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Abstract—A heterogeneous multicore processor has several
cores that share the same instruction set architecture but run
at different speeds and power consumption rates, offering both
energy efficient cores and high-performance cores to applications.
We show how to exploit such processors to make significant
energy reduction to serve large interactive workloads such as
web search by carefully scheduling requests. Scheduling is a
challenging task. Intuitively, we want to run short requests on
slow cores for energy efficiency and long requests on fast cores
for timely responses. However, there are two key challenges:
(1) request service demands are unknown; and (2) the most
appropriate core to run a request may be busy.

We propose an online algorithm, Fast-Preempt-Slow (FPS),
which improves response quality subject to deadline and total
power constraints. We conduct a simulation study using measured
workload from a large commercial web search engine as well as
using a variety of synthetic workloads to assess the benefits of
FPS. Our results show significant benefits, achievable under a
wide variety of conditions: The throughput of a heterogeneous
processor is 60% higher than that of the corresponding homo-
geneous processor with the same power budget; equivalently,
to support a large workload as in web search, FPS on the
heterogeneous processors reduces the number of servers by
approximately 40%.

I. INTRODUCTION

We show that running large-scale interactive services on het-
erogeneous multicore processors saves a significant amount of
energy compared to running them on homogeneous multicore
processors.

We focus here on interactive services which have the
following characteristics: (1) Requests can be executed adap-
tively, permitting partial evaluation. (2) Since requests can
be evaluated partially, there is a response quality profile that
improves with the amount of processing. The quality profile
is typically concave: Full evaluation gives quality 1.0, and
halfway evaluation gives quality normally higher than 0.5. (3)
Requests have deadlines since they originate in an interactive
environment. This is an important class of workloads, and
many large-scale interactive cloud services belong to this class.
It constitutes a significant portion of data center workloads.
Examples include web search, video-on-demand, map search
and online gaming.

In practice, such workloads have two important properties.
Although the service demand is bounded, the service demand
distribution has a relatively large variance because many
requests are short and a few are long. In addition, there are
constraints imposed on processing the workload, expressed as
quality requirement. For example, a web search provider may
specify that requests must be processed within 120 ms deadline
with an average quality 0.995.

Next, we turn to modern processors. Today, server-class
processors have multiple identical cores, and we call such
processors homogeneous CPUs. In the near future, CPUs
will have heterogeneous cores, such that all cores run the
same instruction set but they run at different speeds, and
thus with different power rates: The faster the core, the more
power it uses. The power consumption increases faster than
speed; therefore, slow cores are energy-efficient while fast
cores achieve high performance. We call such processors
heterogeneous CPUs, for which several designs have been
proposed [2], [3], [12]–[14], [23] and some manufacturers
have announced production plans [1].

Due to the large variance of request service demand in
interactive services, homogeneous CPUs have their limitations:
By using energy-efficient slow CPUs, long requests cannot
be completed before their deadline, thereby resulting in a
degraded quality, whereas using high-performance fast CPUs
consumes a high energy for short requests.

To meet quality requirement and save energy, we propose to
run interactive services on heterogeneous CPUs. We show how
to schedule requests, meet the timing and quality requirements
and assess the energy savings by using heterogeneous CPUs.
This is a hard problem to solve. The key idea is to run
short requests on slow cores for energy efficiency and run
long requests on fast cores to meet the deadline and quality
requirements. We want to run each request on the slowest
core that can meet the deadline and quality requirement,
which minimizes request energy consumption while satisfying
service quality. However, there are two key challenges: (1)
We do not know request service demands. (2) There are
multiple requests but only a limited number of cores. The most
appropriate core to run a request may not always be available
when the request needs it.

We address the challenges with two important techniques.
(1) with unknown service demands, we introduce a key tech-
nique: migrate a request from slower to faster cores during its
execution. Intuitively, short requests are likely to be completed
on energy-efficient slow cores, leaving fast cores to process
long requests. We also perform a formal analysis, which
shows that migrating a single request from slower to faster
cores during its execution produces the most energy-efficient
schedule. (2) When multiple requests compete for resources, to
decide which request gets a faster core and when, we introduce
the urgency metric that estimates the desired minimum core
speed to complete a request given its current status. We find
that the longer a request is processed, the higher the urgency.
The reason is that, when a request is processed more, its
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expected service demand increases and its available processing
time before the deadline decreases. By assigning faster cores
to requests with higher urgency, requests have greater chances
to be completed prior to their deadlines, leading to a higher
response quality.

Inspired by the two techniques, we develop an online
algorithm called Fast-Preempt-Slow (FPS). When a fast core is
available, FPS always promotes the most urgent request from
a slower core to the faster core in a manner that improves
the average response quality. FPS shows significant benefits.
Under a fixed quality and deadline requirement, FPS improves
the server throughput, and thereby reduces both the number
of servers and the total energy required to process a large
workload.

We conduct simulation studies using measured workload
distribution and quality profile from a large commercial web
search engine — Microsoft Bing — as well as using a variety
of synthetic workloads and profiles. Our results demonstrate
the benefits by using FPS on heterogeneous CPUs. A heteroge-
neous CPU using FPS improves the average response quality,
reduces the quality variance, and improves the high-percentile
response quality compared to other traditional scheduling
algorithms. Under the same deadline and quality requirements,
a heterogeneous CPU using FPS increases the throughput by
60% compared to that of a homogeneous CPU with the same
power budget, thereby substantially reducing the number of
servers and their corresponding energy consumption in a large-
scale interactive service.

The main contributions of the paper are as follows: (1) We
characterize an important class of interactive workloads for
which heterogeneous CPUs achieve higher energy efficiency
than homogeneous CPUs (Section II). (2) We propose an
efficient algorithm, FPS, to schedule requests on a hetero-
geneous CPU to improve the response quality (Section III).
(3) We conduct simulation studies to assess the performance
of FPS. Our results show that using FPS, heterogeneous
CPUs significantly outperform homogeneous ones in terms of
improved quality, increased throughput and reduced energy
(Section IV).

II. SCHEDULING MODEL

This section discusses request characteristics in interactive
services in our environment and our measurement study on
Bing. Then, we formalize the job and hardware model.

A. Job Characteristics
We consider interactive services with three characteristics:
(1) Adaptive execution. Adaptive execution is the flexibility

of trading more resources for better quality. Without adaptive
execution, a scheduler can either execute a request fully or
reject it. In contrast, adaptive execution opens the possibility
of partial evaluation in which some requests can be returned
before completion, which is a favorable characteristic in many
applications such as web search.

(2) Concave quality profile. Because requests can be
executed adaptively, a quality profile measures the quality of
the response. If a request is executed fully it receives quality 1.
If the request is executed partially, it receives a lower quality.
The relationship between the quality of the result and the
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(a) Quality profile.
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(b) Service demand distribution.

Fig. 1: Measured web search workloads.

used amount of computational resources is typically a concave
function, which reflects diminishing returns.

(3) Deadline. For online interactive services, users expect
timely responses; long response times are not acceptable
because they cause user dissatisfaction and loss of revenues
[25]. Timing constraints are normally expressed as deadlines.

Many important interactive data center workloads possess
these characteristics. For example, in finance servers with
Monte-Carlo computations, increasing the number of samples
reduces the uncertainty of the results. However, the incremen-
tal gain of an additional sample becomes smaller when the
sample size becomes larger. In video streaming systems, basic
layers are more important than refinement layers; the quality
of received video streams improves monotonically with the
number of received layers but exhibits diminishing returns
[30]. Web search is another example, which we discuss next.

B. Measurement Study on Web Search Engine

We conduct a measurement study on Bing. We focus here on
the web index serving system which receives user queries and
returns the response. This system is a distributed interactive
service, not to be confused with the batch-oriented index
building system that crawls webpages and builds the web
index. The web index contains billions of documents and thus,
the index is partitioned and managed among thousands of
search servers.

When a query request arrives, it is assigned to an aggregator,
which sends the request to the search servers. Each search
server returns its matched results to the aggregator, and the
aggregator collects them and returns the top N webpages to
user. The search servers are the dominant component and
consume the majority (over 90%) of hardware resources, and
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hence our study focuses on search servers.
Search servers support adaptive execution with response

deadlines. A server scans an inverted index looking for
webpages that match the requested keywords and ranks the
matching webpages. The more time the server spends in
matching and ranking the documents, the better (i.e., more
relevant) the search results get. If the search server does not
finish searching for all matching webpages, it can still return
the best matches found so far. The search server responds
to the aggregator within 120 ms: the aggregator returns its
collected results to users without waiting for the delayed
responses from search servers.

Quality Profile. Web search has a concave response quality
profile. We measure the quality profile in Fig.1(a) using 200K
queries from a production trace. Here each request is a web
search query including a set of keywords, and the response
includes a set of links to the top documents matching the
keywords. We obtain the results by running the queries several
times with different completion ratios. The response quality
compares the set of documents returned in the test with
a golden set of base results that are obtained when each
request is fully processed. The x-axis of Fig.1(a) is the request
completion ratio which is calculated as the received processing
time divided by its full processing time; the y-axis is the
average response quality. The figure demonstrates that the
quality profile is monotonically increasing and concave 1. The
concavity comes from the effect of diminishing returns: An
inverted index lists important (e.g., popular) webpages first;
thus, webpages matched earlier are more likely to rank higher
and contribute more to the request quality.

Service Demand. We also measure service demand distri-
bution of Bing requests as shown in Fig.1(b). The majority
of the requests are short with service demand less than 40ms
but there are still more than 10% long requests with service
demand 100ms and above.2 This diversity in request service
demands has been observed in many workloads [18], [19],
making heterogeneous CPUs a promising candidate to reduce
energy consumption while meeting the deadline and quality
requirements.

C. Job Model
A job, or a request, is specified by a tuple (ta, d, w), where

ta, d, w are its arrival time, lifespan, and service demand,
respectively. The job deadline is ta + d and any processing
thereafter does not contribute to the response quality of the job.
In many environments, servers do not differentiate requests,
leading to the same delay requirement for all requests: we
assume that the lifespan of all requests is the same. The
service demand is the total work (i.e., CPU cycles) required
to complete a request. The request processing time on a core
is directly proportional to the inverse of the core speed.3 We
denote the maximum service demand by ŵ. The actual service
demand of a job is unknown to the scheduler until the job is

1Except for a small interval around 0.6 possibly due to imprecision of the
measurements.

2Service demand is measured on the fast core, the specification of which
is provided in Section 5.

3We vary the relation between processing time, core speed and power rate
in the performance evaluation study.

completed. However, the service demand distribution is avail-
able by using, for example, online or offline profiling [7], [8],
[18]. Thus, w ∈ [0, ŵ] is an unknown random variable, whose
probability density function (PDF) and cumulative distribution
function (CDF) are denoted by f(w) and F (w) =

∫ w

0
f(x)dx,

respectively. We allow a job to migrate from one core to
another. In practice, job migration incurs a context switch
overhead and our scheduler introduces a small number of job
migrations.

A quality function q(r) : R+ → R maps the request comple-
tion ratio (total processed work/service demand) to a quality
value gained by executing the request. Each request may have
a unique quality profile, which is often unavailable for an
online scheduler, and sometimes can be determined only after
completing the full request processing. Therefore, we use q(r)

to represent expected quality profile of a request, which can
be measured through online/offline workload characterization.

D. Hardware Model
A heterogeneous CPU consists of N ≥ 1 heterogeneous

cores, indexed by 1, 2, · · · , N , respectively, which are non-
uniform in terms of their processing speeds as well as power
consumption. Without loss of generality, we assume that the
i-th core speed si and power pi satisfy 0 < s1 ≤ s2 ≤ · · · ≤ sN

and 0 < p1 ≤ p2 ≤ · · · ≤ pN [7]. Moreover, we assume that a
core with a faster processing speed consumes more energy to
process a unit of work, i.e., pi/si ≤ pj/sj for 1 ≤ i ≤ j ≤ N ,
since otherwise the faster core is more energy-efficient than
the slower core and there is no need to include the slower core
in the processor design.

E. Scheduling Objective
Our scheduling objective is to improve the total (or average)

response quality of all requests. The benefits of quality im-
provement can be used to increase throughput and save energy.
Higher quality at any given load indicates that, under a fixed
quality and deadline requirement, a server can support higher
load and its throughput improves, and thereby reducing both
the number of servers and the total energy required to serve a
large workload.

To fairly compare heterogeneous to homogeneous CPUs,
we compare the servers with the same CPU power budget.

III. SCHEDULING ALGORITHM

This section proposes an online algorithm FPS to schedule
interactive requests on heterogeneous CPUs. We first describe
two challenges and the important techniques to address them.
Then, we present our scheduling algorithm FPS. Finally, we
discuss an enhanced early-termination feature of FPS, which
further exploits the concavity of the request quality profile to
improve the response quality.

A. Key Insights
Our scheduling algorithm is designed to improve server

throughput while achieving a high response quality under a
power budget. Intuitively, if the request service demand is
known, we want to schedule long requests on fast cores, which
ensures a timely high response quality, while scheduling short
requests on slow cores, which improves energy efficiency of
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requests. An ideal scheduler will run every request on the
slowest core that can meet the request deadline and quality
requirement. However, there are two challenges. (1) Request
service demand is often unknown: how can we schedule short
requests to slow cores and long requests to fast cores? (2)
There are multiple requests but only a limited number of cores.
The most appropriate core to run a request may not always be
available when the request needs it.

Challenge (1): The challenge is to run short requests on
slow cores and long requests on fast cores without knowing
the service demand. Naturally, without the service demand
information, we cannot find the most appropriate core for a
request before its execution. We propose to migrate a request
from slower to faster cores during its execution. By doing so,
short requests are likely to be completed on energy-efficient
slow cores, saving fast cores to process long requests.

In addition to being intuitive, our proposed approach is also
supported by a formal analysis in Theorem 1, which shows that
migrating a single request from slower to faster cores during
its execution produces the most energy-efficient schedule. In
essence, minimizing the energy consumption of an individual
request can be translated to maximizing the throughput of a
server system under a given power budget, which is aligned
with our scheduling objective.

Theorem 1: Suppose that a request has deadline d, service
demand CDF F and quality profile function q that is mono-
tonically increasing and concave. To meet any average quality
requirement, the core speed for processing the request4 is
non-decreasing under the optimal schedule that minimizes the
average CPU energy consumption of the request.
Proof. As the first step of the proof, we show how to meet
request quality requirement. The request quality is related
to the quality profile function q and the amount of the
processed work before the deadline. Let us define the target
work x̄, which specifies the maximum amount of work that
is completed prior to the deadline regardless of the actual
service demand of the request. If the request has a total service
demand less than x̄, the request runs until completion, whereas
the request is terminated at work x̄ otherwise. Since the quality
profile function q is monotonically increasing in x̄ ∈ [0, ŵ],
the average (expected) response quality increases from 0 to 1.
Therefore, given an average quality requirement 0 ≤ r ≤ 1, we
can find a fixed target work x̄ ∈ [0, ŵ] that satisfies the quality
target.

After finding the target work x̄, we formulate the problem of
minimizing the average CPU energy consumption of a request
as follows:

min
X

∫ x̄

0

[
1− F (x)

]
· pX (x)

sX (x)
dx, (1)

s.t.,

∫ x̄

0

1

sX (x)
dx ≤ d, (2)

where X is a schedule that specifies which cores are used
and in which order to process the single request, sX (x) ∈
{s1, s2 · · · sN}, and pX (x) = pi, if sX (x) = si. Constraint (2)

4This theorem considers the case where the desired cores for a request are
always available. The case when multiple requests are competing for cores is
addressed in Challenge 2.

guarantees that the schedule X satisfies the deadline. We
now prove the theorem by contradiction. Suppose that sX′(x)

minimizes (1) while, under the schedule X ′, the job is first
processed by a faster core and then by a slower one. Thus,
there exist x1 and x2 such that 0 ≤ x1 < x1 + dx ≤ x2 <

x2 + dx ≤ x̄ and sX′(x′
1) > sX′(x′

2), where x′
1 ∈ [x1, x1 + dx],

x′
2 ∈ [x2, x2+dx] and dx is a sufficiently small positive number.

Since faster cores consume more energy to process one
unit of work than slower ones, we show that the following
inequality holds:

[1− F (x′
1)] ·

[
pX′(x′

1)

sX′(x′
1)
− pX′(x′

2)

pX′(x′
2)

]
+ [1− F (x′

2)] ·
[
pX′(x′

2)

sX′(x′
2)
− pX′(x′

1)

sX′(x′
1)

]
=

[
pX′(x′

1)

sX′(x′
1)
− pX′(x′

2)

sX′(x′
2)

]
· [F (x′

2)− F (x′
1)] > 0.

(3)

Thus, we have [1− F (x′
1)] ·

pX′ (x′
1)

sX′ (x′
1)

+ [1− F (x′
2)] ·

pX′ (x′
2)

sX′ (x′
2)

>

[1− F (x′
1)] ·

pX′ (x′
2)

sX′ (x′
2)

+ [1− F (x′
2)] ·

pX′ (x′
1)

sX′ (x′
1)

. By evaluating the
integral in (1), we see that the expected energy consumption
can be further reduced if we exchange the order of cores
processing the x′

1−th cycle and the x′
2−th cycle, for x′

1 ∈
[x1, x1 + dx] and x′

2 ∈ [x2, x2 + dx], while keeping the rest of
the schedule X ′ unchanged. This contradicts the assumption
that X ′ minimizes (1) and hence, proves Theorem 1. �

Inspired by Theorem 1, FPS migrates a request only from
slower to faster cores when necessary.

Challenge (2): When two requests are competing for a
faster core, FPS uses the faster core to run the more urgent
request, which is also the request that has arrived earlier. We
define the “urgency” of a request as follows.

Definition 1: The urgency of a request is defined as the
expected minimum core speed to complete the request prior
to its deadline. Mathematically, the urgency is expressed as
follows:

U =
E {w − w0 |w ≥ w0}

r

=

∫ ŵ

w0
wf(w |w ≥ w0)dw − w0

r
,

(4)

where w0 is the completed work, r is the remaining lifespan
of the request, and f(w |w ≥ w0) is the PDF of the service
demand conditioned on that the request has completed w0

work.

Urgency indicates the desired core speed to complete a
request upon its deadline. Therefore, by assigning faster cores
to requests with higher urgencies, jobs have greater chances
to be completed prior to their respective deadlines. To show
the trend on job urgency and motivate the techniques of FPS,
Fig. 2 shows a lower bound on the urgency value where we
assume that all the completed work of the service request
is done by the fastest core and the request is processed
immediately upon arrival. Fig. 2 depicts urgency versus the
completed work for the measured service demand distribution
in our search server, where the x−axis is the completed work
(in ms) and the y−axis is the desired core speed normalized
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Fig. 2: Urgency versus completed work.

with respect to the fastest core speed.5 A key observation is that
as the request is processed more, its urgency increases. The
reason is that, when a request is processed more, its expected
service demand increases whereas its available time before
deadline decreases. The general trend of the urgency curve
is similar for other widely used service demand distributions
such as exponential distribution and Pareto distribution. This
observation motivates FPS to use faster cores to run the request
that arrives earlier because that request has higher urgency.

B. FPS Algorithm

When a faster core is idle, FPS always promotes the most
urgent job from a slower core and executes it on a faster core,
where the most urgent job is also the job with the earliest
arrival time and the earliest deadline. The pseudo-code of FPS
is shown in Algorithm 1. Let us further demonstrate FPS by
considering the following three example cases.

Case 1 (No jobs are available): A new job will be processed
by core N , which is the fastest available core.

Case 2 (Only the fastest core is busy): A new job will be
processed by core N − 1, which is the second fastest core; it
will be scheduled to core N after the earlier job leaves.

Case 3 (All the cores are busy): Whenever an existing job
leaves because completion or deadline expiration, the job with
the highest urgency being processed by a slower core will be
scheduled to the core previously processing the job that leaves,
and similar operations for the other jobs. The job waiting in
the head of the queue will be scheduled to the slowest core.
No job migrates between cores that have the same speed.

Algorithm 1 shows three properties of FPS:
• If a request migrates, it always migrates from a slower

to a faster core. From Theorem 1, this property reduces
the average energy consumption of each request, thereby
improving the system throughput under a power budget.

• A faster core always runs a request with higher (or
equal) urgency than that of any slower core. This property
increases the chance of completing all requests before
deadline and improves the response quality.

• When there are 1 ≤ k < N requests where N is the
number of cores, the fastest k cores are used to process

5During actual processing, request urgency is impacted by its waiting time
in the queue and its execution history, making the urgency in Fig. 2 a lower
bound.

Algorithm 1 FPS
Require: Active job queue Q, core processing speeds 0 < s1 ≤

s2 ≤ · · · ≤ sN
1: Assign urgencies to all jobs.
2: i← N
3: while i ≥ 1 do
4: if core i is idle then
5: job J = job being processed on a slower core than core i

(or waiting in the queue) and with the highest urgency
6: if job J is null then
7: break
8: else
9: schedule job J to core i

10: end if
11: end if
12: i−−
13: end while
14: return
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Fig. 3: Expected quality improvement rate versus completed work.

these k requests, which improves the response quality.6

C. Early Termination Feature of FPS
We introduce an enhancement for FPS to further exploit

the concavity of the quality profile and improve the response
quality. The variation of FPS with the new feature is referred to
as FPS-ET. As the concave quality profile exhibits diminishing
returns, a job which has been processed for a long time
may not contribute to the overall quality as much as a new
job. Hence, by early terminating a job that can only bring
marginal quality improvement, the core can be utilized to
process “fresher” jobs that are more likely to bring higher
quality gain and improve the overall response quality. To
formally illustrate this point, we define the expected quality
improvement rate as follows.

Definition 2: If a job has been processed for x ∈ [0, ŵ]

amount of work, its expected quality improvement rate is
defined as

I(x) = E
{
dq( x

w
)

dx
|w ≥ x

}
=

∫ ŵ

x

dq( x

w
)

dx
f(w |w ≥ x)dw. (5)

6Although one CPU may consume more energy using FPS than using
other scheduling algorithms (as fast cores are always used whenever there are
requests), the objective of FPS is to maximize the overall response quality.
Therefore, as shown later, FPS saves energy by processing more requests (i.e.,
higher throughput) on each server subject to the average quality requirement,
which effectively reduces the number of required servers as well as the
corresponding energy consumption to sustain the total workload.
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The expected quality improvement rate I(x) denotes the
expected quality improvement with a unit of additional work if
the job has completed x amount of work. We plot the expected
quality improvement rate for the search server workload in
Fig. 3, which shows that the more a request is processed, the
smaller its expected quality improvement rate is. The decreas-
ing expected quality improvement rate is also true for a wide
range of service demand distributions (e.g., exponential, Pareto
distribution) when the quality profile is linear or concave,
which therefore motivates early termination of long requests.

FPS-ET finds the optimal “early termination” time to max-
imize the total (expected) response quality, which can be
formulated as a convex optimization problem. Suppose that
there are M available jobs, indexed by 1, 2, · · · ,M , following
an increasing order of their arrival times. In particular, job 1 is
processed by the fastest core N , job 2 by core (N−1), · · · , job
N , if any, by core 1, while the remaining jobs are waiting in a
queue. Next, we introduce a set of decision variables, namely,
y = (y1, y2, · · · , yM), where yi represents the reserved time
for which job i is scheduled to be processed on the fastest
core N . Hence, for job 1, the reserved (additional) work to
be processed before termination is simply y1sN . While job 1

is processed by core N , job 2 is processed by core (N − 1)

for a duration of y1, since it can only be scheduled to core
N after job 1 is terminated. Overall, the reserved work to be
processed for job 2 before termination is y1sN−1+y2sN , where
y1 and y2 are the reserved time for which job 2 is processed
by core (N − 1) and core N , respectively. Similarly, we can
express the reserved work to be processed for job i before
termination as

w̃i =
i∑

j=min{1,i−N}

yj · s(N−i+j). (6)

Thus, if job i has been processed for wi unit of work, the
expected quality of job i is

q̄i(y) =

∫ ŵ

wi

q

(
min

{
1,

wi + w̃i

w

})
f(w |w > wi)dw, (7)

which is concave in w̃i =
∑i

j=min{1,i−N} yj ·s(N−i+j) and hence
also in the decision variable y, as the composition preserves
concavity [22]. Let ri be the available remaining lifespan for
job i, for i = 1, 2, · · · ,M , with deadline constraints : y1 ≤ r1,
y2 + y1 ≤ r2, · · · ,

∑M

j=min{1,M−N} yj ≤ rM . Thus, we provide
the formulation of finding the optimal termination time as
following:

OptTerm : max
y=(y1,y2,··· ,yM )

M∑
i=1

q̄i(y), (8)

s.t., y ≽ 0, (9)
i∑

j=min{1,i−N}

yj ≤ ri, ∀i = 1, 2, · · · ,M, (10)

where the objective function is given in Eqn. (7), “≽” in
constraint (9) represents the element-wise inequality, (9) spec-
ifies that the reserved time for each job on the fastest core
must be greater than or equal to zero, and constraint (10)
specifies the deadline constraint. With affine constraints and a
concave objective function, the OptTerm formulation is convex

TABLE I: Core Specification: Speed and power.

Core Speed Normalized
speed

Power Normalized
power

Fast 3.33 GHz 1.0 32.5W 1.0
Medium 1.67 GHz 1/2 6.5W 1/5

Slow 1.11 GHz 1/3 2.7W 1/12

TABLE II: Server CPU Configuration: CPUs use the same power,
but use different cores.

Name Fast Medium Slow CPU
power

Hom-02f 2 0 0 65W
Hom-10m 0 10 0 65W
Hom-24s 0 0 24 64.8W

Het-1f-3m-5s 1 3 5 65.5W

programming, to which efficient algorithms (e.g., interior-point
methods) are available [22]. FPS-ET calls OptTerm whenever
the set of active jobs changes (e.g., a new job arrives, an
existing job is completed or job 1 is early terminated).

To summarize, FPS possesses many desirable properties.
FPS saves energy by migrating requests from slower to faster
cores; it improves the response quality by running more
urgent requests on faster cores, meeting the deadlines of more
requests. FPS is computationally efficient: It does not require
the request service demand information and it bounds the
number of job migrations. Each job may migrate only up to
K − 1 times in the worst case, where K is the number of
different core speeds, regardless of the server load. In practice,
the number of migrations per job is much less than K − 1, as
we will show in Section IV.

IV. PERFORMANCE EVALUATION

This section presents simulation studies to evaluate the
performance of FPS and demonstrates the advantage of het-
erogeneous CPUs over homogeneous CPUs. We perform five
sets of experiments:
• Heterogeneous versus Homogeneous CPUs: Compare

three homogeneous CPUs with heterogeneous CPUs on av-
erage quality, variance and 95%-quality.
• Algorithms comparison: we compare FPS with two well-

known scheduling algorithms for homogeneous CPUs and two
algorithms for heterogeneous CPUs.
• Impact of early termination in FPS: we show the advan-

tage of using the additional early termination feature of FPS.
• Impact of migration overhead: we evaluate the perfor-

mance of FPS in the presence of migration overhead.
• Sensitivity study: we evaluate FPS under different hard-

ware configurations, workload and performance characteris-
tics.

The first four sets are driven by the web search workload,
and in the last experiment, we perform sensitivity study using
various synthetic workloads.

A. Setup

Web search server: We model Bing, a large commercial
web search engine, which accepts users’ search queries and
returns the top L webpages. The search and ranking process
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is an essential part of the web search engine and is CPU-
intensive, making web search a CPU-bound application [29].
Our experiments use the following parameters, as used in the
production environment: request delay deadline 120 ms and
average request quality requirement 0.995. Service demand
distribution is measured from production servers and shown
in Fig. 1(b). Our experiments use a Poisson process to model
request arrivals. We vary the mean query arrival rate which is
measured in queries per second (QPS).

We approximate the measured quality profile of Bing in
Fig. 1(a) using the smooth function in Eqn. (11) for the
convenience of analysis:

q
( x

w

)
=

1− e−b·min(1, x
w )

1− e−b
, (11)

where b = 3.53 is the constant governing the curvature of q(x),
and x is the completed work for a job with service demand
w. As shown in Fig. 4(a), the approximated profile is close to
the measured profile (with a mean square error of 0.0093).

Hardware configuration: We consider three heterogeneous
cores as specified in Table I. The fast core represents a
conventional server core, such as Intel Core i7 [26], a medium
core represents an energy-efficient core such as Atom N455
[27], and a slow core is typically used in embedded systems,
such as Atom Z510 [28]. We use the fast core (3.33 GHz,
32.5W) as a reference to normalize the actual core speeds and
power consumption in our experimental results. We assume
that the request processing speed is linear to the clock rate
in the first four experiments, while we evaluate the impact of
nonlinear speed-up in the sensitivity study (Section IV-F).

We fix the maximum power budget for each CPU. The
normalized power budget for each CPU is 2, which cor-
responds to 32.5x2=65W.7 Thus, the available homogenous
CPUs are: (1) Homogeneous CPU with 2 fast cores (Hom-
02f); (2) Homogeneous CPU with 10 medium cores (Hom-
10m); and (3) Homogeneous CPU with 24 slow cores (Hom-
24s). Our default heterogeneous CPU uses 1 fast core, 3
medium and 5 slow cores (denoted as Het-1f-3m-5s). These
configurations are summarized in Table II. Other possible
choices for heterogeneous CPUs are discussed later.

B. Heterogeneous versus Homogeneous CPUs
We compare the three homogeneous CPUs (using a FIFO

scheduler) to the heterogeneous CPU Het-1f-3m-5s (using
FPS). In a FIFO scheduler, all the jobs wait in a single
queue and an idle core pulls the job from the queue head and
processes it until completion or expiration of the deadline. The
FIFO scheduler is used in Bing servers, and it is commonly
used by other servers as well. Notice that FPS and FIFO are
equivalent on a homogeneous CPU.

Improved average quality: Fig. 4(b) depicts the average
response quality on the y-axis against load on the x-axis.
It shows that by applying FPS, the heterogeneous CPU
outperforms the three homogeneous CPUs in the average
response quality for a wide range of loads, which translates
into higher throughput subject to a fixed quality requirements.
For instance, we focus on the throughput at the target quality

7Considering other power budgets gives us similar results.

0.995 for web search, which we call the 0.995-throughput.
It significantly increases (by nearly 60%) on Het-1f-3m-5s
compared to Hom-02f. The core utilization at quality 0.995 is
as follows: for Hom-02f at 44 QPS, it is 59%, and for Het-1f-
3m-5s at 71 QPS it is 90% fast, 55% medium, 8% slow cores.
Hom-10m and Hom-24s can only support a maximum average
quality of approximately 0.985 and 0.965. Fig. 4(b) also shows
that Hom-02f can yield a high quality when the throughput
is low (e.g., < 40), whereas Hom-10m and Hom-24s cannot
achieve sufficiently high quality. Therefore, by integrating the
high processing capability of fast cores with the low power
consumption of medium and slow cores, a heterogeneous CPU
can satisfy the stringent quality requirement (e.g., 0.995) while
supporting a high throughput.

Reduced quality variance: Fig. 4(c) shows the variance
of the response quality: the heterogeneous CPU using FPS
has the lowest variance. Under Hom-24s and Hom-10m, long
jobs may have very low quality, resulting in large variances.
Hom-02f has little quality variance when QPS < 30, since
it can almost complete every job when the throughput is
low. However, when the load increases, the queue length
and queuing time increase; long requests may get insufficient
service before their deadline, thereby resulting in a reduced
quality and an increased variance. When using a Het-1f-3m-
5s, a long request that cannot get a fast core immediately can
still be processed on one of many slow and medium cores and
migrates to the fast core later, resulting in an improved quality
and a reduced variance.

Improved 95%-quality: High-percentile quality is of con-
siderable interest since many commercial services specify
their service level agreement (SLA) using both high-percentile
quality and average quality of responses [24]. For example, a
web search engine can target to offer an average quality of
0.995 and a quality of 0.90 for at least 95% requests, which we
call 95-percentile quality. The high-percentile quality depends
on the response quality distribution. Fig. 4(d) shows that a
heterogeneous CPU improves the 95%-quality over homoge-
neous CPUs on moderate and heavy loads, which is the result
of improved average quality and reduced variance.

Reducing number of servers: To highlight the hardware
and energy cost reduction by using a heterogeneous CPU
with FPS scheduling, we consider a total load of 10, 000

QPS and compute how many servers are needed to serve the
workload subject to various average quality requirements. As
discussed in the simulation setup, our CPUs are configured
under (approximately) the same power budget. Fig. 4(e) shows
the number of servers, for three CPUs, Het-1f-3m-5s, Hom-
02f, and Hom-10m. Hom-24s is not shown as it does not meet
the depicted quality range. For an average quality of 0.995,
using the heterogeneous CPU reduces the number of servers
by approximately 40%, which can also be translated into a
significant reduction in the energy usage in large data centers.

Small number of job migrations: Given K different core
speeds available, a job may migrate up to K − 1 times in the
worst case. Het-1f-3m-5s has cores with three different speeds
and thus, the upper bound on the number of job migrations is
2. Nevertheless, we observe that job migration does not occur
frequently. The average number of migrations per job is 0.35
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(a) Quality profiles.
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(b) Average quality.
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(c) Variance.
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(d) 95%-Quality.
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(e) Number of servers.
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(f) Different scheduling algorithms.

Fig. 4: Figure (a) shows the request quality profiles. Figure (b), (c), (d) and (e) compare heterogeneous to homogeneous CPUs under different
performance metrics. Figure (f) compares different scheduling algorithms on the heterogeneous CPU.

at 40 QPS and increases to 0.75 at 100 QPS. The small number
of job migrations makes FPS appealing in practice.

C. Scheduling Algorithms Comparison

This section compares FPS with four other scheduling algo-
rithms. First, we compare FPS to two well-known scheduling
algorithms — FIFO and processor sharing (PS). We then look
at a scheduling algorithm (Slow Preempt Fast, or SPF) which,
as the exact opposite of FPS, migrates job from faster cores to
slower cores. Our results show that FPS outperforms all three
of them.

The above three algorithms as well as FPS are nonclairvoy-
ant, which do not require the knowledge of request service
demand. On the other hand, a clairvoyant scheduler knows
the request service demand. Intuitively, a clairvoyant scheduler
wants to run each request on the slowest core that can complete
the job before its deadline, which we call BestFit. Our results
show that, even without knowing the request service demand,
FPS still outperforms BestFit which knows the request service
demand.

Comparing FPS with FIFO and PS: Fig. 4(f) shows the
performance of FPS and FIFO on Het-1f-3m-5s. FPS achieves
a significantly higher quality than FIFO which cannot support
a 0.995-throughput higher than 20 QPS. FPS outperforms
FIFO because FPS migrates requests from slower to faster
cores. FPS completes many short requests on slower cores
and spares faster cores for long requests. However, using
FIFO, the assignment of cores does not depend on the request
service demand, and processing long requests using slower
cores inevitably degrades the total response quality.

PS is another well-known scheduler for homogeneous
CPUs, where processors are assigned to requests in a round-
robin fashion. We extend PS to heterogeneous CPUs similarly:
when the number of jobs are larger than or equal to the number
of cores, the jobs equally share all the available cores; when
the number of jobs M are smaller than the number of cores N ,
the jobs equally share the M fastest cores in the round-robin
fashion.8 Fig. 4(f) shows that FPS achieves a higher quality
than PS. This is because the migration policy of FPS gives
long requests a higher chance to use fast cores. Nevertheless,
when using PS, fast cores are equally shared among short and
long requests and hence, those long requests which really need
the fast cores may not get enough share.

The results of FIFO and PS indicate that the classic schedul-
ing algorithms on homogeneous CPUs do not consider the
matching of request service demands and the heterogeneous
power-performance characteristics of cores. Therefore, new
scheduling algorithms are required to efficiently exploit the
benefits of heterogeneous CPUs. Moreover, since the request
service demand is unknown, we cannot find the most appro-
priate core for a request before its execution. However, during
the execution, we progressively have more information on the
request (e.g., request urgency) such that we may refine our
scheduling decision. Therefore, job migration among cores is
important in order to improve the scheduling decision when
request service demand is unknown. Next, we examine the
impact of different migration orders.

Comparing different migration orders. We consider a

8We assume that the context switch and migration overhead of PS is 0 and
therefore the quality result is an upper bound on PS performance.
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scheduler, SPF, in which job migration follows the reverse
order of FPS and jobs are scheduled from fast cores to slow
ones. Each job is processed until completion or expiration. If
the number of jobs is smaller than the number of cores, all the
jobs are processed by the fastest available cores. We show in
Fig. 4(f) that FPS achieves a much higher quality than SPF.
By using FPS to migrate jobs from slower to faster cores,
short jobs are likely to be completed on slower cores, saving
faster cores to process long jobs. In contrast, in SPF, short jobs
are completed by faster cores whereas long jobs, which have
higher “urgency”, are processed by slower cores. Thus, it is
likely that long jobs do not get fully completed before their
respective deadlines. This comparison shows the importance
of job migration order from slower to faster cores.

Comparing FPS with a clairvoyant scheduler: Even with
known service demands, scheduling multiple jobs on a het-
erogeneous CPU is a challenging task. Here, we propose a
clairvoyant scheduler, BestFit, which tries to schedule each
job with the minimum energy in a greedy fashion. Specifically,
each core maintains a separate queue and, a new job joins the
queue served by the slowest core that can complete the job
before its deadline. If none of the cores can complete the job
because of a large number of waiting jobs, the job will be
scheduled to the queue that produces the highest quality for
the job. Hence, BestFit is a greedy clairvoyant scheduler with
known service demands but without job migration. It is similar
to scheduling algorithms in prior work [12], [13] in that jobs
are mapped to the most “appropriate” cores.

Fig. 4(f) shows that, rather surprisingly, FPS without know-
ing request service demand outperforms BestFit that knows the
service demand. We find that the major problem of BestFit is
that it does not consider job migration. For example, consider
the following scenario: A long job arrives and the best core to
run the job is the fast one but the fast core is running another
job. BestFit will let the job wait for the fast core to finish
even when there are other medium or slow cores available.
A better strategy is to use the medium or slow cores to run
the job first and migrate it to the fast core when it becomes
available. This is a general problem for schedulers that do
not consider job migration, which lose the flexibility to use
all available resources efficiently. In other words, even when
the request service demand is known, migration is important:
it allows using available system resources and, in particular,
long requests can make progress on slower cores first before
migrating to available faster cores.

The above comparison shows that classic algorithms are in-
efficient on heterogeneous CPUs and FPS exploits the benefits
of core-level heterogeneity.

D. Impact of early termination in FPS

We investigate the performance improvement resulting from
FPS-ET, which is FPS with early termination. Fig. 5 presents
the average quality of FPS and FPS-ET using the quality
profile in Eqn. (11) with two different values for parameter
b: (1) b = 3.53, the approximated profile we have used for the
previous experiment and (2) b = 6.00, a more concave profile
as shown in Fig. 4(a). The results show that FPS-ET improves
response quality over FPS because FPS-ET evicts long jobs

processed by the fast core to improve the average quality. For
example, at QPS=180 and b = 6, 23.4% of jobs are processed
by the fast core and 97.9% of them get early terminated by
FPS-ET. Next, when b is larger, the quality profile is “more
concave” and the performance improvement by using FPS-ET
becomes more substantial. The reason is that with the increase
in concavity, processing a long job at its later stage brings only
a negligible return, and thus, evicting it using FPS-ET saves
the resource to other jobs with a higher potential gain in the
overall quality.
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Fig. 5: FPS and FPS-ET with the early termination feature.

E. Impact of migration overhead
The previous discussion assumes zero overhead for job

migrating from one core to another. This section presents the
performance of FPS with different migration overheads. Job
migration between cores requires a context switch for both
cores. In practice, when the size of a job’s working set is
larger, a context switch is more costly because of cache warm-
up, which may take tens of microseconds to a millisecond [31].
In our experiment, we model three migration overhead values:
0ms, 1ms and 2ms in Fig. 6, which also shows the curves
of the three homogenous CPUs using FIFO (which does not
incure any migration) for reference. Fig. 6 shows that, even
with a rather high migration overhead of 2ms, FPS performs
well with little performance degradation compared to that with
zero overhead.

This is mainly due to two factors: (1) the migration over-
head, which is typically at the range of tens of microseconds
to a couple of milliseconds, is much smaller compared to
the deadline which is often a few hundred milliseconds for
interactive services; and (2) since most jobs are short and likely
to be completed by slow cores without migration, the average
number of job migrations produced by FPS is rather small. For
example, the average number of migrations per job is 0.35 at
40 QPS and increases to 0.75 at 100 QPS. Therefore, even in
the presence of migration overhead, the heterogeneous CPUs
using FPS still outperforms homogeneous CPUs with higher
response quality.

F. Sensitivity Study
This section evaluates the sensitivity of FPS by considering

different hardware configurations, service demand distribu-
tions, quality profile functions and job completion times. The
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Fig. 6: Impact of different migration overheads.

simulation results show that heterogeneous CPUs with FPS
are robust against these factors and outperform homogeneous
CPUs and heterogeneous CPUs with other scheduling algo-
rithms.

Different core configurations: We use all heterogeneous
core configurations containing one fast core. In Fig. 7, we
show that, using FPS, all heterogeneous CPU configurations
(except for the one with 1 fast and 12 slow cores) support
a higher 0.995-throughput than Hom-02f. Beyond 50 QPS,
all heterogeneous CPU configurations perform better than the
homogeneous one. For example, the best available heteroge-
neous CPU Het-1f-3m-5s can sustain a 0.995-throughput of
approximately 80 QPS, and Het-1f-5m using only fast and
medium cores can achieve a 0.995-throughput very close to
80 QPS. This is because, many jobs are short and thus, given
the same power budget, having multiple energy-efficient but
slow cores is preferable to having a single fast but energy-
inefficient core, which is only used to process long jobs. We
also perform experiments with different speed selection of the
cores, and the results show that heterogeneous CPUs are not
very sensitive to the core speeds. In other words, there is a
large set of heterogeneous configurations meeting the quality
requirement with a high throughput.
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Fig. 7: Sensitivity study on different core configurations.

Service demand distributions: We consider synthetic work-
loads with three common service demand distributions: (1)
exponential, (2) Pareto, and (3) bipolar distributions. All
distributions have approximately the same mean, 28 ms, as

in the search server workload. The Pareto distribution is as
follows:

f(x) =
1.2x1.2

m

x2.2
, for x ≥ xm, (12)

where xm = 9.33. For both exponential and Pareto distribu-
tions, we cap the maximum service demand at 120ms. For
the bipolar distribution, we assume that the jobs have only
two possible service demands: 10ms with a probability of 0.8

and 100 ms with a probability of 0.2. The variances of the
measured search workload, capped exponential, capped Pareto
and bipolar distributions are 1196.9, 692.4, 765.4, 1300.1,
respectively.

Fig. 8(a), 8(b) and 8(c) evaluate FPS on heterogeneous
CPUs with capped exponential, capped Pareto, and bipolar
distributions as described in the setup subsection. The results
show that applying FPS on heterogeneous CPUs consistently
achieves a higher 0.995-throughput than that achieved by
other algorithms on heterogenous CPUs and that achieved by
homogenous CPUs under various service distributions. The
benefit of using FPS on heterogeneous CPUs in terms of
quality improvement mainly stems from variances in service
demands: many short jobs can be efficiently executed on slow
cores whereas long jobs will migrate to the fast core only if
they are not completed by slow/medium cores.

Quality profile functions: We consider three additional
quality profiles as shown in Fig. 9. The setup and staircase
profiles are not concave. The linear is concave without dimin-
ishing returns.

(1) Setup profile. The setup profile mimics the effect of a
setup cost with non-productive processing equal to 20% of the
service demand. The setup phase could, for example, be used
to initialize data.

(2) Staircase profile. The staircase profile mimics a situa-
tion in which improvement in response quality is discrete. For
example, a web server can adapt its responses based on system
load among (a) web pages with high-resolution images, (b)
web pages with low-resolution images, and (c) text-only web
pages, where different responses have corresponding qualities.

(3) Linear profile. The linear profile mimics applications
that perform a linear scan or iterative processing of random
(unsorted) data, and therefore may not exhibit the effect of
diminishing returns.
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Fig. 9: Quality profiles.

The results in Fig. 10(a), 10(b), and 10(c) show that the
average quality produced by all the algorithms using these
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(a) Exponential.
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(b) Pareto.

10 20 30 40 50 60 70
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

QPS

A
ve

ra
ge

 Q
ua

lit
y

 

 

FIFO (Hom−02f)
FPS (Het−1f−3m−5s)
FIFO (Het−1f−3m−5s)
BestFit (Het−1f−3m−5s)
SPF (Het−1f−3m−5s)
PS (Het−1f−3m−5s)

(c) Bipolar.

Fig. 8: Sensitivity study for different service demand distributions.
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(a) Setup.
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(b) Staircase.
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(c) Linear.

Fig. 10: Sensitivity study for different quality profiles.

quality profiles is lower than that of using the approximated
web search quality profile. The average quality is lower
because for the majority of completion ratios in Fig. 9,
the corresponding quality for the three profiles are lower
than the measured quality profile. However, FPS consistently
outperforms the other scheduling algorithms on heterogeneous
CPUs and outperforms homogeneous CPUs at a moderate or
high throughput for all quality profiles.

Completion time non-proportional to the inverse of core
speed: In Table I, we assume that the completion time of a job
on a core is in proportion to the inverse of the core speed. In
practice, however, the actual completion time also depends on
other factors such as processor architecture. As a consequence,
the completion time may differ from the inverse of a core
speed. To examine the applicability of FPS, we perform a
sensitivity study of different job completion time relative to
the core speed. We still normalize the fast core speed to one
and use the job completion time on a fast core as a reference.
On the one hand, Fig. 11(a) presents a case where a slower
core is even slower: the completion of a unit work requires
4 units and 2.5 units of time on a slow core and medium
core, respectively.9 On the other hand, Fig. 11(b) presents a
case where a slower core performs better than its nominal core
speed: the completion of a unit work requires 2 units and 1.5
units of time on a slow core and medium core, respectively.
Both results show that heterogeneous CPUs using FPS con-

9The homogeneous CPU with 24 slow cores (i.e., Hom-24s) can only
produce an average quality of approximately 0.9445, which is too low to
be shown in Fig. 11(a).

sistently outperforms homogeneous CPUs under moderate and
high loads in terms of the average quality. In particular, for
our quality of interest (i.e., 0.995), heterogeneous CPUs using
FPS achieve a greater throughput than homogeneous CPUs,
and the improvement is more significant when a slower core
performs better than its nominal core speed. Therefore, FPS is
applicable to applications and systems with different processor
architecture/performance characteristics.

V. RELATED WORK

A. Heterogeneous CPUs

There are several proposals [2]–[4], [12]–[14], [23] for het-
erogeneous CPUs. ARM recently announced their big.LITTLE
system for production [1], which combines high-performance
and energy-efficient cores.

Prior work argues for the benefits of heterogeneous CPUs
compared to homogeneous CPUs in two main scenarios. (1)
A single job has different phases [3]–[5], such as parallel
phases and sequential phases. Using a heterogeneous CPU, the
sequential phase is executed on a high-performance core, and
the parallel phase is executed on a number of energy-efficient
cores. In contrast, an equivalent homogeneous CPU with a few
fast cores has high-energy consumption during the parallel
phase, while a homogenous system with many slow cores
suffers a long delay during the sequential phase. Similarly,
prior work [5] proposes to use high-performance but energy-
inefficient fast cores to process critical phases of a job. (2)
A heterogeneous CPU is more suitable for multiprogramming
environments with diverse application demands [1], [12]–[14].
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(a) Slow cores are slower than their nominal
speed.
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(b) Slow cores are faster than their nominal
speed.

Fig. 11: Sensitivity study on job completion time nonproportional to the inverse of core speed.

For instance, users run delay-sensitive tasks such as gaming
and web surfing using fast cores, while running background
services such as indexing and spell-checking using slow cores
[1]. Another way to exploit the benefits in a multiprogramming
environment is to assign threads with high instruction-per-
cycle ratio to fast cores [14].

Unlike the existing research on heterogeneous CPUs, our
work focuses on energy saving for interactive applications with
adaptive execution subject to response quality and deadline
constraints.

B. DVFS

DVFS trades performance for power consumption by ap-
propriately adjusting the voltage and/or frequency, which has
been studied extensively [7], [9], [10], [15]–[17]. Much prior
work such as [16], [17] that investigates energy saving while
meeting deadlines assumes known service demand, which,
however, is not applicable in our environment. Some related
work on DVFS assumes unknown service demand [7], [9],
[10]. Two proposals [7], [9] progressively accelerate the pro-
cessor speed during job execution to minimize the expected
energy based on the service demand distribution, which is
consistent with the findings of Theorem 1. However, neither
of them considers scheduling multiple requests that share and
compete for CPU resources. Another approach [10] minimizes
the energy consumption for multiple types of periodically-
arriving jobs, which are not applicable for our considered
interactive applications.

DVFS and heterogeneous CPUs are complementary tech-
nology to save energy. The actual power-performance char-
acteristics of a core depends on many factors (e.g., pipeline
structure, type of transistors, etc.) in addition to its voltage
and frequency. These factors limit the energy efficiency of
DVFS at lower speeds and frequencies [3], [20]. In contrast,
heterogeneous CPUs have an advantage: They address such
deficiency by using cores with different micro-architectures to
achieve better tradeoff between performance and energy [1].
On the other hand, DVFS is a relatively mature technology
that does not require major changes of the existing software
to exploit its benefits, while heterogeneous CPUs, as a very
new technology, may require support from the OS, compiler,
and libraries before it is used effectively by real-world services

and applications. We leave it to future work to compare and
combine the two technologies.

VI. CONCLUSION

This paper shows that heterogeneous CPUs boost energy
efficiency of serving interactive applications. We propose an
online scheduling algorithm, FPS, to improve the throughput
of an interactive server subject to the quality and deadline
constraints. FPS can effectively schedule long requests to fast
cores and short requests to slow cores without knowing the
actual service demands. We conduct extensive simulations
to validate FPS, using measured workloads from Bing. Our
results demonstrate significant benefits for using the FPS on
heterogeneous CPUs in terms of quality improvement and
energy saving.
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