
Named entity recognition of follow-up and time
information in 20 000 radiology reports

Yan Xu,1,2 Junichi Tsujii,2 Eric I-Chao Chang2

ABSTRACT
Objective To develop a system to extract follow-up
information from radiology reports. The method may be
used as a component in a system which automatically
generates follow-up information in a timely fashion.
Methods A novel method of combining an LSP (labeled
sequential pattern) classifier with a CRF (conditional
random field) recognizer was devised. The LSP classifier
filters out irrelevant sentences, while the CRF recognizer
extracts follow-up and time phrases from candidate
sentences presented by the LSP classifier.
Measurements The standard performance metrics of
precision (P), recall (R), and F measure (F) in the exact
and inexact matching settings were used for evaluation.
Results Four experiments conducted using 20 000
radiology reports showed that the CRF recognizer
achieved high performance without time-consuming
feature engineering and that the LSP classifier further
improved the performance of the CRF recognizer. The
performance of the current system is P¼0.90, R¼0.86,
F¼0.88 in the exact matching setting and P¼0.98,
R¼0.93, F¼0.95 in the inexact matching setting.
Conclusion The experiments demonstrate that the
system performs far better than a baseline rule-based
system and is worth considering for deployment trials in
an alert generation system. The LSP classifier
successfully compensated for the inherent weakness of
CRF, that is, its inability to use global information.

INTRODUCTION
Electronic medical records contain a large reservoir
of information describing patients’ conditions. This
can help physicians make accurate clinical deci-
sions, provide information for medical research, and
assist insurance billing. Electronic medical records
are in the form of unstructured text, but research in
medical information extraction has grown in recent
years1e5 and includes the detection of named
entities (NEs) and relationships among them6e11 to
generate structured information representation
from medical records.
Although previously afforded little attention,

a system which automatically generates an alert
based on extracted information would be another
promising application of medical records
processing. In this paper, we focus on a system
which automatically recognizes the positions of
follow-up and time information in records and
could be used as a component of an alert system.
We define follow-up information as the informa-
tion embedded in text that tells patients what they
should do next. Such follow-up information
includes further examination using a specific
detection method such as MRI, CT or biopsy,

suggesting comparison with other studies, and
advising patients to make follow-up appointments
with physicians. An example of follow-up infor-
mation from a radiology report is shown in figure 1,
where the text ‘outside mammogram for direct
comparison’ is follow-up information and the
phrase ‘six months’ is time information.

For this study, sentences with follow-up infor-
mation which do not contain time information are
assumed to have the time set to ‘at once,’ while
sentences with time information but no follow-up
information are disregarded. For simplicity, we call
sentences with follow-up information ‘S_FU_I.’ A
radiology report typically contains very few
S_FU_I. This implies that both physicians and
patients take a long time to find follow-up infor-
mation in a record. It would be very useful if
a system could remind patients in a timely fashion
of what they have to do, and would significantly
reduce the mental burden of physicians and
patients.
Such an alert system can be constructed using an

information extraction system which detects text
fragments or phrases containing information on
follow-up and time constraints. Since follow-up
phrases usually contain clue words such as specific
medical examinations to be conducted (eg, CT,
MRI, etc), it might be presumed that a simple
system of clue word matching with specialized
lexicons would suffice. However, as our experiment
in this paper shows, such a simple system produces
very noisy results. Three factors make such
a system noisy and unfeasible. The first is the
presence of ambiguous words. For example, the
acronym ‘CT’ is used for computed tomography
and also for ‘cerebral tumor ’ in radiology reports.
The second reason, which is more common, is that
the same clue words appear in contexts different
from those of follow-up information. For example,
while ‘CT’ in ‘the CT scan is recommended in
3 days’ signals follow-up, ‘CT’ in ‘CT scan was
performed following angiodynamic bolus of 140cc’
obviously does not. The third is that such domain
lexicons require tedious manual efforts to construct
and would not be comprehensive in a given medical
domain.
To resolve these difficulties, we have to adopt

more sophisticated information extraction tech-
niques, which can be developed using two
methods. One is to refine a system by adding rules
with comprehensive dictionary resources.12 The
other is to prepare annotated texts and use machine
learning techniques. We adopt the latter approach
in this work. Since follow-up information is usually
expressed in text as noun phrases (NP) with certain
semantic characteristics, we adopt a common
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technique used in named entity recognizers, namely CRF
(conditional random field). We trained CRF by using a large
body of training data (20 000 radiology reports) made available
by the Microsoft Medical Media Lab. The large size of the
training data actually had a significant effect on performance.
We further improved the performance of CRF13 14 by using
a labeled sequential pattern15e18 (LSP)-based classifier to filter
out sentences unlikely to contain follow-up information. In the
test stage, while the CRF recognizer uses local contexts to
recognize a follow-up phrase and its time constraint in
a sentence, the LSP classifier uses global patterns in a sentence to
narrow down a set of candidate S_FU_I sentences. More
importantly, in the training phase, the LSP classifier disregards
a large number of negative examples from the training dataset
and thereby improves the consistency of local contexts of
positive examples. This process of cleaning-up the training data
significantly improved the performance of the CRF recognizer
and thereby the performance of the whole system.

The contributions of this work are twofold. First, our work
shows that an automatic alert generation system is possible and
that such a system can be developed by using machine learning
techniques with minimum cost. A large dataset (20 000 radi-
ology reports) was used to test the feasibility of the system in
a realistic setting. Our second contribution is a novel and generic
method of named entity recognition (NER) which combines an
LSP classifier with a CRF recognizer. The method is general
enough to be applied to other tasks. In our method, LSP captures
global patterns to choose candidate sentences before CRF iden-
tifies NEs or relevant phrases. The experiment shows that
filtering out a large number of negative examples from the
training set by an LSP classifier can significantly improve the
performance of a CRF recognizer.

RELATED WORK
There have been only a few works on detecting follow-up
information in medical records. However, since we formulate
the undertaking as an information extraction task, in particular

an NER task, we first summarize previous works on NER in the
biomedical domain. On the other hand, although we treat the
identification of time and temporal information in this paper as
a special type of NER, the topic has attracted the interest of
researchers and has been studied independently of NER, both in
the general and the clinical domains. Time expressions have been
intensively studied in terms of their semantic interpretation and
inference based on this interpretation. Although interpretation
and inference are crucial to our ultimate goal of an automatic
alert system, we focus in this paper on the identification of time
expressions. We discuss in detail several studies which are
directly relevant to our work.
Most NER methods in the general and biology domains have

used a CRF framework and provided it with features based on
gazetteers or lexicons of the semantic classes (eg, person, loca-
tion, company, gene, protein, etc) of interest. Li et al19 compared
CRF with another common framework, SVM, for various NER
tasks in medical texts and demonstrated that CRF outperformed
SVM. Using CRF, Settles20 recognized biomedical NEs such as
protein, DNA, RNA, cell-line, and cell-type. Their feature sets
were composed of orthographic and semantic features. Inter-
estingly, their experiment showed that orthographic features
alone achieved performance comparable with that of a semantic
features system when the training dataset was large enough.
This is a promising result which implies that CRF with a stan-
dard set of features can achieve a reasonable performance level.
The i2b2 challenge tasks of concept extraction in 200921 and

201022 were typical of NER in the medical domain. The 2009
challenge21 only treated NEs of a medication class. The winning
team23 used a CRF model to identify the boundaries of entities
to achieve a performance of 0.8835 (F measure). Another team24

combined a CRF model with a rule-based method to recognize
medication names, which showed similar performance. On the
other hand, the 2010 challenge22 defined three classes (test,
problem, and treatment). Most of participants used CRF as the
framework together with feature engineering specific to the
types of NEs in the challenge. Nine of the 10 teams in 201022

used CRF models to extract concepts of the three classes. The
performance of the best system25 was 0.852 (F measure).
While the type of follow-up in this paper roughly corresponds

to a class consisting of the test and treatment classes in the 2010
i2b2 challenge, some follow-up phrases are not necessarily NEs
in the conventional sense. For instance, it includes phrases such
as ‘outside mammogram for direct comparison.’ Furthermore,
although they follow certain rules, time expressions are more
productive than conventional classes of NEs. Despite such
differences, our work shows that CRF can be applied to the
extraction of both follow-up and time information with
performance comparable with state-of-the-art systems.
However, our main contribution to NER is a novel technique

of combining LSP with CRF to avoid the adverse effects of
a large number of negative examples. Although CRF-based
recognizers have delivered good performance in diverse tasks,
CRF relies heavily on local contexts surrounding NEs and
assumes that similar local contexts lead to the same judgments.
However, this assumption does not necessarily hold in general.
In the current task, a phrase in the ‘conclusion’ section of
a report is more likely to be judged as follow-up than the same
phrase in a similar local context in a different section such as
‘patient information.’ The training data which contain such
seemingly contradictory judgments on the same phrases
and contexts confuse a CRF recognizer. The effects of the
global context on judgment are observed even among sentences
in the same section. The same phrases (ie, phrases which can

Figure 1 An example of an alert to remind physicians and patients
about follow-up information in a timely fashion (‘outside mammogram
for direct comparison’ is follow-up information; ‘six months’ is time).
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be follow-ups) in similar local contexts receive different judg-
ments when they appear in sentences with different global
characteristics.

In order to remove such contradictory data from the training
set, we use an LSP classifier to filter out sentences unlikely to
contain follow-up information. LSP has been widely applied to
medical information to capture patterns that are somewhat
global in nature. Jay et al26 discerned, categorized, and envisaged
frequent patterns among patient paths using LSP. Their experi-
ment showed that LSP could mine temporal symbolic data to
discover global temporal patterns of patient behavior. Yang
et al27 used LSP to detect healthcare fraud and abuse. Two groups
of datasets, normal clinical instances and fraudulent clinical
instances, were given to a classifier which used features gener-
ated by the labeled sequential patterns that LSP produced.
Hanauer et al28 gathered time-motion data before and after
a computer physician order entry (CPOE) implementation and
used LSP to assist and inspect workflow changes associated with
CPOE usage. Zheng et al29 automatically extracted hidden user
interface navigational patterns from recorded electronic health
record data. These LSP applications show that, unlike CRF, LSP
is capable of detecting global patterns which are inherent to
certain classes.

As for time expressions, their importance in the medical
domain has been increasingly recognized. It is important to
extract such information when a patient has a medical condition
and the length of time they have had it. Mani et al30 and Schilder
et al31 shows that time and temporal information has also been
extensively studied in the general domain. However, since time
expressions are deemed to follow certain linguistic rules which
can be captured by simple rules, they have focused more on their
semantic interpretation and temporal inferences than on the
identification of time expressions. Identification of time
expressions has been usually treated by explicit rules. Zhou
et al32 and Hripcsak et al,33 for example, proposed a system
architecture for a pipeline integrated approach to perform
temporal information extraction, representation, and reasoning
in medical narrative reports. Although the system is compre-
hensive regarding the treatment of temporal expressions and
inferences in the medical domain, the identification of temporal
expressions was carried out by a rule-based system or regular
expression. Jung et al34 proposed an end-to-end system to build
timelines from unstructured narrative medical records. Their
core procedure is also based on explicit rules for logical form
pattern-based extraction, concept extraction, temporal expres-
sion extraction, event extraction, and timelines creation. Their
system relies on deep natural language understanding.

In contrast to these systems, our work pursues the possibility
of applying NER techniques to the identification of time
expressions. Since time expressions are annotated together with
follow-up information, it is natural to leverage these annota-
tions for the identification of time expressions. Bramsen et al35

used a supervised machine-learning framework based on
linguistic and contextual features to derive the temporal order
for discharge summaries. Their experiment results demonstrate
that machine-learning methods can also achieve promising
performance for temporal information extraction. Although, in
contrast to their study, we do not treat temporal information
such as temporal ordering explicitly, our work shows that NER
techniques using CRF can achieve reasonable performance with
minimum manual intervention.

Among the few systems in the medical domain which treat time
expressions, the study by Denny et al12 is most relevant to our
work. They proposed timing and status descriptors colonoscopy

testing. While they used the KnowledgeMap concept identifier to
extract colonoscopy concepts, they developed a rule-based method
with regular expressions to extract time descriptors and normal-
ized them. Among their six types of status indicator (‘Scheduling,’
‘Considering,’ ‘Discussion,’ ‘In need of,’ ‘Receipt,’ and ‘Refusal’),
‘Scheduling’ and ‘In need of ’ are very similar to ‘follow-up’ in our
task. The two systems differ in the sense that, while we use
machine learning intensively, they rely on meticulous manual
rule writing. Since our ultimate goal of an alert system needs to
have more explicit understanding of temporal information than
the current system, we have to integrate our approach in the
future with their type of approach.

THE PROPOSED METHOD
It is well known that the larger the training dataset, the better
the performance of a CRF-based NER. However, this is the case
only when the judgments in the training data are consistent in
terms of local contexts. The training dataset must be kept clean
by removing training data which give different interpretations
to the same local contexts. In our case, since we have a dispro-
portionally large number of negative examples of S-FU-I which
always give a negative interpretation to any local context, it is
important to disregard them from the training data for CRF. All
sentences in sections such as ‘patient information’ should be
removed. Furthermore, we use an LSP classifier to filter out
irrelevant sentences in the sections which may contain S_FU_I
as well. The proposed system consists of: (1) preprocessing
unstructured medical reports and filtering out irrelevant
sentences in certain pre-defined sections; (2) finding a set of
S_FU_I candidates by using an LSP classifier; and (3) identifying
follow-up phrases and their time constraints in candidate
S_FU_I by using a CRF recognizer. Figures 2 and 3 show the
general and detailed flow diagrams of the overall system. The
same filtering steps (ie, by sections and by the LSP classifier) are
used to create the training data for the CRF recognizer.

Preprocessing radiology reports
The preprocessing steps are similar to those found in previously
published literature.36 The overall preprocessing steps consist
of section splitter, section filter, sentence splitter, sentence
tokenizer, and part-of-speech (POS) tagger and NP finder.

Section splitter and section filter
A radiology report consist of several sections: ‘patient informa-
tion,’ ‘exam,’ ‘clinical diagnosis,’ ‘impression,’ ‘conclusion,’
‘radiologist signature,’ and so on. Among these sections, follow-
up information appears in ‘exam,’ ‘impression,’ and ‘conclusion,’
so only these sections are passed to the next processing stages.

Processing by standard NLP tools
All sections are split into units of sentences, followed by toke-
nization (recognition of word boundaries), POS tagging, and NP
recognition. POS tagging assigns POS information to each word
in a sentence. We use a POS tagger developed by Schmid.37 An
NP chunker recognizes NPs in a sentence based on POS tags

Figure 2 Flow diagram of the proposed method.
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assigned by the previous step. We use an NP chunker developed
by Microsoft Research Redmond. While we use these specific
NLP tools for POS tagging and NP chunking, any equivalent
tools, which nowadays are readily available, would do the same
job. The POS tags and NP chunk markers are to be used as
features by the following major processing steps carried out by
LSP and CRF.

LSP classifier to generate a set of S_FU_I candidates
The LSP classifier divides the dataset into two categories. One is
a set of sentences which are likely to be S_FU_I, while the other
is a set of the remaining sentences. In the training phase of CRF,
only the former set of sentences is used. In the recognition
phase, LSP filters out irrelevant sentences and passes only the
former set to the CRF recognizer.

The LSP classifier we constructed has an architecture similar
to that in Cong et al18 (see figure 4). The classifier itself is an
SVM classifier which uses two set of features (ie, positive and
negative sets), each of which corresponds to a set of patterns of
POS tags generated by LSP. The training data set created by the
previous stage (ie, sentences with POS tags in the three sections,
‘exam,’ ‘impression,’ and ‘conclusion’) is divided into two sets,
one of which is a set of positive sentences (ie, S_FU_I) and the
other a set of the rest. LSP is applied to each of these two sets to
mine the characteristic POS patterns of each set. The existence
of a pattern is used as a binary feature for the SVM classifier.

The LSP classifier is an SVM classifier which uses binary
features, each of which corresponds to a pattern mined by two

LSPs. A set of patterns is mined for the positive set of S_FU_I
and another for the negative set. A binary feature is set to 1
when the corresponding pattern exists in input. The number of
patterns mined is controlled by the four parameters of MiniS-
upport for Positive (MPS), MiniConfidence for Positive (MPC),
MiniSupport for Negative (MNS), and MiniConfidence for
Negative (MNC) given to the two LSPs. MPS and MPC are
threshold parameters for mining the positive set and are the
minimum percentage of the known support and the minimum
percentage of the known confidence, respectively. MNS and
MNC are the corresponding parameters for mining the negative
set (see Cong et al18 for details).

CRF recognizer for extracting follow-up and time information in
sentences
We use a standard set of features with a set of clue words specific
to this task (see the Experiment section for details). As CRF,
we use the package CRF++ (available from http://crfpp.
sourceforge.net/).
For the purpose of comparison, two baseline systems are

constructed. Since we are interested in the performance of the
combined system of LSP and CRF, both baseline systems use the
same preprocessing stage as the proposed system.

Baseline system I: simple rule-based system
Simple observation of the dataset reveals that most S_FU_I
contain one of a restricted set of verbs. The set consists of
‘recommend,’ ‘suggest,’ ‘correlate,’ ‘evaluate,’ ‘advise,’ ‘plan,’

Figure 3 Detailed flow chart of the
overall method.
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‘follow-up,’ and ‘follow’ and 2972 (74.36%) of 3997 follow-up
sentences contain these verbs. In these sentences, the follow-up
phrases appear as the object of these verbs, that is, when a verb
is active, the NP following the verb is the follow-up phrase (eg,
‘Recommend CT’). On the other hand, when a verb is passive,
the NP preceding the verb is the follow-up phrase (eg, ‘CT is
recommended’). An NP is recognized by the SharpNLP parser.38

We prepared a set of regular expressions to identify time
constraints.

Baseline system II: CRF system
The CRF system is the same as the proposed system, except that
this baseline system does not use the LSP classifier. The same
CRF recognizer was trained by the entire set of 121 748
sentences instead of a set chosen by the LSP classifier.

EXPERIMENT
Four experiments were designed to evaluate the feasibility of
the proposed system for extracting follow-up and time infor-
mation, to analyze performance compared with two baseline
systems, to assess the impact of the size of the training set, and
to determine the effect of different feature sets on the CRF
recognizer.

Dataset
A large dataset containing 20 000 clinical radiology reports was
made available by the Microsoft Medical Media Lab. These
reports were generated from April 1, 2000 to May 1, 2000. A
total of 121 748 sentences were collected from the three sections,
‘exam,’ ‘impression’ and ‘conclusion.’ There were 1 239 994 word
tokens in the 121 748 sentences. Only 3997 of the 121 748
sentences contained follow-up information, manually judged as
such by a medical doctor and double-checked by one of the
authors of this paper. Annotation is performed by following
a simple guideline on NE boundaries. For example, we decided
not to include a preposition preceding a time expression such as
‘after ’ in ‘after six months.’ Regarding the semantics of the
follow-up class, we did not provide any formal guideline.
Instead, the two annotators shared examples during the course
of annotation and resolved disagreements. To check the quality
of annotation, we randomly selected 50 new radiology reports
containing follow-up information, and asked the same two
annotators to annotate them independently. Inter-annotation
agreement (k) between the two annotators was 0.9578, which
indicates that annotation was reliable. Unlike other tasks such
as coreferences (where the inter-annotator k is 0.7202 in the
Mayo dataset and 0.4072 in the UPMC dataset39) and sentiment
analyses (where the inter-annotator k is 0.54640) in the 2011

i2b2 challenge, annotation of follow-up information was easily
judged and stable across the two annotators.

Evaluation method
System performances were evaluated using the three standard
performance metrics: precision (P), recall (R), and F measure (F).
Since both follow-up and time information are usually expressed
by phrases, two criteria for correct recognition are defined. One
evaluation setting is based on exact matching which requires the
recognized span of expression to be exactly equal to the manu-
ally labeled span in a sentence. Another setting is based on
inexact matching which require the two spans, the automati-
cally recognized span and the manually recognized span, to
overlap.
For training and testing, we followed the standard leave-one-

out method and the cross-validation method.41 We used sixfold
cross-validation in all experiments. The averaged metrics of
evaluation were computed.

Experiment results
The proposed method of combining an LSP classifier with a CRF
recognizer has been quantitatively evaluated on 20 000 radiology
reports. As shown in table 1, all three metrics in the two eval-
uation settings exceed 0.85 and 0.90 in the exact matching and
inexact matching settings, respectively. The F measure in the
inexact matching setting is 0.95. The performance of two types
of follow-up information and time are also listed in table 1. For
the time type, the F measure is 0.98 in our method compared
with an F measure of 0.93 in the work by Denny et al.12

For the purposes of comparison, we list three methods in table
1: our method, baseline system I, and baseline system II.

Baseline system I: simple rule-based system
The performance of such a simple system is low (see table 1)
with an upper-bound of recall of 74.36%. In order to exceed this

Figure 4 Follow-up information LSP
classifier.

Table 1 Performance metrics with precision (P), recall (R), and F
measure (F) using the baseline method (Baseline I), the CRF method
(Baseline II) and the proposed method

Method

Exact matching Inexact matching

P R F P R F

Baseline I 0.81 0.58 0.68 0.89 0.63 0.74

Baseline II 0.90 0.80 0.85 0.98 0.87 0.92

Proposed 0.90 0.86 0.88 0.98 0.93 0.95

Follow-up 0.89 0.85 0.87 0.97 0.92 0.94

Time 0.98 0.98 0.98 0.98 0.98 0.98

Bold values indicate the best performance.
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upper-bound, we have to provide rules which can identify
S_FU_I such as ‘If avascular necrosis is suspected, MRI of both
hips would be more sensitive for this,’ etc. To write the many
rules required for recognizing such an implicit S_FU_I would be
difficult. The fact that our system exceeds this upper-bound by
a large margin indicates that the machine-learning approach
processes implicit S_FU_I very well.

Baseline system II: CRF system
As shown in table 1, the CRF system underperformed in
comparison with the proposed system, by 0.03 (F measure) in
both the exact and inexact settings. In other words, the system
with the LSP classifier reduces errors in the inexact matching
setting by 6%. Before discussing why such a significant error
reduction was achieved by the LSP classifier, we first examine
the performance of the LSP classifier itself.

LSP classifier
Table 2 demonstrates how the performance of the LSP classifier
changes depending on the parameters. Since the CRF works only
on the set of sentences generated by the LSP classifier, the recall
of the LSP classifier should be high. We set MPS, MPC, MNS,
and MNC to 0.01, 0.65, 0.01, and 0.65, respectively. The recall of
the LSP classifier is 0.95 with these parameters.

Effect of dataset size on performance
We used datasets of six different sizes: 1000, 2500, 5000, 10 000,
15 000, and 20 000. The results are given in table 3 and figure 5.

This experiment shows that, when a larger dataset is used,
a system based on machine learning techniques outperforms the
simple rule-based system.

Features used in the CRF recognizer
In all experiments, we use a set of features which can be easily
derived (see table 4). The features we use are ‘tokens’ (ie, actual
words in a sentence), ‘POS-tags,’ ‘clue-words’ (ie, the same set of
verbs such as ‘recommend,’ ‘suggest,’ etc), and ‘noun phrases.’
We avoided sophisticated feature engineering which involves
time-consuming trial-and-error processes.

DISCUSSION
Effects of the LSP classifier
The current version of the LSP classifier disregarded an average of
19 448 (116 685) sentences in the sixfold validation of 20 291
(121 748) sentences in the three sections. The LSP classifier
wrongly filters out an average of 34 (200) sentences in the sixfold
validation (recall is 0.95). Compared with baseline system II,
despite 34 (200) sentences being wrongly filtered out, the recall
of the whole system improves from 0.80 to 0.86 in the exact
matching setting and from 0.87 to 0.93 in the inexact matching
setting. This is because the LSP classifier correctly disregards
19 414 (116 485) negative sentences from the training
dataset. This filtering improves the local consistency of positive
examples, and as a result, the CRF recognizer achieves better
generalization, which leads to higher recall.
The filtering improves the efficiency as well. The entire set of

20 000 reports can be processed in 349 452 ms by our system
(processor: Intel Core Quad CPU Q9400 at 2.66 GHz, RAM:
2.00 GB). A large portion of the processing time (326 305 ms) is
used by the LSP classifier. However, the number of sentences to
be processed by the CRF recognizer is greatly reduced, from
121 748 to 5063. As a result, although baseline system II (ie, the
CRF recognizer) takes 713 488 ms to process the entire set of
sentences, the processing time of the CRF recognizer in our
system is only 23 147 ms. The average time (17.47 ms) to
process a report by our system is around half of that of the
baseline II system (35.67 ms).

Table 2 Performance metrics for the LSP experiment

LSP performance LSP parameters Whole system performance

P R F MPS MPC MNS MNC F_Exact F_Inexact

Test 1 0.83 0.90 0.86 0.01 0.85 0.01 0.85 0.85 0.92

Test 2 0.83 0.90 0.86 0.02 0.85 0.02 0.85 0.85 0.92

Test 3 0.84 0.89 0.86 0.03 0.85 0.03 0.85 0.84 0.91

.

.

Test 36 0.80 0.91 0.85 0.06 0.70 0.06 0.70 0.87 0.94

Test 37 0.80 0.91 0.85 0.07 0.70 0.07 0.70 0.87 0.94

Test 38 0.81 0.91 0.86 0.08 0.70 0.08 0.70 0.87 0.94

Test 39 0.81 0.90 0.85 0.09 0.70 0.09 0.70 0.86 0.93

Test 40 0.81 0.90 0.85 0.10 0.70 0.10 0.70 0.86 0.93

Test 41 0.75 0.94 0.83 0.01 0.65 0.01 0.65 0.88 0.95

Test 42 0.75 0.94 0.83 0.02 0.65 0.02 0.65 0.88 0.95

Test 43 0.75 0.93 0.83 0.03 0.65 0.03 0.65 0.88 0.95

Test 44 0.76 0.93 0.84 0.04 0.65 0.04 0.65 0.88 0.95

.

Test 50 0.76 0.93 0.84 0.10 0.60 0.10 0.60 0.87 0.94

Bold values indicate the best performance.
LSP, labeled sequential pattern classifier; F_Exact: F measure in the exact matching; F_Inexact: F measure in the inexact matching; MNC, MiniConfidence for Negative; MNS, MiniSupport for
Negative; MPC, MiniConfidence for Positive; MPS, MiniSupport for Positive.

Table 3 Precision (P), recall (R), and F measure (F) with various
training datasets

Dataset size

Exact matching Inexact matching

P R F P R F

1000 0.77 0.69 0.73 0.88 0.75 0.81

2500 0.82 0.70 0.76 0.94 0.81 0.87

5000 0.85 0.76 0.80 0.95 0.85 0.90

10 000 0.90 0.84 0.87 0.97 0.91 0.94

15 000 0.90 0.85 0.87 0.97 0.92 0.94

20 000 0.90 0.86 0.88 0.98 0.93 0.95
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Feature engineering
It is worth pointing out that we minimized feature engineering
in this research. The features that we used for the CRF recog-
nizer are all independent of the specific domain and specific text
type (radiology reports) and the specific task (extraction of
follow-up information), except for the set of eight clue words
such as ‘recommend,’ ‘suggest,’ etc. The features used by SVM in
the LSP classifier were automatically mined by LSP, without
human intervention. Avoiding trial-and-errors in feature engi-
neering contributed to reducing development costs, which were
less than one person’s monthly salary.

Size of training data
The fourth experiment clearly shows the effect of the size of
training data. Proper generalization is achieved with at least
10 000 reports, with performance then reaching a plateau. It is
also worth noting that human judgment in this task is stable
and as a result, the quality of training data is much better than
for other tasks,39 40 which helps the machine learning approach
which we took in this study. However, to reach the same level of
performance, a rule-based approach would require much more
human involvement in inspecting manual annotation.

CONCLUSION
This paper describes a system to extract follow-up information
whose performance is sufficiently good for it to be embedded in
an alert generation system for actual use. System performance
was tested using a large set of real radiology reports. The rela-
tively low cost of development and the domain/task indepen-
dent design makes the proposed framework attractive. One can
readily apply it to the extraction of follow-up from reports in
different domains.

The method of using an LSP classifier to filter out negative
examples from training data worked well in this task and
significantly improved the performance of a CRF recognizer.
Since the method is general, it can be applied to other tasks.
From the practical point of view, we will focus on further

improving the performance of the system, in particular recall
since much higher recall would be required for an automatic
alert generation system.
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