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Abstract – We presentPluriBus, a system that enables
high-performance Internet access on-board moving ve-
hicles. It seamlessly bonds multiple wide-area wireless
links, which individually tend to be lossy and have high
delays, into a reliable communication channel.PluriBus

employs a novel technique calledopportunistic erasure
coding. It sends erasure coded packets only when there
is an opening in a path’s spare capacity. Packets are
coded usingEvolutioncodes that we have developed to
greedily maximize the expected number of packets re-
covered with each coded packet. These methods let us
opportunistically use any spare resources, in a way that
minimizes the impact on data traffic. We have deployed
PluriBus on two buses. Our experiments show that it re-
duces the median flow completion time for a realistic
workload by a factor of 2.5, compared to an existing
method for spreading traffic across multiple paths.

1. INTRODUCTION
Internet access on-board buses, trains, and ferries is

becoming increasingly common [41, 46, 48, 49]. Pub-
lic transportation agencies in over twenty cities in the
USA currently provide such access to boost ridership;
many more are planning for it [40]. Corporations also
provide such access on the commute vehicles for their
employees [45, 47]. For instance, more than one-quarter
of Google’s work force in the Bay Area uses such con-
nected buses [45]. By all accounts, riders greatly value
this connectivity. It enables them to browse the Web, ex-
change email, and work on the way to their destinations.

Despite their increasing popularity and their unique
environment, insufficient attention has been paid in the
research community to how to best engineer these net-
works. This is the focus of our work. It is motivated by
our own experiences of poor performance of these net-
works and complaints by other users [42, 43, 44]. In
fact, based on early experiences with its commuter ser-
vice, Microsoft IT warns that“there can be lapses in the
backhaul coverage or system congestion”and suggests
“cancel a failed download and re-try in approximately 5
minutes”.

Figure 1 shows the typical way to enable Internet ac-
cess on buses today. Riders use WiFi to connect to a
device [13, 20, 25, 39] on the bus, which we callVan-
Proxy. The device provides Internet access using a wide-
area wireless technology such as EVDO or HSDPA. In
some cases, to support a large number of users, multiple
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Figure 1: Existing architecture for providing connec-
tivity on-board buses.

VanProxy devices are employed. These devices operate
independently; users connect to one of them, typically
based on WiFi signal strength. The WiFi part of existing
setups tends to be reliable because of its small coverage
region. But the quality of the wide-area wireless connec-
tivity is critical for good performance.

Our measurements across multiple technologies con-
firm earlier findings [32, 14] that wide-area wireless links
offer poor service from moving vehicles. They have high
delays, lack capacity (especially in the uplink direction),
and frequently drop packets. Occasionally, they even suf-
fer blackouts, i.e., periods with very high loss rate. Poor
application performance in this environment is only to be
expected.

We design and deploy a system calledPluriBus, to pro-
vide high-performanceconnectivity on-board moving ve-
hicles. As shown in Figure 2, it uses multiple wide-area
wireless links. It bonds them with the help of a machine
connected to the wired network, which we callLanProxy.

PluriBus employs two techniques to boost application
performance. First, it uses a novel technique calledop-
portunistic erasure codingto mask losses from applica-
tions. This technique differs from existing erasure cod-
ing methods in when and how many erasure coded pack-
ets are sent as well as what each coded packet carries.
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Figure 2: The architecture of PluriBus.
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Coded packets are sent only during instantaneous open-
ings in bottleneck link’s available capacity. The openings
are judged using an estimate of queue length and capac-
ity. Done this way, coded packets do not delay or steal
bandwidth from data packets and provide as much pro-
tection as available capacity allows. In constrast, existing
methods add a fraction of coded packets per data packet
that is independent of load and available capacity [3, 26].
These may not provide sufficient protection even when
additional capacity is available or may slow down data
traffic when the load is high [29].

In PluriBus, packets are coded usingEvolution codes
that we have designed to greedily maximize the expected
number of data packets recovered with each coded packet.
Evolution codes thus stress partial recovery of as many
data packets as possible. In contrast, existing codes, such
as Reed-Solomon [31] or LT codes [27], stress full recov-
ery. That is, they aim to minimize the number of coded
packets needed at the receiver to recover all data packets.
Given the burstiness of incoming traffic and losses, it is
hard to guarantee at short time scales that the required
number of coded packets will be received. And when
that does not happen, very little data may be recovered
by these codes [33].

Our second technique is to stripe data across the paths
offered by the various links based on an estimated de-
livery delay along each path [10]. We estimate deliv-
ery delay by estimating path capacity, queue length, and
propagation delay. The striping decision for each packet
is taken independently. Done this way,PluriBus does not
use a slower path until the queues on a faster path in-
crease its delay to match the slower path.

PluriBus has been deployed on two of Microsoft’s cam-
pus buses for two months. Each bus is equipped with two
wide-area wireless links, one of which is EVDO and the
other is WiMax. Microsoft’s IT department is currently
evaluatingPluriBus for operational use.

We evaluatePluriBus using our deployment as well as
controlled experiments with an emulator. In our deploy-
ment, it reduces the median flow completion time for
a realistic workload by a factor of 2.5, compared to an
existing method for multiplexing traffic across multiple
links. We also study the two techniques individually.
Opportunistic erasure coding by itself improves perfor-
mance by a factor of 1.6. Interestingly, delay-based path
selection by itself hurts performance; the preferred lower-
delay link happens to have a higher loss rate in our de-
ployment. After losses have been countered using oppor-
tunistic erasure coding, delay-based path selection im-
proves performance by a factor of 1.6.

2. THE VEHICULAR ENVIRONMENT
In this section, we briefly characterize paths and work-

load of the vehicular environment that we target. We
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Figure 3: (a) The CDF of loss rate from the wired
network to the buses for paths over the two links. (b)
A chosen hour-long window that shows the temporal
behavior of loss rate for WiMax.

show that the network paths are highly lossy. They also
have high delays, a significant portion of which is inside
the providers’ network itself. The workload is dominated
by short flows and the traffic is highly bursty. These char-
acteristics motivate our solution, which is presented in
the following sections.

2.1 Our Testbed
To study path characteristics from a moving vehicle,

we equipped two buses that ply around the Microsoft
campus with desktop computers. The buses operate ap-
proximately from 7 AM to 7 PM on weekdays. The on-
board computers are equipped with an 1xEVDO Rev. A
NIC on the Sprint network and a WiMax modem (based
on the draft standard) on the Clearwire network.1

2.2 Network Path Characteristics
We characterize the path quality by sending packets

through each provider’s network between the bus and a
computer deployed inside the Microsoft corporate net-
work. Unless otherwise specified, a packet is sent along
each provider in each direction every 100 ms, and the
analysis is based on two weeks of data.

2.2.1 Paths are highly lossy

Figure 3(a) shows the CDF of loss rates, averaged over
5 seconds, from the Microsoft host to the buses. The re-
verse direction has a similar behavior. For EVDO, 20%
of the intervals have a non-zero loss rate, while for WiMax,
this number is 60%. For both, a significant fraction of
the intervals have a very high loss rate. These intervals
are referred to as blackouts. Figure 3(b) shows one hand-
picked hour-long window with a particularly bad loss be-
havior. These results agree with earlier measurements
from moving vehicles [32, 14].

Such lossy behavior can hurt many applications, espe-
cially those that use TCP. Fortunately, we also find that
high-loss periods of the two providers are roughly inde-

1We also experimented with an HSDPA card from AT&T. Its
performance is qualitatively similar to the other two cards.
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Figure 4: The CDF of RTT for paths over the two
links.
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Figure 5: Breakdown of RTT for paths over the two
links.

pendent [32], which offers hope that performance can be
improved by bonding links from different providers.

2.2.2 Paths have high and disparate delays

Figure 4 shows the CDF of round trip time (RTT) for
each provider. The median RTTs for both are rather high
– roughly 40 ms for WiMax and 150 ms for EVDO –
even though the path end points are in the same city.

To uncover where time is spent, we run traceroute from
the bus to the wide-area host. We extract from this data
the RTTs to the destination, to the first IP hop, and to
the last hop in the wireless provider’s network. The exit
point is inferred using DNS names of the routers [37].

Figure 5 shows the results for an hour-long window.
Surprisingly, a third of the delay for EVDO and nearly
all of the delay for WiMax is to the first IP hop. For
both, nearly all of the delay is inside the provider net-
work. As we discuss later, this observation has implica-
tions regarding how losses can be masked in this envi-
ronment.

Additionally, the factor of three difference in the RTT
of the two providers implies that simple packet strip-
ing schemes like round robin will perform poorly. They
will significantly reorder packets and unnecessarily delay
packets along the longer path even though a shorter path
exists in the system. Note that sending all the data on the
shorter path is not possible due to capacity constraints.
The delay disparity between paths may be countered by
bonding links from the same provider, but that reduces
system reliability [32].

2.3 Workload Characteristics

Duration (hours) 3.34
Packets 354,465
Bytes 286,266,708
UDP flows 833
TCP flows 3,796
Avg. number of devices 4.09

Table 1: Aggregate characteristics of 11 traces

Figure 6: Traffic arriving for the clients from the In-
ternet during 100 seconds

To get insight into the workload in our target environ-
ment, we collect traffic logs from commuter buses that
carry Microsoft employees to and from work. These
buses have the setup shown in Figure 1, with a Sprint-
based EVDO Rev. A NIC in the proxy device. We sniffed
the intra-bus WiFi network on 11 different days to cap-
ture packets that are sent and received by the riders. The
basic statistics of these traces are summarized in Table 1.

We find the essential characteristics of this workload
to be similar to those in many other environments. Traf-
fic is dominated by short TCP flows, which are espe-
cially vulnerable to packet loss. The traffic is also highly
bursty, as illustrated by the example 100-second period
shown in Figure 6. Burstiness makes it hard to accu-
rately predict short-term traffic intensity or leftover ca-
pacity. This factor makes it hard to use existing erasure
coding methods because it is hard to estimate how much
redundancy can be added without overloading the path.

3. APPROACH
Given the poor quality of wide-area wireless connec-

tivity from moving vehicles, how can we best improve
application performance? We could urge the carriers to
improve the quality of the underlying connectivity. Do-
ing so will probably require significant investment on
their part, to improve coverage and perhaps deploy bet-
ter handoff protocols. Furthermore, this is a longer-term
proposition and does not help with the performance and
growth of these networks today. We instead take the ap-
proach of building a high-performance system on top of
multiple unreliable links.

3.1 Architecture
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ThePluriBus architecture is shown in Figure 2. In con-
trast to the existing architecture (Figure 1), we equip Van-
Proxy with multiple wireless links. Using multiple links
offers additional capacity when needed and boosts relia-
bility [32], for instance, when one of the links is experi-
encing a blackout.

Additionally, we relay all packets throughLanProxy, a
server located on wired Internet. Relaying packets through
LanProxyallows us to mask packet losses, which is not
possible if the VanProxy sends packets directly into the
Internet. It also allows us to flexibly stripe data across
the multiple links. Without the LanProxy, striping must
be done at the level of individual connections because
the different links on the VanProxy are assigned differ-
ent IP addresses by the providers. Connection level strip-
ing is known to be suboptimal in terms of load distribu-
tion [36]. It is also less reliable in face of blackouts. In
§6.2, we compare packet-level striping ofPluriBus with a
connection-level striping policy.

Relaying through LanProxy may increase the end-to-
end latency of the traffic. Interestingly, we find a sig-
nificant Detour effect [34] for our deployment – rout-
ing through the LanProxy reduces end-to-end path la-
tency to a majority of the destinations, perhaps because
our LanProxy has better connectivity to the Internet than
our wireless providers. While we do not claim that the
same will hold for all deployments, the impact of rout-
ing through the LanProxy is likely to be relatively small
because:i) the delay inside the wireless provider’s net-
work, which is common to both direct and indirect (through
LanProxy) paths, tends to be high (§2.2.2);ii) the Lan-
Proxy is deployed in the same city as the provider’s net-
work, and Internet path latencies within the same city
tend to be small [37].

3.2 Solution Overview
The problem we address can be concisely stated as fol-

lows. We are given one or more paths between the Van-
Proxy and LanProxy. Each path is based on a different
wide-area wireless link, is lossy with a time-varying loss
rate, and has an almost fixed or slowly-varying transmis-
sion capacity. Different paths have different capacities
and delays. The incoming data is bursty and arrives at an
unknown and time-varying rate.

Our goal is to use these paths to deliver data that ar-
rives at one proxy from either the vehicular clients or
Internet hosts to the other proxy. We want to do so in a
manner that maximizes performance for interactive traf-
fic such as Web transactions. Thus, we strive to minimize
the loss rate and delay experienced by the data packets.

The concept of bonding multiple communication chan-
nels into a single channel has been explored in many con-
texts. As we argue in§7, existing solutions cannot be
used for our setting because of the complex nature of the

paths. These solutions are based on assumptions, such as
that the paths have identical delays, that do not hold in
our environment.

Our solution has two components:
1. Opportunistic Erasure Coding to mask losses:

There are two possible methods that we can use to hide
path losses from end users:i) retransmit lost packets
based on feedback from the other proxy; andii) proac-
tively send redundant packets using erasure coding. As
we show in§6.4, retransmission-based loss recovery per-
forms poorly in our environment. This is because paths
between the two proxies have a high RTT, which makes
loss recovery slow. Additionally, the inter-proxy RTT
can be major component of the end-to-end RTT. Because
TCP can often detect loss within one end-to-end RTT and
retransmissions would take roughly 1.5 times the inter-
proxy RTT to reach the other proxy, retransmissions can-
not hide many losses from TCP. A race could be created
between our and TCP’s retransmissions. Erasure coding
is thus a better fit for our environment.

We desire two properties from the erasure coding method.
The first property dictates how many coded packets are
sent and when, and the second one dictates what code
is used to generate coded packets. The first property is
that coded packets interfere minimally with data pack-
ets while providing as much available capacity allows.
Coded packets interfere if data packets have to wait be-
hind them in the bottleneck queue because this amounts
to them stealing valuable capacity from the data packets.
To our knowledge, none of the existing methods, such as
Maelstrom [3] or CORE [26], have this property. These
methods generate a fixed number of coded packets for
a given set of data packets, and the coded packets are
sent regardless of current state of the queue. If this fixed
overhead is low, they do not provide sufficient protection
even though there may be excess capacity in the system.
If it is high, they hurt application throughput by steal-
ing capacity from data packets. Given the bursty nature
of incoming traffic, tuning overhead to match the excess
capacity at short time scales is difficult.

To fulfill the first property,PluriBus sends coded pack-
ets opportunistically, that is, when, and only when there
is instantaneous spare capacity in the system. We judge
the availability of spare capacity by estimating the length
of the bottleneck queue. Done this way, coded packets
always defer to data packets and delay them by at most
one packet. In§6.4.3, we show that this method brings
negligible slowdown for data traffic. At the same time,
our method provides as much protection as the amount
of spare capacity allows. Our strict prioritization of data
packets over coded packets increases total goodput be-
cause while data packets deliver one new packet at the
receiver coded packets deliver less than one on average.

Not having a fixed overhead means that the level of
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protection drops as the rate of new data increases. This
effect is essentially similar to losses that applications suf-
fer today when they send faster than what the path can
support. As it happens today, higher-layer congestion
control mechanisms will adapt and reduce their rate in
response to losses that are exposed to them.

Logically, our opportunistic erasure coding uses all
spare capacity, to maximize the degree of protection. We
discuss the implications of this behavior in§8. But we
note that in practice the path is always not fully used be-
cause coded packets are sent only when new data packets
arrived within the last RTT.

The second property is that the code not rely on a
threshold number of coded packets be generated at the
source or received by the receiver. Given the burstiness
of incoming traffic and thus available capacity, such guar-
antees are hard to provide in our setting. Conventional
erasure codes, whether rateless (e.g., LT [27]) or other-
wise (e.g., Reed-Solomon [31]), do not have this prop-
erty. These codes encodek data packets into more thank
coded packets. As long as the receiver receives a thresh-
old number of the coded packets, it can recover allk

packets. However, when fewer than this threshold are
received, very little is recovered [33].

Instead of aiming for a full recovery, as existing codes
do, we design a new code, calledEvolutioncode, that
stressespartial recovery. In our code, each coded packet
greedily maximizes the expected number of data packets
that will be recovered. We show in§6.4 that Evolution
codes perform better than codes optimized for full re-
covery. Conversely, greedy partial recovery makes Evo-
lution codes less efficient for full recovery. They need
more coded packets to be received to recover all data
packets. Simulations, not presented in this paper, reveal
that the loss in efficiency is only 15-20%.

Additionally, we encode over a moving window of
packets that arrived at the sending proxy in roughly the
last RTT. (Recovering older packets is wasteful.) Evolu-
tion codes naturally apply to moving windows. It is not
clear how to adapt many of the existing erasure codes to
moving window of packets.

2. Delay-based path selection PluriBus sends each
data packet along the path that is likely to deliver it first [10,
30]. This method naturally generalizes striping mecha-
nisms such as round robin to the case of paths with dif-
ferent delays and capacities. It continues to send traf-
fic along the shortest path until the queue length on this
path brings its delay up to the level of the next shortest
path, and so on. This method also makes it less likely for
a later packet to arrive before a previously sent packet.
Due to variation in link delays, some reordering may still
happen. We use a small re-sequencing buffer to address
this possibility.

While the two components of our solution combine

well to offer high performance connectivity for moving
vehicles, they can be independently used as well. Oppor-
tunistic erasure coding can boost reliability even when
there is only one wide-area wireless link. Similarly, delay-
based path selection can bond multiple paths such that
the delay of the combined channel is low even when era-
sure coding is not used to boost reliability.

4. DESIGN OF PluriBus

We now describe our design in more detail. Without
loss of generality, we consider traffic headed in one di-
rection only. Identical algorithms run in each direction.
For the purpose of this section, the terms sender and re-
ceiver refer to the two proxies shown in Figure 2.

PluriBus transmits data packets as soon as they arrive at
the sending proxy, along the path that is deemed to have
the least delay. It sends coded packets along a path only
when its estimated queue length is zero. The contents of
a coded packet are determined using Evolution codes.

4.1 Evolution code
Evolution code aim for greedy partial recovery, by max-

imizing the expected number of packets that will be re-
covered with each transmitted coded packet. At any given
instant, the sender codes over a set of data packetsW that
were sent within the previous round trip time. Assume
that the sender also estimates the fractionr of the W

packets (but not which exact packets) that has been suc-
cessfully recovered by the receiver, based on past trans-
missions of data and coded packets. For tractability, we
assume that each packet inW has the same probability,
equal tor, of being present at the receiver. In practice,
the probabilities of different packets may differ based on
the contents of earlier packets and the paths over which
they were sent. We describe later howW and the fraction
r are updated at the sender.

Given current values ofW andr, how should the next
packet be coded? To keep encoding and decoding opera-
tions simple, we only create coded packets by XOR-ing
data packets together. Because of the assumption that all
packets have the same probability of being there at the
receiver, the question boils downs to how many packets
should be XOR’d. A simple analysis yields the optimal
number of packets that must be included. It assumes that
coded packets that could not be immediately decoded at
the receiver are discarded, and thus a coded packet can
recover at most one data packet.

Suppose the sender XORsx (1 ≤ x ≤ |W |) data
packets inW . The probability that this coded packet
will yield a previously missing data packet at the receiver
is equal to the probability that exactly one out of thex

packets is lost. That is, the expected yieldY (x) of this
packet is:

Y (x) = x × (1 − r) × rx−1 (1)
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Y (x) is maximized forx = −1
ln(r) .

The result of this analysis can be intuitively explained.
If the expected number of data packets at the receiver (r)
is low, the coded packet should contain few data packets.
For instance, if more than half of the packet are missing,
the best strategy is to code only one packet at a time (i.e.
essentially re-send one of the packets inW ); coding even
two is likely futile as the chance of both being absent, and
hence of nothing being recovered, is high. Conversely, if
more packets are already there at the receiver, encoding
a higher number of packets is the most efficient way to
recover missing data.

Thus, in PluriBus, the sender selectsmax(1, b −1
ln(r)c)

data packets at random to XOR. We round down because
including fewer data packets is safer than including more
(§6.4.2). Furthermore, if|W | > 1 andb −1

ln(r)c ≥ |W |,
we XOR only|W | − 1 packets. We never XOR the en-
tire window of packets because of a subtle corner case
that arises if the window of packets is not changing and
more than one data packet is missing at the receiver but
the sender estimates that fewer data packets are missing.
In this case, the direct application of the analysis would
lead to the repeated transmission of the same determinis-
tic coded packet at each opportunity. But this particular
coded packet cannot recover anything new.

Updating W and r: The sender updates the set of
packetsW and estimated fractionr as follows.

i) When a new data packet is sent, it is first added to
W , and then:

r =
(|W | − 1) × r + (1 − p)

|W |

wherep is a rough estimate of the loss rate of the path
along which the packet is sent. Receivers estimatep us-
ing an exponential averaging of past behavior and peri-
odically inform the sender of the current estimate. The
estimate of the current loss rate at the sender may not be
accurate. But, as we show in§ 6.4.2, the performance of
evolution codes is robust this inaccuracy.

ii) When a coded packet, formed by XOR’ingx data
packets, is sent,W does not change, and

r =
|W | × r + (1 − p) × Y (x)

|W |

whereY (x) is defined in Eq. 1.
iii) When the receiver returns the highest sequence

number that it has received – this information is embed-
ded in packets flowing in the other direction (§5) – pack-
ets with lower or equal sequence numbers are removed
from W , andr is unchanged. This step ensures that the
sender encodes only over roughly one round trip of data.

At this point, we can explain the rationale for the name
“Evolution.” The complexity of the coded packets, i.e.,
the number of included data packets, evolves with link
conditions, window of data packets, and past history of
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Figure 7: The downlink and uplink throughput of
WiMax paths. The y-axis range of the two graphs
is different.

coded packets. It increases as more coded packets are
generated (andr increases) and decreases when new data
is included in the window. In this respect, Evolution
codes are a generalization of Growth code [21].

4.2 Estimating Queue Length
We maintain queue-length along a path in terms of

time required for the bottleneck queue to fully drain. It
is zero initially. It is updated when the system polls for
the current estimate:

Qnew = max(0, Qold − T imeSinceLastUpdate)

It is also updated after sending a packet:

Qnew = max(0, Qold−T imeSinceLastUpdate)+
PacketSize

PathCapacity

PathCapacityrefers to the capacity of the path, which
we estimate using a simple method described below. The
capacity of a path is the rate at which packets drain from
queue at the bottleneck link. It is different from through-
put, which refers to the rate at which packets reach the
receiver. The two are equal in the absence of losses.

Estimating capacity for wide-area wireless paths is a
simpler proposition than doing so for WiFi. The MACs
(media access control) of these links reserve a set amount
of media capacity per client by tightly controlling all
packet transmissions at the base station. Unlike the WiFi
MAC, this behavior also isolates clients from each other,
and clients do not usually interfere with each others’ trans-
missions. As an example, Figure 7 shows the throughput
of WiMax paths in the downlink and uplink direction for
one-hour windows in which we generate traffic at 2 Mbps
in each direction. We see roughly stable peak through-
puts of 1500 and 200 Kbps, which correspond to their ca-
pacity. An analysis of incoming sequence numbers con-
firms that the dips in throughput are due to packet losses
and not slowdowns in queue drain rate.

While the behavior above suggests that we could sim-
ply configure path capacities, we include an estimation
component to be robust to any variations. We use the
insight behind recent bandwidth measurement tools [17,
18]: if the sender sends a train of packets faster than the
path capacity, the receive rate corresponds to the path
capacity. Instead of using separate traffic to measure
capacity, we leverage the burstiness of data traffic and
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the capacity-filling nature of our coding method to cre-
ate packet trains with a rate faster than path capacity.

We bootstrap nodes with expected capacity of the paths.
The receiver then watches for changes in path capacity. It
measures the rate of incoming packets directly and com-
putes the sending rate using timestamps that the sender
embeds in each packet. The two rates are computed over
a fixed time interval (500 ms in our experiments). The ca-
pacity estimate is updated based on intervals in which the
sending rate is higher than the current capacity estimate.
If the receive rate is higher than the current capacity es-
timate for three such consecutive intervals, the capacity
estimate is increased to the average of current estimate
and the median of the three receive rates. If the receive
rate is lower for three consecutive intervals, the capacity
estimate is decreased to the average of the current esti-
mate and the median of the three receive rates. Changes
in capacity estimate are communicated to the sender.

Errors in capacity estimate can lead to errors in the
queue length estimate. In theory, this error can grow un-
boundedly. In practice, we are aided by periods where
little or no data is transmitted on the path, which are
common with current workloads. These periods reset our
estimate to its correct value of zero. While we cannot di-
rectly measure the accuracy of our queue length esimate,
we show in§6.5 that our path delay estimate, which is
based in part on this estimate, is fairly accurate.

4.3 Identifying Minimum Delay Path
To send newly arrived data packets,PluriBus needs to

estimate the current delay along each path. A simple
method is to use the running average of one-way delays
observed by recent packets, based on feedback from the
receiver. However, as we show in§6.5, this method is
quite inaccurate because of feedback delay and because it
cannot capture with precision short time scale processes
such as queue build-up along the path. Capturing such
processes is important to consistently pick paths with the
minimum delay.

Our estimate of path delay is based oni) transmission
time, which primarily depends on capacity of bottleneck
link; ii) time spent in the queue; andiii) propagation
delay. We described above how we estimate the first two
quantities. Measuring propagation delay requires finely
synchronized clocks at the two ends, which may not be
always available. We skirt this difficulty by observing
that we do not need absolute delay values; we can iden-
tify the faster path even if only computed the propagation
delay plus a constant that is unknown but same across all
paths. This constant happens to be the current clock skew
between the two proxies.

Let the propagation delay of a paths bed1 and the (un-
known) skew between the two clocks beδ. A packet that
is sent by the sender along the path at local times1 will

be received by the receiver at local time

r1 = s1 + δ + d1 + QueueLength1 +
PacketSize

PathCapacity1

If the packet is sent when the queue length is zero:

d1 + δ = r1 − s1 −
PacketSize

PathCapacity1

We can thus compute propagation delay plus skew using
local timestamps of packets that see an empty queue.

To enable the above estimate, senders embed their times-
tamps in the transmitted packets. The receivers keep a
running exponential average ofri − si −

PacketSize
PathCapacityi

for
each path, which corresponds to (di + δ). Only packets
that are likely to have sampled an empty queue are used
for computing the average. Packets that get queued at
bottleneck link are likely to arrive roughlyPacketSize

PathCapacityi

time units after the previous packet. We use in our es-
timates packets that arrive at least twice that much time
after the previous packet. The running average is peri-
odically reported by the receiver to the sender. Observe
that we ignore clock drift, which is safe as long as it is
not too high to change the skew at small timescales, such
that packets sent along different paths witness different
skews. Typical clocks today easily meet this criterion.

It is now straightforward for the sender to compute
the path that is likely deliver the packet first. This path
is the one with the minimum value of PacketSize

PathCapacityi

+

QueueLengthi +(di +δ). This sum is in fact an estimate of
the local time at the receiver when the packet will be de-
livered. We show in§6.5 that despite the approximations
in the computation, our estimates are fairly accurate.

5. IMPLEMENTATION
We now describe our implementation ofPluriBus. When

the VanProxy boots, it initializes its wide-area wireless
interfaces and uses one of them to contact the LanProxy
at the configured IP address. It informs the LanProxy of
the current IP addresses that it obtained from the wide-
area wireless providers. The LanProxy sends configura-
tion information to the VanProxy, including the IP ad-
dress range that the VanProxy should use for clients in
the vehicle and addresses for DNS servers. Clients use
DHCP to get their configuration information from the
VanProxy.

The two proxies essentially create a bridge between
themselves by tunneling packets over the paths that con-
nect them. When contacting a remote computer, a client
sends its IP packet to the VanProxy which encapsulates
the IP packet into a UDP packet, and also adds a cus-
tom header (described below). The IP-in-UDP encapsu-
lation is needed because both of our wide area wireless
providers simply discard IP-in-IP encapsulated packets
entering their network. In fact, the packets sent by the
LanProxy have to masquerade as DNS responses to get
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past their firewalls. The VanProxy then sends the en-
capsulated packet to the LanProxy using the wide-area
interface with the least estimated delay. The LanProxy
decapsulates the packet to recover the client’s original IP
packet and relays it to the remote computer.

In the reverse direction, packets from the remote com-
puter to a vehicular client reach the LanProxy. Since
the LanProxy may be serving multiple VanProxies, the
packet’s destination IP address is used to identify the in-
tended VanProxy. The LanProxy encapsulates and sends
the packet to the target VanProxy on one of its wide-area
interfaces based on the delay estimates. The VanProxy
decapsulates the packet and sends it to the target client.
In this architecture, either proxy can also perform net-
work address translation (NAT) for the clients if needed.

PluriBus uses multiple sequence number spaces at each
proxy. One space is used for data packets that arrive
at the proxy to be sent to the other proxy; each data
packet is assigned the next sequence number from this
space. These data-level sequence numbers let the re-
ceiver uniquely identify data packets and their relative
order. In addition, there is also a per-path sequence num-
ber space; each packet transmitted along a path is as-
signed the next sequence number from this space. Path-
level sequence numbers help the receiver estimate var-
ious properties of the incoming path, such as loss rate.
The LanProxy maintains this set of spaces for each Van-
Proxy that it serves.

EachPluriBus proxy caches all data packets arriving
from other proxies for a brief window of time so that
coded packets can be decoded. They also have a se-
quencing buffer to order received data packets. When a
data packet received from the other proxy has a sequence
number that is higher than one plus the highest sequence
number relayed, it is stored in this buffer. It leaves the
buffer as soon as the missing data packets are received
directly or recovered from coded packets. If the hole is
not filled for a threshold amount of time, set to 50 ms in
our experiments, the data packet is relayed immediately.

The header fields ofPluriBus are shown in Table 2.
There are three types of messages: i) pure data packets;
ii) coded packets; and iii) control packets. The data-level
sequence number in a coded packet corresponds to the
highest sequence number encoded in that packet. Coded
packets contain an additional 4-byte bitmap that encodes
which other packets are contained in it, relative to the
highest sequence number. Control packets are exchanged
between the proxies to exchange configuration informa-
tion, report on wide-area address changes at the the Van-
Proxy, and properties of incoming paths.

These extra header fields, and the IP-in-UDP encap-
sulation lowers the effective link MTU by 41 bytes. If
the senders do not learn of the lower MTU, some of the
packets they send may have to be fragmented at the prox-

Message type 1 byte
Timestamp (integer milliseconds) 2 bytes

Data-level sequence number 2 bytes
Path-level sequence number 2 bytes

Last data-level sequence number received2 bytes

Table 2: The header fields used for communication
between the proxies.

ies. We inform clients on the bus of the lower MTU via
the Interface MTU option[1] in the DHCP response. In-
forming external senders is harder as Path MTU discov-
ery is not always used on the wide area Internet. Fortu-
nately, clients with a lowered interface MTU will inform
their wide area peers of this fact during TCP connection
establishment via the MSS option of a TCP SYN packet.
For other clients, we are experimenting with modifying
the MSS option of TCP SYNs as they pass through the
VanProxy. Obviously, this approach only applies to TCP
traffic, but suffices for over 99% of our traffic.

6. EVALUATION
In this section, we evaluatePluriBus. Along with study-

ing the performance of the overall system in§6.2, we
study in detail the behaviour of opportunistic erasure cod-
ing in §6.4 and of delay-based path selection in§6.5.

6.1 Methodology
We employ a mix of experiments using our deploy-

ment (§2.1) and an emulator. The two platforms provide
complementary benefits. The deployment lets us evalu-
ate the benefit ofPluriBus in real environments. Emula-
tion lets us control the environment and isolate individual
factors. It uses the same implementation as the deploy-
ment.

Workload For the experiments presented in this
paper, we generate realistic, synthetic workloads from
the traces described in Section 2.3, using a methodology
adapted from [12]. We first process the traces to obtain
distributions of flow sizes and inter-arrival times, where
a flow is identified using the combination of the two IP
addresses, the two ports, and the protocol field. The syn-
thetic workload is based on these distributions of flow
sizes and inter-arrival times.

To study the performance ofPluriBus as a function of
load, we also synthesise scale versions of the workload
by scaling the inter-arrival times. To scale by a factor
of two, we draw inter-arrival times from a distribution in
which all inter-arrival times are half of the original val-
ues, while retaining the same flow size distribution. Our
workload synthesis method does not capture many de-
tails, but we believe it captures to a first order the charac-
teristics that are important for our evaluation. As per the
metrics that we use below, we find that the performance
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Figure 8: Performance of various systems for a work-
load based on our traces. [Deployment]

of a synthetic workload scaled by a factor of 1 is similar
to an exact replay of flow size and arrival times.

To verify that our conclusions apply broadly, we have
also experimented with other workloads. These include
controlled workloads composed of a fixed number of TCP
connections and those generated by Surge [4], a synthetic
Web workload generator. We obtain qualitatively consis-
tent results with these workloads but omit details due to
space constraints.

A connection-level striping policy for comparison
To place the performance ofPluriBus in context, we also
consider a connection-level striping policy that can be
considered as the state-of-art for data striping in vehic-
ular settings [32]. In this policy, a new connection is
mapped to the path with the minimum number of active
connections. No special loss recovery is performed. We
refer to this policy asMinConnPathand use it as a repre-
sentative of the class of policies that stripe at the level of
connections, i.e., they do not send the packets of a con-
nection over different links.

MinConnPathperforms better than other connection-
level policies that we experimented with. Round robin
does worse thanMinConnPathbecause it is does not con-
sider current load on the link while mapping new con-
nections and in some situations leads to a highly unbal-
anced distribution. Another policy that we tested maps
incoming connections to links that currently carry less
load. This policy too performs worse thanMinConnPath.
Lower load on a link can stem from its poor performance
– because the traffic is responsive – and this policy ends
up mapping more connections to the poorer link.

Performance measure The primary measure of
performance that we use is flow completion time. This is
of direct interest to interactive traffic such as short Web
transfers that dominates in our traces (§2.3). We use the
median as the representative measure. In many cases, we
also show the inter-quartile range (25-75%) of comple-
tion times, which captures the observed spread.

6.2 Overall performance
Figure 8 shows the performance of various means of

transferring data to and from the bus. For each method,

the graph shows the median and the inter-quartile range
(25%-75%) of the connection completion times. These
results are based on our deployment on-board buses, and
each configuration ran for at least two days during which
time they complete tens of thousands of connections.

The two bars on the left show the performance of the
system when only one of the wireless uplinks is used
directly, as is the norm today. We see that the median
completion time of EVDO is 500 ms and of WiMax is
700 ms. WiMax offers lower performance even though
it has a much lower round trip time because of its higher
loss rate. The observed overall loss rate in this experi-
ment is 5% for WiMax and under 1% for EVDO. The
higher loss rate of WiMax also explains its larger inter-
quartile spread. The completion time increases signifi-
cantly for connections that happen suffer a loss.

The third bar shows the performance when both links
are employed simultaneously byMinConnPath, which,
as we have explained earlier, represents the state-of-the-
art. We see thatMinConnPathimproves performance
over using only one link, bringing the median completion
time to 400 ms, by spreading the load across both links.
It reduces the completion time spread as well because
fewer connections suffer heavy losses on the WiMax link.
Because it balances at the connection level, as long as
more connections are active on the WiMax link, it uses
the EVDO link for new connections.

The fourth bar shows the performance ofPluriBus. We
see thatPluriBus performs significantly better thanMin-
ConnPath. Its median completion time is 150 ms, which
represents a reduction factor of 2.5 over the 400 ms ob-
served forMinConnPath.

To understand the sources of this performance improve-
ment, let us consider howPluriBus differs fromMinCon-
nPath. There are two primary differences betweenPluriBus

andMinConnPath. First,PluriBus uses opportunistic era-
sure coding to reduce the impact of packet losses. Sec-
ond,PluriBus uses a per-packet delay-based striping pol-
icy. Both these mechanisms contribute to the better per-
formance ofPluriBus.

To tease apart the contribution of the two mechanisms,
we added opportunistic erasure coding to theMinCon-
nPathpolicy. The performance of this policy is shown by
the fifth bar in Figure 8. We see that the by adding cod-
ing, the median completion time is reduced to 250 ms,
which represents a reduction of 150 ms over the median
for MinConnPath, or an improvement factor of 1.6.

Note however, that the median completion time ofPluriBus,
is 150 ms, which represents a reduction of 100 ms over
the median forCodedMinConnPath. It follows that this
improvement can be attributed to the per-packet, delay-
based striping policy used byPluriBus. since it is the only
difference betweenCodedMinConnPathandPluriBus.

In summary, we have shown thatPluriBus performs sig-
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Figure 9: Performance of MinConnPath and PluriBus

as a function of load. [Deployment]

nificantly better than the state-of-the-artMinConnPath
system. Furthermore, we have also characterized the con-
tribution o of opportunistic erasure coding and per-packet
delay-based striping to this improvement.

However, several questions remain to be answered.
For example: (i) How well doesPluriBus perform under
increased load, given that there are fewer opportunities
to send coded packets at higher load? (ii) Could we have
used some other coding scheme besides evolution codes?
(iii) What is the overhead of our aggressive coding pol-
icy? (iv) How doesMinConnPathalone compare against
delay-based striping in absence of coding? In the rest of
the section, we answer these and other related questions.

6.3 Impact of load
We now study the performance ofPluriBus at higher

loads, whenPluriBus gets fewer opportunities to send era-
sure coded packets. Figure 9 shows the median and inter-
quartile range for flow completion time as a function of
the scaling factor used for the synthetic workload. Each
data point is based on at least two days of data. We see
that the performance advantage ofPluriBus persists even
when we scale the workload by a factor of eight. At the
extreme,PluriBus reduces the median completion time by
a factor of 2.

6.4 Opportunistic erasure coding
In this section, we study the behaviour of opportunistic

erasure coding in detail. We compare it to other potential
methods for masking packet loss, evaluate the inaccuracy
of loss rate estimation in vehicular environments and its
impact on performance, and quantify the impact of ag-
gressive coding.

We use workloads and performance measures similar
to those in the last section. In a separate set of experi-
ments, omitted from this paper, we have evaluated using
detailed packet-level simulations the behaviour of Evo-
lution codes and how they compare with LT codes and
Reed-Solomon codes in terms of recovering lost packets.

6.4.1 Benefit relative to other methods

The last section shows that the loss protection method

of PluriBus significantly improves performance. We now
study how it compares to other potential methods for loss
protection. One of these methods retransmits lost packets
based on receiver feedback. Comparison with it shows
the value of using erasure coding for loss protection.

We also study two alternative methods for erasure cod-
ing. The first method is based on fixed overhead codes
such as Reed-Solomon for which the fraction of coded
to pure packets is fixed, independent of prevailing work-
load and available capacity. Comparison with it shows
the value of using opportunistic transmissions to guard
against losses rather than using a preset overhead. The
second method is based on rateless codes such as LT that
can be adapted for opportunistic usage because of their
ability to generate on-demand as many coded packets as
needed. The complexity (i.e., the degree) of coded pack-
ets generated by these codes is independent of loss rate
and what might be already present at the receiver. Com-
parison with it shows the value of using Evolution code
to guide the complexity of the coded packet.

To implement a fixed-overhead code withK% redun-
dancy, we send a coded packet after every100

K
-th pure

packet. Each coded packet codes over packets in the cur-
rent unacknowledgedwindow since the last coded packet.
Thus, whenK = 100, every other packet is coded and
carries the previously sent pure packet; whenK = 10,
every11th packet is coded and codes over the previous
10 packets that still remain in the unacknowledged win-
dow. This method is a simple version of fixed-overhead
codes. It is equivalent to(K, 1) Maelstrom code [3].

Our adaptation of rateless codes sends coded packets
opportunistically, likePluriBus. The degree distribution
of coded packet is decided based on the current size of
the unacknowledged window. We use the Robust Soli-
ton degree distribution, which is the same as that used in
LT codes. This distribution uses two input parameters,c

andd, which we set to the commonly used values of 0.9
and 0.1. Because of small window sizes that dominate
our environment, other values yield similar results in our
experiments.

For a controlled environment, we conduct this exper-
iment using a network emulator. We configure one link
between VanProxy and LanProxy. The link has a one-
way delay of 75 ms and capacity of 1.5 Mbps. The loss
rate on the link is varied from 1% to 70%. We show re-
sults from using the Bernoulli loss model in which each
packet has the same loss probability. We find that results
with more sophisticated loss models such as Gilbert-Elliot
are qualitatively consistent; we omit them due to space
constraints.

Figure 10 shows the results as a function of the con-
figured loss rate. For each alternative method, it plots the
median completion time divided by the median comple-
tion of PluriBus. Values greater than one imply that the
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Figure 10: Performance of different loss protection
methods relative to the coding method ofPluriBus.
[Emulation]

other method performs worse.K% redundancy curves
correspond to fixed-overhead schemes.

Two broad conclusions can be drawn from this graph.
First, unsurprisingly, some form of loss protection can
significantly boost performance. For instance, at 10%
loss rate the relative completion time without any loss
protection is at least twice that for any other form of loss
protection.

Second,PluriBus provides the best performance amongst
all these methods. (All relative completion time values
are greater than one.) It does better than retransmissions
because erasure coding is able to recover from losses
faster, which improves performance and also makes it
less likely to get into race conditions with TCP.

Across all loss rates,PluriBus outperforms both fixed-
overhead methods. This is true even at 10% loss rate,
where 100% redundancy is able to recover from most
losses. The advantage ofPluriBus stems from its ability to
send coded packets in a way that does not get in the way
of pure data packets. Fixed-overhead methods either add
too little redundancy at high loss rates or add too much
redundancy at low loss rates in a way that slows down
pure data packets.

Finally, PluriBus provides a noticeable advantage over
using rateless codes. Given that when coded packets are
sent is the same for both cases, the advantage ofPluriBus

lies in it using Evolution codes to guide the complex-
ity of coded packets based on an estimate of what is
present at the receiver. Because conventional rateless
codes are oblivious to this, they are more likely to send a
overly complex coded packet that cannot be decoded at
the receiver. They are also more likely send very simple
packets, which means that they need to send more coded
packets to recover lost data.

6.4.2 Accuracy of loss rate estimate

PluriBus estimates the current loss rate on each wire-
less uplink and uses that estimate to implement Evolution
codes. Given the dynamics of the vehicular environment,
loss rate maybe hard to estimate accurately. Figure 11
shows that we manage to get a pretty accurate estimate
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Figure 11: Accuracy of loss rate estimates inPluriBus.
[Deployment]
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of loss rate in our deployment. It plots the difference in
the loss rate for the next twenty packets minus the cur-
rent running average of the loss rate that we use to pre-
dict future loss rate. Over 90% of the time, our estimate
is within±10%.

To understand performance degradation in environments
where loss rate may be hard to estimate, we study the
impact of using an inaccurate estimate of loss rate in
PluriBus. In the same emulator setup as before, which
has one link between VanProxy and LanProxy, we pro-
gram the proxies to use an inaccurate loss rate instead of
estimating it based on transmitted packets.

Figure 12 shows the results, when we program the
proxies to use loss rate offsets of±0.1 and±0.2 off of
the actual loss rate on the emulated link. Positive offsets
correspond to overestimation of the loss rate and negative
offsets correspond to underestimation. In the graph, the
x-axis corresponds to the actual loss rate and individual
bars correspond to different offset values. There is no bar
for the case of actual loss rate of 0.1 and an offset of -0.2.
They-axis plots the median completion time relative to
the case where we do not program a loss rate offset.

We see that for low actual loss rates, inaccuracies in
loss rate estimates have little impact on performance. At
higher actual loss rates, performance degrades when loss
rate is underestimated. This degradation is about 20%
when the underestimation is -0.2.

Interestingly, at high loss rates, performance improves
if loss rates are overestimated. This stems from our strat-
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egy of maximising the expected yield of individual coded
packets, ignoring possible optimisations over groups. We
do this for simplicity of optimisation and because we
do not know at the time of transmission if more can be
sent. Our strategy, however, can generate coded packets
that are sometimes too complex to be decidable at the
other end. At high loss rates, groups of simpler pack-
ets can outperform groups of coded packets generated
by PluriBus. In our experiment, overestimating loss rate
helps because its side-effect is to generate simpler pack-
ets. We are currently investigating means for extending
Evolution codes to optimise over small groups of coded
packets.

6.4.3 Impact of aggressive coding

A potential negative side-effect of our strategy to ag-
gressively send coded packets is slowdown for data traf-
fic in environments where the loss rate is low. However,
we find that this does not occur because of our strategy of
sending a coded packet only when the queue is estimated
to be empty.

For this experiment, we consider a setting with no un-
derlying loss because then coding brings no benefit and
can only create overhead. Since losses are common in
our deployment, we use emulation. We configure the em-
ulated link between the two proxies to have zero loss rate,
150 ms round trip delay, and 1.5 Mbps capacity. We use
scaled versions of our traces as workload and compare
the performance of traffic with and without coding.

Figure 13 the results by plotting the median and inter-
quartile flow completion time as a function of the scaling
factor. We see that any slowdown with coding is mini-
mal even at very high levels of load. Thus, our coding
methodology does not hurt application performance in
non-lossy environments and, as we have shown before,
significantly boosts performance in lossy environments.

Finally, we study how much additional traffic is gener-
ated by our coding methodology. This factor might be of
concern where wireless access is priced based on usage.
Figure 14 shows the results for experiments using our
deployment. As expected, the fraction of coded pack-
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Figure 14: Percentage of coded packets sent as a func-
tion of workload intensity. [Deployment]

ets declines as the workload intensifies because there are
fewer openings in available bandwidth.

6.5 Delay-based path selection
In this section, we study in detail the behaviour of

delay-based path selection ofPluriBus.

6.5.1 Benefit of fine-grained striping

We first quantify the advantage of fine-grained packet
striping of PluriBus by comparing it withMinConnPath.
The workload consists of two simultaneous (but not syn-
chronised) TCP flows. Each flow downloads 10 KB of
data. A new flow starts when one terminated. We chose
this workload because it represents a particularly good
case forMinConnPath. It enablesMinConnPathto spread
the load evenly on both links by mapping one flow to
each link. Such an even spread is harder to achieve in re-
alistic workloads because individual flows have different
sizes. Any advantage ofPluriBus in this two-TCP work-
load stems from its ability to stripe data at the level of
individual packets based on the current delay estimate of
each link.

In this experiment, we configure the emulator with two
links between the VanProxy and LanProxy. Each link has
a capacity of 1.5 Mbps and has no loss. The round trip
propagation delay of one link is fixed to 150 ms and that
of the other is varied from 150 ms down to 50 ms.

Furthermore, we configure our system to not using any
coding (which would, in any case, be superfluous, since
there is no packet loss).

Figure 15 shows the flow completion times for the two
policies as a function of the difference in the RTT of the
two emulated links. We see that as the difference in RTT
increases the relative performance advantage ofPluriBus

increases. In the extreme, when the difference in the RTT
is 100 ms, which roughly corresponds to the delay dif-
ferences of the links in our deployment,PluriBus reduces
flow completion time by a factor of 2.

Interestingly, even when the two links have equal de-
lays andMinConnPathshould lead to almost perfect dis-
tribution of connections across them,PluriBus does slightly
better. This is becausePluriBus exploits the short-term
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Figure 16: Comparison of MinConnPath and Delay-
based striping, on lossy links. [Deployment]

differences in the queue lengths along the two paths that
arise when the two TCP flows have different window
sizes. Further experimentation shows that this advantage
of PluriBus becomes more prominent as transfer sizes in-
crease because that creates bigger differences in the two
queue lengths.

These results show that the delay-based, fine-grained
striping policy outperformsMinConnPathin absence of
losses. What happens when losses are present, and no
coding is used to mask them? In such a situation, we find
that delay-based striping significantlyunderperformsthe
MinConPathpolicy. This is illustrated in Figure 16. The
setup for this experiment is similar to the one used for
Figure 8. Indeed, the first bar is same in both figures.
The second bar, labelled delay-only was generated by
usingPluriBus policy, with coding disabled. We see that
the fine-grained striping policy performs worse thanMin-
ConnPath. The reason is that the delay-based striping
policy sends most of the data on the WiMax connec-
tion that has higher bandwidth, but also has significantly
higher loss rate.

We note a somewhat subtle point about this result. In
lossy environments, theMinConnPathscheme performs
better than the delay-based scheme, if no coding is used.
Yet, when losses are masked using coding, the delay-
based scheme (i.e.PluriBus), performs better. This im-
plies that if the load is so high that there is no spare ca-
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Figure 17: Error in estimated delay along a path.
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pacity to send coded packets,PluriBus will underperform
MinConnPath. We are currently investigating a varia-
tion of PluriBus that gracefully switches to usingMin-
ConnPath, if there is not enough spare capacity to mask
losses.

6.5.2 Accuracy of path delay estimate

We now study the accuracy of path delay estimates of
PluriBus, which is important for good performance. Var-
ious factors in a real deployment, including estimates of
path capacity, queue length, and propagation delay, im-
pact the delay estimate. We evaluate the accuracy of this
estimate by comparing the estimated delivery time at the
sender to the actual delivery time at the receiver. This
comparison is possible even with unsynchronised clocks
because our estimate of propagation delay already in-
cludes the clock skew.

Figure 17 shows the error in our delay estimate. The
data in this graph is from the deployment-based experi-
ments of§6.2 and includes all load scaling factors. The
curve labelledPluriBus shows that our estimate is highly
accurate, with 80% of the packets arriving within 10 ms
of the predicted time. This is encouraging, given the in-
herent variability in the delay of wide-area wireless links
(Figure 4).

One downside of any inaccuracy in the delay estimate
is that packets might get reordered. Reordering trans-
lates to additional delay as the packet will be put in the
sequencing buffer for the previous packet to arrive. We
find that fewer than 5% of the packets arrive at the other
end before a previously sent packet. Of these 95% of
them wait for less than 10 ms.

Finally, the curve marked “Exp. avg.” shows the error
if we were to estimate path delay simply as an exponen-
tial average of observed delays, rather than the detailed
accounting that we conduct based on estimated capac-
ity and queue length. This other method estimates path
delay by averaging the observed one-way delay that is
reported by the other proxy. We see that it tends to sig-
nificantly underestimate path delay. We also observe (but
omit detailed result) that this translates to significant re-
ordering and performance degradation to a level that is
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belowMinConnPathin many scenarios.

7. RELATED WORK
XX Pablo XX
Many systems bond multiple links or paths into a sin-

gle higher-performancecommunication channel. Our work
differs primarily in its context and the generality of the
problem tackled – we bond multiple paths with disparate
delays, capacities, and loss rates. While it is difficult to
list all previous works, we note that most existing works
assume identical links (e.g., multiple ISDN lines) [11],
identical delays [36], or ignore losses [15, 32, 30, 10].

A few systems stripe data between end hosts across
arbitrary paths by using TCP or a protocol inspired by it
along each path [16, 28]. This provides automatic loss
recovery and capacity estimation for each path. These
mechanisms work well in an end-to-end setting but not
in our in-network proxy setup because loss recovery in
them is based on receiver feedback. If applied to our
case, such an approach would be futile at hiding losses
from users’ TCP because of the high delay of paths be-
tween the two proxies (§6.4).

MAR [32] and Horde [30] are closest toPluriBus. Both
combine multiple wide-area wireless links to improve
Internet connectivity on vehicles. MAR uses a simple
connection-level striping policy but leaves open the task
of building more sophisticated algorithms. We build on
their insights to develop a packet-level striping algorithm
and show that it significantly outperforms connection-
level striping. Horde [30] specifies a QoS API and stripes
data as per policy. It requires that applications be re-
written to use the API, while we support existing appli-
cations. Neither MAR nor Horde focus on loss recovery.

Delay-based path selection across wireless links was
originally proposed in [10]. However, the authors did
not build a system around the algorithm, nor did they
consider the impact of loss.

In contrast to our setting where the wireless links are
the bottlenecks, several works focus on the case where
the wired links behind the basestations are the bottle-
necks and focus on aggregating their bandwidths [22, 9,
38]. These solutions do not directly apply to our case.

Prior work includes studies of TCP’s performance over
wireless links. Both network-level (e.g., [2, 7, 8] and
host-level improvements (e.g., [5]) have been proposed.
But neither can be applied to our setting. We do not have
access to end hosts. We also do not have access to wire-
less providers’ infrastructure, which network-level meth-
ods need, for instance, to quickly react to losses.

Erasure codes [31, 27, 35] and other FEC techniques
guard against packet losses. As explained earlier, these
techniques do not focus on partial recovery, and are un-
suitable for our environment. Systems such as MORE [6]
and COPE [23] use network coding in multi-hop wire-

less mesh networks. This is a very different context than
ours; these systems exploit the broadcast nature of wire-
less medium and code across multiple nodes.

Our Evolution codes are inspired by Growth codes [21].
Growth codes were designed to preserve data in large
sensor networks with failing sensors. This is a very dif-
ferent application domain, and many of the assumptions
made in the design of Growth codes are specific to that
domain. For example, they assume that the receiver starts
out with no information also assume that multiple senders,
each with a different data set, are attempting to commu-
nicate with a single receiver.

An unconventionalaspect of our design is that we strive
to use all spare capacity in the system, without worry-
ing about efficiency. In a recent position paper [29], we
discussed broadly the value of such an approach. We
argued that the approach is counter to common design
practices. It can be valuable in many settings but only if
the overhead of aggressive resource usage can be con-
trolled. PluriBus is a practical instantiation of this ap-
proach for the vehicular setting. It minimizes overhead
by using opportunistic transmissions for coded packets.

Split TCP [19, 24] is another approach to improve
TCP’s performance on paths involving wireless links. In
this approach, one or more proxies are used to break the
end-to-end TCP connection into multiple, independent
segments, each running its own TCP connection. Split
TCP improves performance by performing loss recovery
independently on each segment, without waiting for end-
to-end feedback. This approach works well in scenarios
where lossy segments have have low round trip delay; for
example; when the last-hop wireless link on an Internet
path is inducing significant loss. However, the Split TCP
approach is not suitable in our setting for two reasons.
First, it violates the end-to-end semantics of the TCP
connection, and hence it can not be used in in presence of
IPSec. Many corporate networks use IPSec-based VPNs
for remote access, and the Split TCP approach can not
be used for these VPNs. Second, since we don’t have ac-
cess to the internal network of our wireless carriers, we
can only split the TCP connections at the VanProxy and
the LanProxy. While the segment between the VanProxy
and the LanProxy is indeed the most lossy segment on
most end-to-end paths, it is also responsible for the ma-
jority of the end-to-end RTT. Hence, the Split TCP does
not offer any advantage over direct TCP connection. We
have verified this by building a Split TCP implementa-
tion. We omit these results due to lack of space.

Another possibility is to use the TCP-in-TCP encap-
sulation. This is similar to the retransmission approach
discussed in Section 6.

8. DISCUSSION
The aggressive addition of redundancy inPluriBus is
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based on a selfish perspective. Bus operators typically
subscribe to a fixed-price, unlimited usage plan with their
wide-area wireless provider. Our design strives to max-
imize user performance given that it does not cost more
to send more.

In the long-term, however, a natural concern is that
PluriBus will lead to higher prices if it increases providers’
operational cost. There are two defenses against an exor-
bitant increase in operational cost. First, the traffic gen-
erated by users on buses may represent a small fraction
of the total traffic that the provider carries. Second, even
thoughPluriBus logically fills the pipe, in practice it is
not constantly transmitting because it encodes only over
data in the last round trip time. As we showed earlier,
for realistic workloadsPluriBus increases usage by a fac-
tor of 2. Finally, we believe that the bus operators would
be willing to pay extra for better performance. The cost
of wireless access is a small fraction of their operational
budget and amortizes over many users.

9. CONCLUSIONS
We designed and deployedPluriBus, a system to pro-

vide high-performance Internet connectivity on-board mov-
ing vehicles.PluriBus seamlessly combines multiple, het-
erogeneous wide-area wireless links into a single, reli-
able communication channel. Our evaluation shows that
it reduces the median flow completion time by a factor of
2.5 for realistic workloads.

The key technique inPluriBus is opportunistic erasure
codingin which coded packets are sent only when there
is instantaneous spare capacity along a path. We show
how this can be accomplished in a way that does not hurt
data traffic. While we use this capacity to send coded
packets, the underlying mechanism is general and can be
used in many settings, including non-vehicular ones. We
are currently building a background trasfer service using
this mechanism to upload logs from our buses.

In contrast to full recovery, which is the focus of most
existing erasure codes, ourEvolution codesare designed
for partial recovery. They greedily maximize the ex-
pected yield of each coded packet by explicitly taking
into account what might already be present at the re-
ceiver. Because full recovery is not necessary in many
scenarios, we believe that Evolution codes are broadly
useful.XX examples? XX
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