters. To this end, we con-
struct aK-partite view where the slots are partitioned based on
their task IDs. We use N (y) to denote the set of neighbors
of y, i.e., slots in other tasks that are connected with y. N (y)
are discovered incrementally with the following agglomerative
clustering algorithm. At the end of the algorithm, each com-
plete graph represents an intra-domain cluster, from which the
intersections of Y1, . . . , YK , can be derived.

Algorithm 1 Intra-domain Agglomerative Clustering (IAC)
Input: Y1, . . . , YK , and λ(y) for all y ∈

⋃
k
Yk

1: InitializeN (y) = ∅ for all y;
2: For each pair k �= l, compute the cosine similarity

d(y1, y2), ∀y1 ∈ Yk and ∀y2 ∈ Yl;
3: repeat
4: Find (y1, y2) for which d(y1, y2) is the largest and y1

and y2 are not connected;
5: if ∀y ∈ N (y1), domain(y) �= domain(y2); and ∀y ∈

N (y2), domain(y) �= domain(y1) then
6: Connect y1 and y2;
7: end if
8: until d(y1, y2) is smaller than a threshold
Output: all complete graphs in thisK-partite graph;

5. Evaluation
5.1. Data

We conducted experiments on three tasks. The data set consists
of natural language queries in the domains of Hotel, Restaurant
and Movie, e.g., “book a hotel room for two in denver for next
friday”, or “best action movies 2011”. We asked human anno-
tators to manually label all three datasets at the slot level using
labels defined in Table 2. We allocated 80% of each dataset
for training and 20% for testing, with specific numbers of sen-
tences and segments given in Table 5.1. Parameter estimation
was done using 4-fold cross-validation on the training set.

Training set Test set
Domain Sent. Slot Sent. Slot.
Hotel 1572 3729 406 992

Restaurant 2340 5269 601 1331
Movie 1768 2257 540 654

Table 1: Amounts of training/test data in each domain.

Furthermore, we let a human annotator to identify shared
slots based on schema descriptions of all tasks and based on the
training data. The top and middle sections of Table 3 show the
human-identified shared slots.

5.2. Features

We implemented common features used in semi-Markov CRFs
(see [8] for details). They include transition features, which
are binary features defined on pair-wise segment labels. Lex-
ical features used in our experiments consist of segment-level
tokens, within-segment n-grams, preceding and succeeding n-
grams, each in conjunction with possible segment labels. Fur-
thermore, we incorporated features based on gazetteers such as

Shared slots Original names
location h-location, r-location, m-location
near h-near, r-near, m-near
date h-checkin-date, r-reserve-date, m-

reserve-date
time r-reserve-time, m-reserve-time
price-range h-price-range, r-price-range
star-rating r-star-rating, h-star-rating
description h-description, r-description
num-people h-num-adults, r-party-size

Table 3: Top and middle sections: shared slots chosen by human
annotator; Middle and bottom sections: shared slots discovered
by IAC ranked by the order in which they are discovered.

BS SE PT JM AD
P 0.866 0.873 0.878 0.889 0.882

Hotel R 0.873 0.882 0.874 0.887 0.882
F1 0.870 0.878 0.876 0.888 0.882
P 0.859 0.863 0.878 0.874 0.879

Restaurant R 0.881 0.887 0.874 0.883 0.880
F1 0.870 0.875 0.876 0.879 0.880
P 0.788 0.791 0.773 0.783 0.822

Movie R 0.769 0.771 0.803 0.815 0.783
F1 0.779 0.781 0.788 0.799 0.802

Table 4: Comparision of MTL algorithms. Bold numbers indi-
cate the best F1’s that are statistically significant over baselines.

lists of hotel names, restaurant names, movie titles, actor names
and etc. The features include the match of segment-level to-
kens against gazetteers, as well as the match of preceding and
succeeding tokens against gazetteers, again each paired with
possible segment labels. We also used regular expression fea-
tures to represent expressions of dates, times, quantities and
monetary values. Finally, we implemented what we call com-
bined features. One example feature can be that the current
segment matches the regular expression for quantities while it
preceeds the word “tickets”, and the segment label is m-num-
tickets (which presumably will have a positive weight). Such
combined features are manually specified.

As a result, we have 300K-400K features in each domain.
The large dimensionalities are largely due to the use of lexical
features, which are extracted from training data, and due to the
fact that we have conjunctions of each lexical feature with all
possible segment labels. We did not apply any feature selec-
tion techniques as it is beyond the scope of our work. To avoid
overfitting we sued l2 regularization on model parameters.

5.3. Results

The evaluation metrics include precision, recall and F1, all at
the slot level, excluding the special slots Other, Start and End.
A decoded segment is considered correct if and only if it has
correct boundaries and has the same label as annotated. We
used the same baselines as reported in our previous work [10]1,
corresponding to a single-task learning setting. The results are
given in the first column of Table 4.

1The numbers are slightly compared to [10] in a few cases due to
the use of different learning rates
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Domain Label set
Hotel h-amenities, h-checkin-date, h-checkout-date, h-description, h-hotel-type, h-location, h-name, h-

near, h-num-adults, h-num-children, h-num-nights, h-num-rooms, h-price-range, h-reward-program,
h-room-type, h-smoking, h-star-rating

Restaurant r-amenities, r-cuisine, r-description, r-location, r-meal-type, r-menu, r-name, r-near, r-party-size, r-
open-hour, r-price-range, r-restaurant-type, r-reserve-date, r-reserve-time, r-star-rating

Movie m-actor, m-award, m-character, m-director, m-genre, m-language, m-location, m-movie-type, m-
mpaa-rating, m-nationality, m-near, m-num-tickets, m-release-date, m-reserve-date, m-reserve-time,
m-viewer-rating, m-title, m-theater

Table 2: Slot sets. Each set additionally includes an Other label, as well as two nominal labels Start and End. For readers’ convenience,
we named the slots such that the prefixes h-, r- and m- indicate labels in Hotel, Restaurant and Movie domains respectively.

To experiment with the proposed MTL algorithms, we first
used the shared slots specified by the human annotator. We im-
plemented the SE approach in Section 3.1. The auxiliary model
was built on 5680 training-set queries that contain 4048 seg-
ments with shared slots (the remaining word tokens were as-
signed the Other label). We report in Table 4 the test-set perfor-
mance with ω = 2 which is found via cross-validation. Despite
consistent improvements across tasks, the gains are not statis-
tically significant in each individual task. Similar performance
gains were observed in the PE approach.

In another set of experiments, we learned a single joint
model λu as proposed in Section 3.3. The union feature set
Fu contains nearly 2M features. By estimating the model λu

on all training data, we obtained significant improvements over
the baselines in all tasks. Moreover, by comparing with PT, we
can see that using a universal feature set Fu brings great benefit
to learning.

Finally, we experimented with the AD approach. The per-
formance is comparable to the JM approach with a substantial
reduction in computational complexity. Similar to the compari-
son between PT and JM, it is interesting to see how much gain
comes from a better estimation of λk, and how much of that
comes from adding new features. We thus ran another experi-
ment by replace fu

k and λu
k with fk and λk respectively in Equa-

tion (4). The performance degraded but still outperformed the
baseline. This again indicates that adding new data and new
features are both beneficial.

5.4. Automatic discovery of shared slots

The middle and bottom sections of Table 3 show the results of
the IAC algorithm with a threshold 0.22 on cosine similarity.
We chose this threshold such that the number of labels in the
resulting clusters is the closest to that chosen by the human an-
notator. We see that the proposed algorithm was able to dis-
cover most of the shared labels identified by the human annota-
tor, with only location missing. Moreover, the algorithm addi-
tionally discovered description and num-people, both of which
are reasonable clusters.

The best way to evaluate the proposed heuristics, however,
is to inspect its impact on slot filling performance. We thus
used the automatically discovered shared slots in our MTL al-
gorithms. We only evaluated the JM approach since it gave the
best overall performance in our previous experiments. We ob-
tained 0.880, 0.877 and 0.788 in F1 for the three tasks respec-
tively. The increase in F1 averaged over tasks is statistically
significant than the baseline. This suggests that in practice we
may be able to apply our multi-task learning strategies without
human supervision.

6. Conclusions
This work is concerned with the problem of learning multiple
slot filling tasks with different, yet overlapping, sets of slots.
Our contribution in this work is two-folds. First, we assumed
the knowledge of how the slots can be shared across tasks,
and proposed four MTL algorithms that transfer such informa-
tion across different tasks. These algorithms were evaluated
and compared on 3 related slot filling tasks, where the JM and
AD approaches significantly improved over single-task learning
baselines and where the latter approach is more efficient com-
putationally. Secondly, we presented an intra-domain clustering
algorithm to discover shared slots from training data. Exper-
iments on the same dataset showed the potential of an MTL
system without human supervision.
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