
What is a File?
Richard Harper1, Eno Thereska1, Siân Lindley1, Richard Banks1,

Phil Gosset1, William Odom2, Gavin Smyth1 , Eryn Whitworth3

1Microsoft Research Cambridge
7 JJ Thomson Avenue

Cambridge, CB3 0FB, UK
Email: intialsur-

name@microsoft.com
Except r.harper@

2Carnegie Mellon University
Human-Computer Interaction

Institute
Pittsburgh, PA, USA

Email wo@willodom.com

3The University of Texas at
Austin School of Information

 1616 Guadalupe
 Austin, TX 78701-1213

Email
eryn@mail.ischoolutexas.edu

ABSTRACT
For over 40 years the notion of the file, as devised by pio-
neers in the field of computing, has been the subject of
much contention. Some have wanted to abandon the term
altogether on the grounds that metaphors about files can
confuse users and designers alike. More recently, the emer-
gence of the ‘cloud’ has led some to suggest that the term is
simply obsolescent. In this paper we want to suggest that,
despite all these conceptual debates and changes in technol-
ogy, the term file still remains central to systems architec-
tures and to the concerns of users. Notwithstanding pro-
found changes in what users do and technologies afford, we
suggest that files continue to act as a cohering concept,
something like a ‘boundary object’ between computer engi-
neers and users. However, the effectiveness of this bound-
ary object is now waning. There are increasing signs of
slippage and muddle. Instead of throwing away the notion
altogether, we propose that the definition of and use of files
as a boundary object be reconstituted. New abstractions are
needed, ones which reflect what users seek to do with their
digital data, and which allow engineers to solve the net-
working, storage and data management problems that ensue
when files move from the PC on to the networked world of
today.

Author Keywords
File; file systems; databases; cloud computing; grammar of
action; metadata; generic object; ownership, possession;
command; social networking; consumer devices.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
As long ago as 1981, Frank Halasz and Tom Moran argued
that the term file was harmful to good HCI [5]. In their
view, users have some kind of mental model or ‘internal
picture’ of files, and this is necessarily different from the
‘abstract conceptual model’ that is embedded in a com-
puter. When the term is used to conjure ‘literary metaphors’
[p. 385] in, say, the design of interfaces, muddles inevitably
result. For the model that ends up being presented to the
user will never ‘fit’ the actual system – it can never do so,
in their view. The two are fundamentally irreconcilable; the
metaphorical model and the ‘real’ model embedded in the
system.

This view certainly seems cogent and doubtlessly is one
that many in HCI would accept. After all it turns around a
basic premise in much of the psychology used in HCI. This
holds that the external world needs to be represented in
some kind of internal form or ‘qualia’ in the human mind
and good design ensures that there is a fit between this in-
ternal model and the external. Since there is unlikely to ever
be a ‘good internal model’ of computer files, then Halasz
and Moran’s case is that it would be unwise to try and de-
sign towards that model; it is best to design on the basis of
the ‘real thing’ even though that prohibits certain types of
metaphor – like those associated with the term file.

But today, as new applications and technologies confront
the user, the apparent cogency of Halasz and Moran’s case
seems to be weakening. For it turns out that it is not clear
what the entities that users deal with might be from any-
one’s point of view – the users or the engineers. What a file
might be is becoming muddled, lost perhaps; certainly con-
fused.

For example, one of Microsoft’s products is OneNote. To a
user, a OneNote Notebook looks very much like the thing
produced in word processing applications – a document of
sorts; one might even suggest a file-like thing. One of the
appeals of OneNote is that it is somewhat more flexible
than typical word processing applications, such as Micro-
soft’s own Word. Users can easily add images and pictures,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW ’13, February 23–27, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1331-5/13/02...$15.00.

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1125

cut and paste from the Web, even add their own scribbles to
a Notebook which the system can convert through OCR to
typescript. All this can be brought together as a single
thing. The application treats the thing that a user thus cre-
ates in a particular way. A Notebook is not a single entity; it
is not, as it were, a single file. It is a collection of files – and
indeed this is how the engineers who designed and built
One-Note think of it: as a thing that consists of a number of
‘read-write objects’. The important point to understand,
however, is that, in OneNote, it is ‘Sections’ that define
what a ‘file’ is. A user creates Sections within OneNote
(although they may also interact with a Page, which they
may think of as components of a Section).

Thus far, so good; in this scenario what a file is from the
user’s and the system engineer’s point of view is pretty
close; there is some correspondence between the ‘mental
model’ and the ‘real model’. However, when a user tries to
save a Notebook on to a cloud service, like SkyDrive (as it
happens also a Microsoft product), something else comes
into play: namely, a different understanding of what are the
file entities that makes a Notebook. In SkyDrive – to put it
in simple terms – instead of a Section being a file (irrespec-
tive of how many pages it consists of), a file is sometimes
redefined by the cloud storage application itself, one result
of this being that on occasion a Section will be stored as
several files. The cloud system stores its data in terms of
the file abstractions, as bundles of files, but these don’t cor-
respond to the originating application’s way of doing so: in
one, ‘files’ take a different form to another.

That the cloud system defines files in its own way would
not matter to the user as long as conversion back again is
consistent. However, it does become an issue if a user’s
attempt to save to SkyDrive is interrupted (as often happens
when accessing cloud services). For when they go back to
SkyDrive after the interruption, they might find a version of
their Notebook already there. This version will, though, be
partial; incomplete in some respects and reflecting not their
own understanding of the structure of their ‘thing’ nor the
view of the file structure that developers of OneNote had in
mind but something else: what the engineers behind Sky-
Drive conceived of as the file entities constitutive of a
Notebook. It is this vision that will have determined which
entities (files) were copied over before the interruption be-
gan.

At first glance, this would seem to confirm Halasz and Mo-
ran’s fear: don’t expect the user’s mental model to fit sys-
tems. But this is not all that is going on here. What this sce-
nario illustrates is that computer scientists don’t have a
common understanding of files either. This issue, this di-
vergence of basic concepts, is not so much new, as it is one
that comes to be highlighted with the massively networked,
distributed world we are coming to where differences in
basic concepts in applications start clashing when brought
together.

This is not the only change that needs to be borne in mind,
however. If the examples above evoke the PC and how it
works, there are now other devices that are becoming al-
most as common and these have no files at all. The iPad, for
example, has no equivalent to the Windows File Explorer
for the simple reason that it has no files to view. It is file-
less. Or at least this is what some would have us believe.
For underneath the hood of this [see 7] and similar devices
– like the more advanced smart phones – there are things
that get called files although this is a label for ‘abstractions’
that allow the systems in question to run efficiently – ad-
dress book information can be re-used in various applica-
tions, for example, as can user identity information. Unfor-
tunately, it turns out just what these abstractions are and
how they might be used is far from fixed or agreed. At-
tempts to ensure that new application developers avoid
some of the difficulties that these ambiguities produce
through, for example, sandboxing their applications (and
hence hiding any abstractions from the developers’ grasp),
cause considerable complaint and besides, the boundaries of
the sandpits are routinely broken by developers who find
ways to illicitly access file stores via the OS.

A Way Forward
So what is one to make of this all? We don’t think that the
way forward in the current context is to abandon the term
files altogether. We think that the term – and related ones
such as ‘to file’ and ‘filing’– can be linked in a way that can
allow computer scientists and users to orient to a shared
object or set of objects, even though the tasks they have in
mind are in many respects quite distinct. In this regard, we
think that the term can label what Star and Greisemer called
in 1989 a ‘boundary object’ [18, see also Star’s revised and
more nuanced view, 17]: a device of sorts that can, amongst
other things, allow two or more distinct communities to
interact around a mutually comprehended and agreed ‘ob-
ject’ and which can, at the same time, bring them together
through focused arrangements and processes of action. In
this view, files are not merely the neutral ground between
users and engineers but a label for a space of organised col-
laboration.

Our argument will not be that the term file is already a
boundary object of sorts however (it might well have been –
but historical questions are not our main interest), so much
as that it can become an effective one if it is given renewed
meaning and vitality. A new set of definitions for the term
file is required: ones that will allow computer scientists to
engineer what users require, that will provide a meaningful
base for those users to act upon and which can enable an
evolving interaction of design and practice to emerge.

More than this, however: our goal is not only to propose
how a refined definition of the term, a renewed boundary
object, can enable these two sides to collaborate. It can also
be, in our view (and consequent on this), part of a larger
effort to define a new grammar of action for an HCI of the
21st century. This will be of concern to users and engineers.

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1126

It seems to us that the practices of users are now profoundly
more social in nature than they were when the term ‘file’
was first coined by computer scientists and the first digital
‘file’ presented to users. Today, users don’t just want to
create and store files. They also want to share those files
with friends and buddies on social networks. Sometimes
they want to give those files to their friends, and sometimes
they want to keep ownership or possession of them, even
while their buddies view them. And all of this might happen
in ways that make the question of where a file is stored
sometimes relevant and sometimes not. At the same time,
the tasks that computer scientists have to attend to given
this evolution in user practice, the diversity of devices that
engineers need to ensure run efficiently as the bedrock for
these new practices, and the need to enable interaction be-
tween applications both between devices and on occasion
processed remotely on the web, requires that from their
view, a revived and invigorated notion of files needs to be
deployed that can allow them to engineer in effective and
hopefully novel ways.

Overview of the Paper
Our goals are then quite bold, albeit our topic might seem
prosaic, almost obsolescent if some commentators are to be
believed. Given this, we will structure the paper as follows.
First, we want to remark on something that might seem
orthogonal to our main goal, though as the paper unfolds
we hope that this will be seen to be not the case.

We commence with the question of how words are to be
understood. If one were to believe Halasz and Moran,
words label things; thus the thing labelled by the word file
in the outside world is (or ought to be) mapped into a repre-
sentation of that thing (i.e., a qualia) in the mental world.
But we think words are best understood as performative, as
ways of doing things as well as sometimes labels for things.
If this is so, we argue that when we approach the problem
of what files ‘are’ (or might be – we shall assume it for the
purposes of argument) we need to be sensitive to how the
word itself is used – and as we shall see, that use is quite
diverse. It is important we do not muddle up uses as we try
to plan a way forward for future use; rather we need to see
what are the kinds of action that maps across and binds
some uses while distinguishing others. These actions can be
the basis of the grammar of action we will want to propose
later on.

Having set the conceptual scene, we then turn to the more
substantive topic of what files do (or did) in early computer
system design. We remark on how the role of files has
evolved and altered over the years. Though only a sketch,
we will look at early attempts to move away from file sys-
tems to, for instance, database systems. The latter can be
seen as emphasising relationships among files, rather than
the file and its location within a folder or file hierarchy, in
that the unit of most interest was the type of relationship
itself. We then remark, again in passing, on attempts to de-
sign interfaces (primarily for the desktop) that sought to

move away from the file metaphor or which sought to rein-
vigorate it, claiming that it has some cognitive value, Ha-
lasz and Moran notwithstanding. We will note that many of
these papers did not attend to the question (or the role) of
files from the engineer’s point of view and so don’t effec-
tively comment on files as a boundary object. Nevertheless,
this research does point towards new user practices.

We shall then turn to the technologies of the current time:
to the world of cloud storage, social networks and applica-
tions like Facebook and Flickr, as well as to a world in
which users have multiple devices and access points to a
file. Building on examples such as provided above with
regard to OneNote, we further illustrate some of the many
difficulties that the old file abstraction has and is creating in
this new world. We argue that these difficulties attest not to
an ‘incorrect model’ of a file, so much as to the stresses that
emerge when engineers and users try to orientate to what
they think is the ‘same model’, when so many changes and
dynamics are afoot that the model (or models) in question
are made muddled, hybrid not to say contradictory. Besides,
we go on to argue that the technology is changing, what
applications allow users to do is changing, what users them-
selves want to do is also altering and this is begging the
question of not so much what files are as what they ought
to be or could be. The role of a file as a boundary object in
the current context is thus losing its efficacy, we suggest,
but if reinvigorated could lead us to inquire into new possi-
bilities. It needs to be made more than simply a term used
in common (or simply used by one side) obviously; it needs
to be a label for some thing and for some practices that bind
and enable, that direct and constrain, and that facilitate co-
herent innovation.

We then outline what we think might be a way forward, a
path that allows designers to offer systems that reflect what
users are seeking to do and which can be engineered so that
the prosaic but nevertheless essential concerns about where
data-as-files might be stored, and how it (they) might be
accessed, copied, moved, made secure and so on, are thus
dealt with effectively. But here we don’t offer technological
descriptions, say, as illustrative of where a new file abstrac-
tion might come to play a role, or recommendations for the
design of a data store that combines file entities with other
data types, such as graph relations (something that is re-
quired in many web-based application experiences [see
19]). Rather, we offer what we think ought to be the foun-
dation of all such considerations: more nuanced vocabulary
about what a system needs to enable and allow. This can be
achieved, we believe, only in part by redefining what is
meant by the word file and the doings associated with that
usage; what is also required, and this is the rub of our paper,
is a new grammar of action: a grammar for both users and
engineers that provides the common ground of cohering
their plans, their doings, their goals, around files and the
other things they want to do in the age of the cloud.

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1127

WORDS AND MEANING: FILES AS A PERFORMATIVE
CATEGORY
When one reads papers like Halasz and Moran’s ‘Analogy
Considered Harmful’ one is led to thinking of language as
being a kind of tool, one that when used properly labels
things. From this point of view, one of the troubles that HCI
has to contend with is that users don’t always know how to
deploy language terms properly; there are infelicitous in
their use and their understanding. Experts, meanwhile,
technicians, computer scientists, HCI professionals and so
forth, don’t suffer from this egregious practice: their train-
ing ensures they use words correctly.

This is not the only way of approaching the general rela-
tionship between the use of terms in everyday life and in
specialist or expert contexts, however. Other approaches
treat user understandings as distinct from the technical but
not as competitors to one another, with the user model often
seeming weak or fallible in the way evoked by Halasz and
Moran. Here, philosophers like Hanfling [6], following
Wittgenstein [22], suggest that everyday language terms are
not, as is often claimed by some (most notoriously the
Churchlands [2]), part of ‘common sense’ attempts to do
science – bad science to boot. Everyday terms do have a
use, a purpose if you like; but in this view scientific usages
have another.

The moral from this is that one ought to allow and assume
this diversity. Nor should one rush to judge the former by
their applicability to the latter. Terms are to be assessed by
what they are used to do in the places in which those terms
do ‘work’. The term file and its various uses in everyday
and technical contexts illustrates this kind of diversity and
workload; it highlights too the broad distinctions between
the everyday and the technical action with language.

In ordinary life, words like ‘file’ are often used to label
things. In this respect there is an empirical referent at issue,
one that subdivides the world into things that can be filed
and those that cannot. But the ways in which the term is
used are more nuanced than this. Thus, a letter from the
Bank might be called a file but a love letter not so. The term
implies, that is to say, something about its contents. Further,
the term is also deployed to highlight particular relation-
ships, between a ‘file’ and a person, for example. When this
happens what is being pointed towards is accountability; the
onus that someone might have to look after something is
being emphasised. These usages (and doubtless others),
which are commonplace in everyday life, are glossed over
by the language of empirical reference.

In computer science, meanwhile, the term file is used to
label the minimal digital entity that can be ‘persisted’. A
file is a label for a bundle of data, that is to say, but what
that bundle consists in (i.e., what the binary data represent)
doesn’t really matter nor is it implied in the use of the term.
A love letter and correspondence from the Bank are the
same. And while the computer scientist does worry about
accountability, in their case, they are concerned not with

how an individual needs to look after a file but how a sys-
tem does. The engineer seeks to answer questions like
‘where does the file system put a bundle?’, ‘how does it
name it?’, ‘retrieve’ and ‘make that file secure?’ As it hap-
pens, some of these bundles can themselves be bundled into
larger entities, and these start to look like the things that
users ‘see’ when they interact with digital objects like Mi-
crosoft Word ‘files’. Hence the term files is often labelled
an abstraction in computer science, both because it labels a
category that is a step higher than digital bytes, and because
it can encompass various types of associations, bundles that
look like ‘user files’ from above, from the users’ point of
view.

The point of these remarks is to allow us to assert the claim
that, if and when language is understood as being made up
of terms that are used in diverse and rich ways (as is the
case with the term files), then one should not necessarily
reject attempts to make linkages between instances of lan-
guage use just because the empirical referent in question is
diverse or complex, or because one use is empirical and
another is not. Rather, one needs to approach the possibility
of connection between uses of words carefully. Perhaps
linkages of some kind are useful, perhaps they are not; it
depends on what similarity (or otherwise) in actions are
implied in each case.

Files as a Way of Bundling
This is illustrated when discussions about the cloud beg
questions about what is the stuff that users want backed up
and how it might be that computer scientists can engineer
systems that are secure, economic and pliable with regard to
this stuff. In these discussions one will find that computer
scientists (if one can treat them as a single group for the
moment) use the word file to label things that need to be
dealt with quite carefully, and the doings that they are
thinking of when they use the word are themselves quite
particular and specialised. We have begun to remark on
what those details are. Let us push that further. We have
seen that computer scientists need to bundle the stuff they
store. They need to put it somewhere and know where it is
– though they care little for what it is. But at the same time,
they do care that, whatever it is, it ‘survives’. And this is an
issue for computer scientists – not because they are neglect-
ful in their design. Far from it. The problem is that the stuff
they deal with, the stuff that comes in the form of bits and
bytes, exists in an environment where that stuff (leaving
aside what it consists of) can disappear.

Computer scientists need to cater for the practical reality
that computer systems fail. They fail in part and they fail in
totality; disk sectors can develop defects as a case in point
(and this may mean that part of the digital store for a file is
faulty) and sometimes disks can fail altogether (in which
case remote back-up is required). Given this, computer sci-
entists engineer computer systems (all systems, not only the
flaky PC but also cloud storage systems and servers) to
store data in such a fashion (or arrangement) that if part of

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1128

the data is destroyed or even the whole, this event does not
catastrophically affect the system’s functioning, its utility.
For the architecture duplicates data, so that if some is lost
(as it is assumed will happen), then a copy will be available
(somewhere or other) and can thus be used as a replace-
ment. This in turn means that there has to be a system ele-
ment to manage these duplications and stores: this keeps
these versions up to date after changes are made, for exam-
ple, and knows where they are stored. In this view, a ‘file’
is not the stuff stored, it is a way of bundling that stuff into
identifiable materials that in turn can be managed, stored,
retrieved, duplicated, preserved and so on, by the computer
system and its component applications.

Some of the actions done with this abstraction, these things
called files and the systems of which they are a part, are
mirrored in the things that users can see (and do) and some
are not. For example, with the abstraction in hand, a system
can allow a file to be ‘read’ – and thus seen by the user, to
put it crudely, even though the system also has the task of
bringing together the thing-as-seen by the user from the
various parts stored in different places. Likewise, when a
user ‘saves’, the system ‘writes’ that data (i.e., the elements
constituted at an abstract level as ‘a file’) somewhere and
this means the system stores that data. Or to put this another
way (though still simply), when a user ‘saves’, the system
‘writes’, when the user ‘opens’ a file, the system ‘reads’
that file, and so forth (See Fig. 1).

Figure 1: operating system view of a file abstraction as a consecutive,
uninterrupted range of bytes [14, pp. 372-372]. The abstraction re-
lieves users from understanding how the bytes that make up a file are
scattered across memory or disk, giving them a simple logical object to

operate on.

It is important to bear in mind that all of this work, all these
doings, are not necessarily seen or understood by users –
though these doings allow users to get their doings done
whatever they might be. Questions of where bytes are
stored are systematically hidden from the user’s view.

Files as Boundary Objects
The point is that the term abstraction does label how com-
puter scientists view the issues at hand, the issue of what a
file is for both them and the user. One might say that users
have a different abstraction, one that reflects what they
think of as the properties of a thing that is a file as consti-
tuted in everyday life, while the computer scientist has an-
other. It is in fact more complicated than that, however; it is
not two abstractions. They are distinct yet bound in various
ways. One element that coheres both views is that the thing

itself – the OneNote file, say – is at the point of use for both
the user and the computer scientist effectively a unitary
object, a single entity, not a composite. So although a file
may be made up of bits brought together from other files –
and again, those other files might not be singular – those
bits are brought together in real time when the user ‘en-
gages’ with them. Never mind what a file system does with
the entities constitutive of this file; the point is that at the
moment of interaction, at the interface between the user and
the system and thus, to put it crudely, at the interface as
understood by HCI, what the user sees and what the com-
puter scientist sees is the same thing, though how this gets
assembled, what ‘it’ (i.e., the file) is going to become and
where it came from, is different. The talent of the designers
of early systems is reflected in the fact that despite these
differences in orientation, the interaction that is undertaken
nevertheless succeeds: users by and large get what they
want, a file that can be handled as they understand it and a
system that can function efficiently and effectively. Things
get read and saved, users can act, the system can function.

This description is obviously a simplification of file sys-
tems design just as the one above was of the orientations of
everyday life. But it is sufficient, we hope, to convey the
claim that one might think of the word file – or rather the
concept ‘file’ – as something like a boundary object [18;
see also 17]. Without wishing to make any historical claims
at this point, this object would appear to stand in the middle
ground between the user and the computer scientist in a
complex and delicate way, foreshadowing certain moments
of cohesion while allowing differentiated paths of activity.
It links and binds computer scientists (and their abstraction)
and the user’s point of view (and all that implies). The user
can orient to digital content as if that content had properties
similar to a corporeal file, being an object that can persist,
that can be changed, kept and destroyed; and the computer
scientist can architect systems that allow them to store the
data constitutive of the file-as-seen-by-the-user wherever
they wish, and to ensure that system errors do not destroy or
corrupt data irretrievably.

Previous Attempts to Reconstitute Files
We have suggested that in being an abstraction, a boundary
object, there is a profoundly complex yet binding differen-
tiation between the everyday use of the term ‘file’ and the
use of the same word with regard to systems. Over the years
many attempts have been made to alter the form of this dif-
ferentiation, and crudely speaking to bring these different
orientations to files, the user’s and the computer scientist’s,
closer together, or at least to alter this connection so that it
is better able to allow users to do what they want and engi-
neers to support those doings more effectively. In this re-
gard one might say that there have been attempts to recon-
stitute the boundary object.

More particularly, and until recently, there have been three
major and related themes of inquiry on this topic: the first
concerning how to make documents on computers seem

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1129

more like documents from the everyday human point of
view; the second focusing on how to rethink the storage of
a file in a way that gets away from treating a file as an en-
tity in a hierarchical order, and moves towards distributed
systems where a file can be an entity in more than one place
and with more than one relationship to other files (su-
perordinate or otherwise). The latter can be interpreted as a
way of realising the former, and so oftentimes the argu-
ments seem to blur into one another.

Beginning with the first theme: documents. There have
been numerous attempts to redesign computer file systems
to reflect the ways that people use and understand docu-
ments. Xerox PARC’s placeless documents research pro-
ject, at the end of the last century, was perhaps the most
ambitious and well thought out of these efforts, reflected in
subsequent years by other similar efforts. In Dourish et al.’s
view [4], the placeless documents paradigm can be con-
trasted with a hierarchical file system. This latter approach
typically puts a file in only one place in a hierarchy, irre-
spective of the fact that users might come to a document
from different points of view and concerns (there are excep-
tions to this with ‘multiple directory entry’ points being
allowed on some systems, for example, and with ‘shortcuts’
in Windows, as another exception).

For example, a document concerning travel plans might be
relevant for budgeting and scheduling. These are distinct
concerns. But the nuance of these distinctions cannot be
represented if the file is only in one place and where the
relationship is always superordinate – where a file must be
in either one or other structural order but not both; either a
budget representation or a scheduling one. Hence, a hierar-
chical system is too constrained, the Xerox researchers ar-
gue; a more human point of view more subtle. So manage-
ment of documents becomes conflated in hierarchical sys-
tems: a file can be retrieved according to one criterion, as
against the multitude of criteria users might apply; the hier-
archical location of a file is used to determine back-up, not
its salience to a user. One could go on.

The placeless documents system, in contrast, made para-
mount the user orientations to documents. So, for example,
since users tend to associate all sorts of apparently ad hoc
properties to their documents, the system would similarly
allow any property to be associated in the ‘file system’
(leaving aside what ‘a file’ is for the moment) when repre-
senting a document. Hence, any categorisation the users
prefer would be acceptable to the system; any way of collat-
ing and bundling would be acceptable too. Furthermore,
these properties might be related to a specific user, and so
the system ought to allow this too. This is important be-
cause the person who uses a document may not be who first
created it – and this may be as important as what constitutes
the use itself. Metadata that allow and govern access and
interaction should reflect this.

All of these arguments can be seen to turn around the idea
of getting away from things in fixed places to relationships

that link things and doings with those things, from a system
that stores a file to databases that create links between enti-
ties, some of which may be file-like. Such a view permits
the heterogeneity highlighted above, and supports the posi-
tion that not all files are equal while moving away from the
notion of a hierarchy. In this view, documents are the ob-
jects in the PARC system, and metadata the material that
allows for the searching, collating and use of those docu-
ments.

This leads us to the second theme: a more general interest
in the relationship between hierarchical systems (documents
being one instance of things in a hierarchy) and databases,
where the latter was to replace the former. This interest was
common in computer science research at the time of Dour-
ish et al.’s efforts. It still is. Some of the titles of well-
regarded papers on the topic, such as Seltzer and Murphy’s
‘Hierarchical File Systems are Dead’ [13], say it all. Much
of the research turned around the idea of treating the things
represented by a file as an object that exists within a data-
base. Thus configured, the argument went, such an object
can be associated and bundled and accessed in all sorts of
more complex ways.

This was the view that drove the WinFS effort in Microsoft,
as an example, undertaken at the start of the last decade
[21]. In the case of WinFS, treating a file in this fashion
would allow users to access a file according to a multitude
of criteria, to associate that file with other files in equally
diverse ways, and to render a file and its relations, graphi-
cally, in manners that reflected this diversity.

Though there was much hyperbole at the time, for a variety
of reasons this way of treating files did not get released.
However, various efforts that resonate with the aspirations
behind WinFS have since appeared, at least within the re-
search community. Jones et al.’s ‘Don’t take my Folders
away’ of 2005 [8] explored some of the cognitive muddles
that went with folders and file hierarchies, for example, and
pointed towards ways that current file directories prohibit
multiple locations of file instances, though users themselves
would prefer that such hybridity was allowed. Such possi-
bilities needed to be met without negating the importance of
place in the mental furniture of the mind. Jones et al. did
not make any suggestion as to how to engineer such a sys-
tem, however. Cutrell et al. [3] proposed a system that
combined web-functionality with the PC with their Phlat
system, allowing rich searching and browsing through
augmenting PC files with the kinds of metadata hitherto
associated with websites. Meanwhile, Voida et al. [20]
sought to devise a desktop interface that reframed the enti-
ties engaged with (such as a Word document or an email)
around semantically defined activities – thus evoking Bel-
lotti et al.’s email threading paper of 2003 [1]. Like Jones et
al., none of these attempted to address the design of data
stores, focusing instead on the interface.

More recently, Oleksik et al. [10] have presented a system
that enables a form of threading and association between

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1130

digital entities. Users create this through a tagging system.
These tags hide the precise provenance or location of a digi-
tal object – a PowerPoint file, a Website (URL) or a Word
file say – and instead present the user with a collage of
thumbnails bundled together into a ‘cloudlet’ or similar
graphical representation. These concepts are expressly de-
signed with the technical affordances of multiple devices
and cloud infrastructures in mind, and while the research
leaves aside strong claims about engineering, it would ap-
pear that this new mode of interaction would further dis-
tance the connection between the user and file entities stor-
ing data. The abstractions would consist of metadata and,
though looking similar to the user, being all represented as
thumbnails, these metadata would actually point to different
locations and entities from the system point of view. Some
of these indicators would be files to which the system could
read and write, while others would be to the capacity of the
system to request copies and/or viewing rights from content
actually stored on a webserver.

What these studies all affirm, however, is the merits of re-
considering the basic concept of files. This is especially the
case as knowledge work develops beyond the production of
documents, to hybrid and heterogeneous interactions
around multiple digital entity types, which themselves have
complex relations to devices and locations. In the view of
these papers, files are only one of the abstractions that
might cohere interfaces between the user and the systems
engineer.

A File as a Leaky Abstraction
That this is so reflects how it is that, in recent years, there
has been an increasing proliferation of devices and com-
puters: heterogeneity certainly seems to be a word for label-
ling this new world. When Xerox were looking at their sys-
tems, most people (even in PARC) only had access to one
device, the machine that sat in front of them, linked via a
local network to other identical machines. But over the past
ten years or so, this singularity has been replaced by a plu-
rality of devices. People have become used to having many
more devices than ever before, and technologies with dis-
tinctly new properties. These changes have had conse-
quences for the abstraction that is a file in the digital world,
which have further ramifications for users and computer
scientists alike.

The important point that derives from this change has to do
with the fact that these devices are not copies of one an-
other; people have different devices doing different things.
They will have a laptop for example, supporting many of
the office and work-related tasks that the original Xerox
machines were designed to support all those years ago: the
creation of texts, reports, memoranda, spread sheets. They
may also have music players, cameras, flash drives (or
memory sticks in common parlance), and so on.

Bound up with this change are two further shifts. Firstly,
people are dealing with an increasing range of file types,

encompassing music (e.g., MP3s), image (e.g., JPEGs), and
movie (e.g., SWFs), to name but a few. Secondly, people
are encountering their data in a number of contexts, some of
which render them in ways that are less ‘file-like’ than hier-
archical systems typically did. The implicit linking of file
with application in operating systems such as Apple’s iOS,
where the underlying file structure is hidden from the user,
would appear to be a case in point.

However as Harter et al. note [7], the emergence of this
complexity and diversity can disguise the persistence of the
term and function of files in computer architectures. They
find on the Apple desktop that the relationship between
different types of digital entities (such as word processing
and graphical objects) most often turns around file type
definitions and abstractions, though these are ragged and
inconsistent, with users thinking one thing and the system
treating file types in another way. Besides, Harter et al. also
note that the architecture often breaks down when the OS
operates upon different data types since there is no consis-
tency between the apps and the OS. This is all the more
startling when one considers the hyperbole given to Apple’s
new data store, the iCloud.

For if it is the case that users are confronted with more data
types, they are also increasingly encountering a new term,
one describing a raft of services and technologies all of
which were meant to let them ‘back up’ these ‘things’,
these ‘files’ – the cloud. This technology, if single technol-
ogy it might be, was introduced to the user as offering them
new ways of storing their digital stuff and of accessing pro-
grams to create that stuff. The cloud was also claimed to
offer new ways of connecting those same people to those
with whom they might want to share their stuff with. In
much of this discussion the term file was used. And here
lies the rub: was this new arrangement of limitless back up
and continuous connectivity to be achieved around that
same concept of a file as had been critiqued, say, by the
Xerox researchers? Or, in the same way that WinFS priori-
tised relationships, was the cloud being designed to support
complex connections across data, now distributed across
different people and different places? If we consider WinFS
as one way of underpinning a collection of files that are
hybrid and diverse, albeit a way that is ill-equipped for
now, we might hope that the bundle of services and applica-
tions constitutive of both the cloud and the things the cloud
will link to, through their common use of the concept of a
file, could offer a way of cohering this diversity.

However, if it was once the case that computer scientists
were of a mind that file architectures were a way of dealing
with hardware fallibility and that there was a time, some-
what later, when they began to think that database systems
provided a way forward, now the world that was being en-
gineered could not be so easily described, however much
the word file was used. If one might have said that users are
rather capricious in their use of the term file, then any ex-
amination of systems encompassed by the desktop PC and

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1131

the cloud would say that computer scientists were coming
to be lax in a different way. When they used the term, they
were evoking not just an abstraction but several, each
slightly different; they were designing for a range of de-
vices too, each of which affected what that abstraction
stood for. Following Spolsky [16], we might suggest that
the abstraction is ‘leaky’. The concept of file is an abstrac-
tion of certain details that are central to systems design.
Mismatch in how those details are abstracted introduce
problems. The problems that began to arise in this period
(when the cloud first started being mentioned) arose not
because the abstraction was altered; it was rather that it
became muddled up and mixed: what a file came to stand
for was the problem.

The Elusive “Smallest Allotment”
It may be unsurprising to a HCI audience that what users
think of as a file could differ from what engineers devise
their file abstractions to allow. Indeed, that this is so may be
of little importance; as long as the user can use a file sensi-
bly and the engineer design systems that are effective, what
is the issue? As we have seen however, issues surrounding
what a file means in regard to computers, though often sub-
tle, are leading to solecisms more problematic than the dis-
tinction between what a file ‘is’ from the user’s point of
view and what the system ‘writes as a set of data when ab-
stracted as a file’. They are leading to muddles that cut
across what it means to save one type of file as opposed to
another, and highlight sensitivities regarding whether cer-
tain types of object that we might consider file-like, can be
‘saved’ at all.

“…From a user’s perspective, a file is the smallest allot-
ment of logical secondary storage; that is, data cannot be
written to secondary storage unless they are within a file.”
[14, p. 372]

The term ‘users’ in the above statement probably refers to
fellow engineers, and in this case the abstraction places
much emphasis on a file describing a single unit of data.
But the example that we presented at the outset, of how
OneNote constructs its file storage system, illustrates how
the very same application can have different underlying
structures. Let us take another example to show what a
smallest unit – the file – could be. Like all of the products
in Microsoft’s productivity suite, Word uses a file system to
store a file. But what a file is within this system, how a
.DOC file can be treated and managed as a result, and, re-
latedly, how that links to or is understood by users of a
Word file, is quite particular, special to Word.

At first glance it would appear that a Word file as con-
ceived of in the application (and the OS) is quite close in its
abstraction to the way the user understands it. When a user
creates a Word file, the application creates a single file too;
when a user saves a file, after making some changes, the
application saves pretty much the same thing as the user
understands as well. The addressable object, to put it in

more technical terms, is close if not identical for both the
application and the user. But things start to show some deli-
cate differences when crashes occur. In actuality, Word
periodically writes to a hidden temporary file as the user
makes edits; when the user saves the document, Word
‘commits’ the changes by manipulating the original and
temporary file to make it seem like the original file has
been updated. If the system crashes before the user selects
save, however, then any changes that a user has made since
the last save are not flushed to the original file. This can
muddle the user: sometimes the crash loses changes; some-
times it does not.

Be that as it may, one can imagine that a typical user might
find any of these particularities, the smallest allotment be-
ing a Word file, curious if they found out about them, but
not necessarily consequential. The only time they might
find these differences consequential is when things do not
go as expected during an operation like copy or move. The
user’s expectation is that their commands operate on the
unit as a whole (atomically, as computer scientists say), but
the file system operates on a different, lower unit. It is then
likely that during a crash, or when things go wrong, the user
might puzzle on how the unit ends up being divided, with
some parts of it updated, but some not.

Implications for a Grammar of Action
What this example (and the OneNote example from the
introduction) shows is that the particular concept of a file
and the associated assumptions that go with it are not uni-
versal, reflecting some common agreement amongst those
who design applications. To coin a phrase from the phi-
losopher Oswald Hanfling, the ‘grammar of action’ associ-
ated with the use of the concept can be and often is different
in different instances [6]. The differences in grammar turn
around what is understood by the term file, and relatedly,
what action is meant when the terms ‘create’ and ‘save’ are
used. Systems designers have come up with different ways
of enabling these actions in different applications.

One needs to consider these complexities not only when
they manifest themselves when new technologies, like the
cloud, are being introduced. One ought to also consider
them when one tries to understand what motivated earlier
attempts to design actions around a file, undertaken when
file systems were less complex and less diverse. The devel-
opment of Xerox Star [22], for example, was predicated on
the notion of generic objects. These objects could be treated
the same way throughout the OS, being manipulated
through a set of generic commands (move, copy, delete,
etc.) that were designed into the system, each performing
“the same way regardless of the type of object selected”.
Smith et al. [15] continue, “They strip away extraneous
application specific semantics to get at the underlying prin-
ciples, and embody fundamental computer science concepts
and are consequently widely applicable. This simplicity is
desirable in itself…” [p. 523].

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1132

The point that Smith et al. make highlights the importance
of the slippage we have described. These differences are
significant to engineers who try to link applications like
Word to cloud services, and for those who are trying to
design cloud services for this and other types of user orien-
tated applications: the grammar that each is relying on is
different, this simplicity is compromised, and this is be-
cause the generic nature of the objects, some of which are
files, that are central to systems can no longer be taken for
granted. The function of the concept ‘file’ as a boundary
object is failing; it is no longer an intermediary that binds
alternative views, but one that muddles them by dint of only
seeming to bind.

Let us return to examples relating to the Xerox Star system.
Smith et al. note an additional “subtle advantage” of the
simplicity of utilising generic objects mentioned above: “it
makes it easy for users to form a model of the system” [p.
523]. Implicit here is the assumption that users understand
the nature of systems and of the doings that these enable: a
consistent grammar aids understanding of what actions are
available. These actions pertain to the things the system
provides, such as ‘a file’. The set of generic actions that can
be imposed on a file reinforce the perception of that thing,
that file as a generic object, as an instance of ‘a file’. When
the doings that are bound up with files lose this consistency,
confusion is likely to ensue: users lose confidence that what
they have at hand is ‘a file’; engineers too begin to wonder
what abstraction they are working to.

A WAY FORWARD
To this point we have put forward the argument that the
term file is fundamental to user experience as well as serv-
ing as a central concept for computer scientists. It has acted
as a boundary object. But as increasingly diverse applica-
tions and networked services have emerged, so the reliance
on the term file has begun to break down. This stretching
shows itself in the grammar of actions associated with vari-
ous digital objects, some of which are file-like and some
not. For example, it is no longer always clear what it means
‘to save’ – the term can mean something different across
applications and even within the same application; it can
mean different things with different types of data entities;
and all of these and other distinctions are compounded by
questions to do with when ‘saving’ is done to different loca-
tions: one’s own computer or the cloud, for example. Does
one save to the cloud, or does one save first to one’s PC? If
one is a back-up of the other, does synching solve the riddle
of what version was saved most recently?

At first glance this might simply suggest a need for in-
creased consistency, in service of the engineering commu-
nity as well as to support users in understanding these sys-
tems. But though laudable, this would be to ignore the fact
that users are likely to want to have files and other digital
types, things which are not file-like. Indeed, looking at the
way that new social networking services have been adopted
in particular demonstrates that there are now a range of data

types that people produce, share and engage with, and these
things go alongside what may be thought of as file-like.
Given this, reworking the abstraction of a file is only one
part of what might be developed, but nevertheless, changes
even as regards this apparently partial component of the
current world opens up an opportunity for something much
bolder. A reconstitution of what a file is could be a neces-
sary part of a new grammar of actions. In allowing file-like
behaviours, other behaviours become possible through be-
ing distinct. It will allow users to navigate and appropriate
as they see fit and in ways that suit the current landscape. It
will allow users to separate what are postings, say, from
what are action records (such as likings and playlists), and
those digital phenomena that they have an especial relation-
ship with, those objects that are file-like, but somehow pre-
sent and shared in the networked, multi-device, collabora-
tive tagging world of today.

Towards an Abstraction that Encompasses Metadata
“…A file has certain other attributes, which vary from one
operating system to another, but typically consist of…[a]
name, …[a] type, …[a] size, …access-control information,
…[a] time, data and user identification…” [14, p. 372]

The first suggestion for a way forward is perhaps the most
obvious: it entails rethinking the role of metadata. This is
becoming central not only to applications such as OneNote,
but also to current technological ecosystems, including re-
cent offerings by Apple, Google and Microsoft, where the
application is represented as being bound up with the file.
But metadata is also now becoming central to what users
understand as a file, though they might not always think of
tags, comments, playlist information and so forth as meta-
data. For what a file is is now often bound up with the
things added to it, not only by the originating user but by
others too.

Consider for example, behaviours reported by Odom et al.
[11]. In their study of teenagers and their virtual posses-
sions, participants reported that part of the value of photos
posted on Facebook was the metadata associated with them:
comments and ‘likes’ were so pertinent that they were re-
ported to be printed out and pasted into scrapbooks along-
side photos. This materialisation of the digital is indicative
of a difficulty associated with the current technological
landscape.

It is not clear how one would digitally export a Facebook
photo in order to view it alongside this metadata – the tags
and comments – with another computer program or applica-
tion, and this remains so despite recent innovations in the
Facebook service. Yet it is not surprising that users should
want to treat these entities in the way they treat a file. If
they can upload their photos to Facebook, and given that
they do so the photos are file-like objects, why can they not
download them again, while retaining the value they have
accrued, but still with the benefits of file-like properties?
Although it is now easier for users to export their data from

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1133

Facebook, these exports, once represented simply as ‘a file’
on a hard disk, lose their potency. They are disconnected
from the social life they were bound up with; they are the
bare bones of the thing that the original file became when it
was posted on Facebook.

An analogy might be helpful. If in the past a file was a sin-
gle entity to the user, but the system broke the file up into
blocks and bytes when it came to storage, the value of so-
cial networking is to make what starts as a single entity
become a ‘network of stuff’, a composite of the file and the
metadata accreted through use on the social network.
Hence, when a creator of the original file wants to down-
load the thing that it has become on Facebook, they want to
download not the single thing that was the file, but the vari-
ous objects constitutive of the stuff (entities) that have de-
rived from the social discourse around it. They send up a
single entity, and want the system to send back a bundle of
bits, whether these be pointers to data of various types,
stored in various places, or a large entity, originally called
the file but now lined with tags of various kinds. This bun-
dle, this new ‘file’ type, is not merely a complex data type;
the important thing from the users’ point of view is that it is
a mirror of the social life that the file enables.

Rethinking the Grammar of Copy
This suggests much more than an extension of the scope of
the thing ‘copied’ or downloaded, however. The shift that
we describe above, towards an abstraction encompassing
metadata, which in itself reflects the social life of the object
in question, has a number of implications.

For the sake of simplicity, let us continue with examples
taken from actions related to Facebook (and disregarding
the variety of actions that are supported by different social
networking services). Things like the ‘author’ and ‘place’
tags, as well as the ‘likes’ and ‘comments’ that can be ap-
pended to images and other posts, create rich layers of data
on an originating file, which can imbue this file with greater
meaning. Reflecting on this, we have suggested that it is
sensible for a user to be able to interact in file-like ways
with this combination in order to retain this value.

However, this immediately raises complexities. For in-
stance, images posted to Facebook might be copied not only
by the person who posted them, but also by others. In these
circumstances, should these others be able to copy the
metadata, the tags as well as the thing-itself? If so, what of
the rights of the owner or, if you prefer, the maker of the
initial file (see also [9])? When people copy an originating
file, would they be creating a new file or would their new
entity be a version of the original one? Is there an order of
precedence that we are proposing and ought this to be re-
flected in the concept of a file that might apply?

It seems to us that there is a distinction that ought to be
made between things that are put on the web, which the
originator wants to have file-like properties (even as that
thing develops a social life once on the web), and those

things that are posted that the user does not want to have
file-like properties. The properties we are thinking of have
to do with questions like whether ‘making a copy’ means
making a duplicate, or having and owning (as it were) the
originating thing itself and keeping traces of when copies as
somehow distinct ‘lesser’ entities are produced. Each type
of ‘copy’ has implications for the ensuing social life of the
digital entity in question.

The issue here is what grammars of action are implied for
these related but evidently distinct objects, some file-like
and some not, and how this spills out in terms of the actions
possible that mediate the social relations in question. There
are evidently subtleties here. We have begun to point out
some; it is to others we now turn.

Rethinking the Grammar of Delete
Consider this quote, from interviews reported in [12],on the
discontinuities between people’s expectations about what
they can do with their digital material and what they can in
fact do when they place it on social networking sites.

“I guess I can delete them (photos on my computer)…
online, well I can try to delete something but who knows?
Who deletes the deleted? Where does it go when I delete it?
I don’t know but I don’t think it disappears and that way it
feels like I don’t have control over it…”

What is implied here is the possibility, conceived from this
user’s point of view, that a digital object is something that
can be done away with. At least, this is their understanding
of what seems to happen when they interact with things –
certainly this is their understanding of what happens when
they interact with their PC (notwithstanding the subtleties
of this for the moment).

This individual is making a contrast however, between in-
teracting with their PC and when they venture elsewhere,
onto Facebook (or Flickr, say, for want of another illustra-
tive context). Though only one person’s account, it seems
to us that this can be taken as representative of the view
held in common. After all with a computer, the abstraction
representative of a file has for some years now allowed a
user to treat a file in this way: as something that can be
done away with. Never mind that most computer systems
have not been designed so that a file is truly eviscerated
when the ‘delete’ command is selected (instead simply re-
addressing the digital space used by the file in question).
For the purposes of the user, this is sufficient for them to
get on with their doings: for their practical intentions, their
delete action does way with the file.

How different the situation is as both regards this basic in-
teraction and the essential status of the thing filed and-or
deleted when the ‘place’ that this interaction is occurring on
is remote, on some server, either the cloud or on some so-
cial networking service. It is in this sense that the doubts
that this interviewee expressed, though tentative, are accu-
rate. They are right to ask, albeit rhetorically, ‘just what

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1134

does happen when delete is selected?’ ‘What is implied
here?’ They are asking, ‘What is left unstated but necessar-
ily relied upon when I press delete?’ Their understanding,
as represented in this single quote, is not naïve so much as
too knowledgeable: just as they understand that on a com-
puter, to delete doesn’t mean to completely eviscerate or
destroy a file, so now they worry that same will apply in
this new landscape.

It is precisely because of issues such as these that the
grammar of action that was devised for the PC cannot be
the solution that is applicable for the current multiple de-
vice, cloud-linked, multiple file type, social networking
world we have now. Something more is required than was
true in the past if one is to copy or delete in this new con-
text. The grammar must imply more.

What is needed is not only a file abstraction through which
the user’s desire to hold on to the metadata that makes their
files meaningful can be encompassed, when a file gains what
one might say is its ‘social life’. It is that, in addition, this
thing, distributed as it is, can nevertheless be done away with,
removed, taken out of play, ended. A boundary object needs
to be developed that can bridge the abstraction of the user
and the one of the engineer, who needs to worry about this
thing that keeps growing and changing, and where the locale
of storage changes too, such that when a user says ‘delete’,
the thing whatever it is and wherever the entities constitutive
of it are, are indeed, done away with.

Expanding the Grammar of Action: to Own
These examples of the thing that is a file, of the copying of
that thing and, last of all, the deleting of a file, show how
reconstituting a file abstraction needs to be done mindfully.
Nevertheless, one might say that these are still actions that
resonate with the world that existed when engineers at Xerox
were developing the Star. But the world is much more differ-
ent than is suggested by the continuing applicability of these
terms. Numerous technological shifts are already underpin-
ning various actions that were not possible then: ‘synching’
and ‘streaming’ are amongst this novel set of behaviours.
Devising a new file abstraction also requires that some ac-
tions implied but not stated in the original concept of ‘a file’
now require explicit attention in ways that would have star-
tled the Xerox engineers more than the introduction of the
concept of ‘synching’ would.

Take the following two quotes, from two different partici-
pants (from [12]), as illustrative here:

“the more I talk about it, the more the idea of owning some-
thing online seems lost in translation.”

“it feels like there is this illusion that they are mine, that I
own them. But they could disappear at any moment.”

These quotes are suggesting that the relationship a user can
have to digital stuff can be one where ownership is applica-
ble. At first reading one might think they are alluding to digi-
tal rights management. But further reflection brings this into

doubt. They appear to be thinking of something that they had
been able to take for granted hitherto, something that went
hand in hand with their understanding of what a file is.

Later on in these same interviews, these participants talk
about how it used to be that they knew where a file was.
They stated that they used to have a desire to put a file “on a
CD” so that “it could be safe”. But they go on to say that
they find that this is hard to do in the context of cloud stor-
age. The reasons why they wanted to do this (before we re-
mark on the difficulties) were that, for them, where a file is
could act as an instrument of ownership. Being “here”, “on
their PC”, or “in a CD”, could make it “theirs”. That they
can see “it is here” could assure them that their ownership
has not been violated.

What is being pointed towards is a set of assumptions, relat-
ing to the functioning of a file on a computer that harks back
to the discussion of deletion above. The thing that can be a
file, and hence the thing deleted or in this case owned, is
treated as if it has a physical locale, a knowable place where
it lives. This somewhere used to be (of course) “there”, in a
particular machine, on their desk at home or at work. But
when it comes to the current world, where this ‘there’ might
be is no longer clear; there is often no knowing where a file
is, certainly from a user’s point of view.

What follows on from this is the possibility that what once
was taken for granted can no longer be. In the UK, where this
research was conducted, one’s ownership of digital data was
manifest in the physical presence of the devices that housed
that data. Now that proxy relationship no longer applies. And
users are right to wonder about what ownership means in this
new context. Amazon’s continuing efforts to specify how
Kindle users can lend each other (whose?) books highlight
the complexities in this space; it certainly doesn’t offer a way
forward and out of them.

We think that a new concept of what a file might be does,
and further, that unpacking such a concept presents an occa-
sion for rethinking what ownership might look like. Translat-
ing what was once a relationship between a user and a physi-
cal thing into one between a user and a digital thing is not
simply a matter of replication and, even if it were, the rein-
forcing of one model of possession would mean disregarding
other ways in which ownership is accomplished. Expanding
the grammar of action to encompass possession means con-
sidering how to enable the doings that underpin what owner-
ship looks like in the many parts of the world where file in-
frastructures are used. It means acknowledging the complexi-
ties that are associated with this concept and designing for a
diverse range of actions. And it opens up the possibility that
cloud computing could enable new kinds of practices to
emerge, which change ideas about how individuals relate to
‘their’ data, and to each other via it.

CONCLUSION
Whatever future work does need undertaking – and there are
obviously plenty of opportunities here – these examples have

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1135

been presented to assert our view that users sometimes want
a particular type of digital entity. This entity needs to let them
do certain things, a particular job. A new version of what
users think of as a file can let them do this, we have pro-
posed. But we are also proposing that this new entity needs to
be engineerable, too. The thing that will result may well not
look a file as conceived of in file architectures; nor will it
have quite the same assembly of interactional features, the
same grammar of action as we have put it, as a file on a com-
puter.

We have noted that the devising of a new abstraction needs
to be done in a way that is cognizant of the grammar of ac-
tion that it will imply. Enduring actions, such as copy and
delete, need to be re-thought, and new actions may be need-
ed, for example to provide a sense of ownership of data. A
new abstraction might allow users to eradicate a file that is
stored in the cloud, or withdraw one from a social network. It
might allow them to knowingly place a file in a particular
location, one that is tied to a physical locale. It might resolve
issues surrounding the loaning of digital media or enable a
sense of shared ownership. Although we conclude with these
suggestions, we make them tentatively. A new abstraction,
and a new associated grammar of action, will require a good
deal of thought and experimentation. In this case, diligent
HCI research is warranted more than ever.

ACKNOWLEDGMENTS
Many thanks to reviewers and to colleagues in SDS.

REFERENCES
1. Bellotti, V., Ducheneaut, N., Hoard, M. and Smith, L.

2003. Taking email to task: the design and evaluation of a
task management centred email tool. In Proc. CHI 2003,
ACM Press, 345-352.

2. Churchland, P. and Churchland P. 1995. The Engine of
Reason, The Seat of the Soul: A Philosophical Journey
into the Brain. Boston: MIT Press.

3. Cutrell, E., Robbins, D., Dumais, S. and Sarin, R. 2006.
Fast, flexible filtering with Phlat. In Proc. CHI 2006,
ACM Press, 261-270.

4. Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J.,
Petersen, K., Salisbury, M., Terry, D. B. and Thornton, J.
2000. Extending document management systems with
user-specific active properties. ACM Trans. Inf. Syst. 18,
2 (2000), 140-170.

5. Halasz, F. and Moran, P. 1981. Analogy considered
harmful. In Proc. CHI 1981, ACM Press, 383-386.

6. Hanfling, O. 2000. Philosophy and Ordinary Language:
The Bent and Genius of Our Tongue. London: Routledge.

7. Harter, T. Dragga, C., Vaughn, Arpaci-Dusseau, A. and
Arpaci-Dusseau, R. 2011. A file is not a file: understand-
ing the I/O behaviour of Apple desktop applications. In
Proc. SOSP 2011, ACM Press, 71-83.

8. Jones, W., Phuwanartnurak, J., Gill, R. and Bruce, H.
2005. Don't take my folders away!: organizing personal
information to get things done. CHI ‘05 Extended Ab-
stracts, ACM Press, 1505-1508.

9. Marshall, C., McCown, F. and Nelson, M. 2007. Evaluat-
ing personal archiving strategies for internet-based infor-
mation. In Proc. IS&T Archiving 2007, 151-156.

10. Oleksik, G., Wilson, M., Tashman, C., Rodrigues, M.,
Kazai, G., Smyth, G. Milic-Frayling, N. and Jones, R.
2009. Lightweight tagging expands information and ac-
tivity management practices, In Proc. CHI 2009, ACM
Press, 279-288.

11. Odom, W., Zimmerman, J., Forlizzi, J. 2011. Teenagers
and their virtual possessions. In Proc. CHI 2011, ACM
Press, 1491-1500.

12. Odom, W., Harper R., Sellen. A., Thereska. E. 2012. Lost
in translation: understanding the possession of digital
things in the cloud. In Proc. CHI 2012, ACM Press, 781-
790.

13. Seltzer, M. and Murphy, N. 2009 Hierarchical file sys-
tems are dead. In Proc. HotOS 2009, USENIX Associa-
tion, 1-1.

14. Silberschatz, A, Galvin P.B and Gagne G. (2002) Operat-
ing System Concepts, (6th Ed). New York: Wiley.

15. Smith, D.C., Irby, C., Kimball, R. and Harlsem, E. 1982.
The Star user interface: an overview. In Proc. AFIPS
1982, ACM Press, 515-528.

16. Spolsky, J. 2004. Joel on Software. Berkeley: Apress.

17. Star, S.L. 2010. This is not a boundary object: reflections
on the origin of a concept. Science Technology & Human
Values 35, 5 (2010), 601-617.

18. Star, S.L and Greisemer, J.R. 1989. The structure of ill-
structured solutions: boundary objects and heterogeneous
problem solving. In L. Gasser and M.N. Huhns (Eds.)
Distributed Artificial Intelligence: Vol. 2. San Francisco:
Morgan Kaufmann, 37-54.

19. Thereska, E., Gosset, P. and Harper, R., 2012. Multi-
structured redundancy. Presented at HotStorage 2012,
June 2012, Boston, MA.
https://www.usenix.org/system/files/conference/hotstorag
e12/hotstorage12-final6.pdf

20. Voida, S., Mynatt, E.D. and Edwards, W.K. Re-framing
the desktop interface around the activities of knowledge
work. In Proc. UIST 2008, ACM Press, 211-220.

21. WinFS. Wikipedia, accessed 23 August 2012.
http://en.wikipedia.org/wiki/WinFS

22. Wittgenstein, L. 1953. Philosophical Investigations.
Trans. A.N. Anscombe. Oxford: Blackwell.

23. Xerox Star. Wikipedia, accessed 23 August 2012.
http://en.wikipedia.org/wiki/Xerox_Star.

The columns on the last page should be of approximately equal length.

Big Issues for CSCW to Consider February 23–27, 2013, San Antonio, TX, USA

1136

