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ABSTRACT 

User behavior provides many cues to improve the relevance of 

search results through personalization. One aspect of user behav-

ior that provides especially strong signals for delivering better 

relevance is an individual’s history of queries and clicked docu-

ments. Previous studies have explored how short-term behavior or 

long-term behavior can be predictive of relevance. Ours is the first 

study to assess how short-term (session) behavior and long-term 

(historic) behavior interact, and how each may be used in isolation 

or in combination to optimally contribute to gains in relevance 

through search personalization. Our key findings include: historic 

behavior provides substantial benefits at the start of a search ses-

sion; short-term session behavior contributes the majority of gains 

in an extended search session; and the combination of session and 

historic behavior out-performs using either alone. We also charac-

terize how the relative contribution of each model changes 

throughout the duration of a session. Our findings have implica-

tions for the design of search systems that leverage user behavior 

to personalize the search experience. 

Categories and Subject Descriptors 

 H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – search process; selection process. 

Keywords 

Personalization; Web search. 

1. INTRODUCTION 
Search personalization improves retrieval effectiveness by tailor-

ing the ranking of results for individual users based on models of 

their interests [24][28][29]. To construct the profiles necessary for 

search personalization, evidence of a user’s interests can be mined 

from observed past behaviors. This behavior can be sourced from 

the short-term (e.g., the current search session) [34] or the long-

term (e.g., across many previous sessions) [25]. These studies 

have shown that personalization is important but often care must 

be taken in how it is applied, e.g., we may only want to personal-

ize queries which have high click entropy [11][30]. 

An important determinant of the success of personalization is the 

behavioral information that is used to construct user profiles. Alt-

hough there has been some work examining the effect of different 

contextual sources for modeling user interests [22][33], another 

critical aspect of personalization is the timespan of the behavioral 

information used for profile construction. Short-term profiles 

capture recent interactions but lack users’ long-term interests. 

Long-term profiles represent long-term interests but may not ade-

quately represent searcher needs for the current task. Earlier at-

tempts to address this challenge leveraged different representa-

tions for each source [18] or made ad hoc decisions around how to 

weight distant actions [27]. A principled investigation of the im-

pact of short- and long-term behavior on search personalization is 

lacking and we address that shortcoming with the research pre-

sented here. 

In this paper, we investigate how users’ long-term search activity 

history interacts with their short-term search session behavior. We 

characterize these interactions using a framework for modeling 

behavior from different timespans and predicting search rele-

vance. We explore the effectiveness of user profiles developed 

based on different temporal views. Although each model makes 

use of sets of search activity gathered over different durations, the 

same feature set is used for each time span to remove that source 

of variation, and decay factors (among other things) are studied in 

a principled manner. We evaluate the success of these models via 

a large search log containing queries, results, and clicks, enabling 

us to compare the performance of each personalized ranker rela-

tive to that of a high quality commercial search engine in a man-

ner similar to previous personalization research [8][25][34]. We 

make the following unique contributions with this research: 

 Propose a novel unified modeling framework that provides 

an integrative view of different parameters of personalization 

and controls key aspects such as the features generated from 

behavior and decay factors employed. 

 Study dynamics in the relative contribution to personaliza-

tion of short- and long-term models over the course of a ses-

sion. As part of our analysis, we confirm intuitions that long-

term behavior is useful at the start of a session and that short-

term models yield benefit as the session proceeds. 

 Provide new findings on search personalization, such as the 

special properties of the first query in the session, and the 

strong performance of models that learn to combine short- 

and long-term features for each query, rather than simply ag-

gregating all features; suggesting that individual queries dif-

ferentially benefit from short- and long-term personalization. 

The remainder of this paper is structured as follows. Section 2 

presents related work on model-based user behavior analysis for 

search personalization. Section 3 describes our unified framework 

for combining a user’s (long-term) historical behavior with their 

(short-term) session activity and outlines the features and model 

training. Section 4 describes the experiment, including the data 

and methodology. We present findings in Section 5, discuss them 

and their implications in Section 6, and conclude in Section 7. 

2. RELATED WORK 
There is growing interest in the information retrieval (IR) com-

munity in examining how knowledge of a searcher’s interests and 

context can be used to improve various aspects of search such as 
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ranking or query suggestion. Here we review prior research that 

examines the use of implicit user profiles generated using a user’s 

searching and browsing actions (queries, clicks on search results, 

and subsequent navigation) to personalize Web search. 

Recent investigations that employ a user’s search and browse 

actions to influence search personalization include those based on: 

a user’s location [1], a user’s history of search activity [25], the 

ability of a user to read at differing levels of complexity [8] and 

patterns of re-finding the same search result [31]. Others discuss 

how different forms of context and search activity may be used to 

cast search behavior as a prediction problem [22][33]. 

Several research groups have investigated personalizing search 

results using user profiles that comprise topical representations of 

users’ search interests. Gauch et al. [14] learned user profiles from 

browsing history, Speretta and Gauch [26] built profiles using 

search history, and Chirita et al. [7] and Ma et al. [19] used pro-

files that users specified explicitly. In all cases, interest profiles 

were compared with those of search results and used to affect the 

order in which results were presented to individuals. Bennett et al. 

[2] demonstrated how category features from the Open Directory 

Project (ODP, dmoz.org) could be used to improve search ranking 

in the aggregate for all users but not for individual searchers. 

The context of search activities within the current session has 

been used to build richer models of interests and improve how the 

search system interprets the user’s current query. Cao et al. [4][5] 

represented search context within a session by modeling the se-

quence of user queries and clicks. They learned sequential predic-

tion models from large-scale log data, and applied the models to 

URL recommendation, query suggestion, and query categoriza-

tion. Mihalkova and Mooney [21] used similar search session 

features to disambiguate the current search query. White et al. 

[34] constructed topical models of searcher’s interests using the 

current query and recent search activities such as queries and hy-

perlink clicks, and used these models to predict future interests. 

Models of short-term interests based on search queries and result 

clicks have also been used to improve search quality [9][24][36]. 

For example, Xiang et al. [36] developed heuristics to promote 

search results with the same topical category if successive queries 

in a search session were related by general similarity, and were 

not specializations, generalizations or reformulations. 

Much of the work on search personalization focuses on longer-

term models of user interests. Teevan et al. [29] developed rich 

long-term user models based on desktop search activities to im-

prove ranking. Matthijs and Radlinski [20] developed models of 

users’ interests using browsing behavior and evaluated their rank-

ing improvements using an interleaving methodology (merging 

original and personalized rankings and observing SERP clicks). 

Sontag et al. [25] developed generative and discriminative proba-

bilistic models using ODP category models from historical click 

data. They learned parameters based on the divergence of individ-

ual user behaviors from normative behaviors to re-rank search 

results and found the largest gains for an ensemble of the two 

models. Tan et al. [28] studied long-term language model-based 

representations of users’ interests based on queries, documents 

and clicks. They considered different amounts of history and 

found that for fresh queries recent history was the most important, 

but for recurring queries longer-term history was more important. 

Although long-term models described above include short-term 

information, few explicitly study it separately. Dou et al. [11] 

learned both click-based and topic-based user models over a 12-

day period. Personalization was most effective for queries with 

high click entropy (as has also been observed by Teevan et al. 

[30]). Topic profiles resulted in highly variable performance 

across queries, and personalization was more effective for users 

with more historical information. Li et al. [18] modeled short- and 

long-term user activities but used different representations for 

each. They built long-term profiles using topics from the Google 

Directory of previously-clicked results and short-term models 

using a cache of recently-clicked results. They compared re-

ranking based on user models with Google Directory and ob-

served some advantages of personalization for users with varied 

profiles (so-called ambiguous users). However the study involved 

only 12 users over a ten-day period, and they were instructed to 

search for specific topics, hobbies and to repeat queries. Sugiyama 

et al. [27] modeled users’ interests with both ephemeral short-term 

preferences and persistent long-term preferences, with an expo-

nential decay on the importance of older information. They ob-

served small improvements for personalized methods. 

The research presented in this paper differs from previous work in 

several important ways. First, we present a unified framework 

over how interests are represented (as topics or URLs) and how 

short- and long-term temporal dynamics are modeled.  Second, we 

examine the effects of the query position within a session on how 

these behavior models change in their relative contribution. Third, 

we show how to learn models that effectively combine short- and 

long-term behavior to create improved personalization models. 

Finally, our evaluation is conducted on large-scale logs from a 

major search engine over a two-month timespan, thus addressing 

scale and representativeness issues inherent in smaller studies. 

3. PERSONALIZATION FRAMEWORK 
We can model users’ preferences from different temporal views of 

their history of interaction with the search engine. Figure 1 illus-

trates the relationship between each of the three temporal views 

that comprise the framework. The figure also shows the position 

of the current query which we would like to personalize. We can 

build a model based only on recent interactions in an attempt to 

capture the user’s current focus. One such approach used previ-

ously, and which we adopt in this work, is to look at session inter-

action [34]. Additionally, we consider the historic interactions that 

a user had with the search engine prior to the current session, 

potentially comprising many days or weeks of activity. This long-

term information may be useful in disambiguating underspecified 

queries by preferring results on topics known to be historically of 

interest to the user [25]. In addition, since information seeking 

tasks may extend across many sessions [17] the current task (ses-

sion) may relate to previous sessions. This suggests a model that 

aggregates all history over a shifting time window, effectively 

combining short- and long-term interests.   

To compare the contributions of the three different temporal 

views, we need a framework that yields comparable features in 

each of them. Otherwise, the success of one view may simply be 

an artifact of having modeled a component in one view that is 

missing from the other views. To do this, we present a novel 

                                      Current query (to be personalized) 
 

Historic 
 

 

Session 
 

 

 Aggregate 
 

Past ←                                       Time            → Present 

Figure 1. An illustration of how we create profiles from recent 

(Session), past (Historic), or a combination (Aggregate). 

 



framework that incorporates both functions that correspond to the 

temporal views depicted in Figure 1 and time-weighting func-

tions. We use two representations that are commonly studied in 

the literature: topics and URLs [14][20][25] and show how fea-

tures often studied in prior research emerge from our framework.   

We now present our framework and explain how it incorporates 

the following factors that are understood to affect personalization 

quality [28][31][34]: recency; the similarity of the current query 

to past user queries; the similarity of a document to be ranked for 

the current query to the documents previously returned to a user; 

and how the user interacted with those past results. 

3.1 Framework Overview 
Within the context of personalizing search based on past behavior, 

we consider a number of different factors. For example, given the 

user has issued query q, from the temporal view on the user’s past 

search interactions,     (  ), we can consider all related queries, 

       (    ) where    is the set of the user’s past issued queries, 

the search results, and any behavioral interactions the user had 

with the results. We focus on clicks but skips (explicitly ignoring 

a result) and misses (failing to notice a result) can also be 

considered. The function        (    ) returns a set of queries 

that are related to q. For each related query,   , we also model the 

strength of its relationship to the current query for this user, 

 (       )  which we abbreviate as    . For each related query, 

the search engine returns a set of results,        (  )  whose 

elements we refer to as    , the documents returned for the related 

query. For each    we consider both its similarity,    (     )  to 

a document, d, for the current query when determining how we 

should estimate the relevance of d, and we may also consider what 

action, denoted as       (      ), the user took with respect to 

the document (e.g., a satisfied click serving as an indication that 

the document is relevant [12][13]). We can write a family of 

features related to personalization parameterized by choices for 

the related query function, the relationship weight, the similarity 

and the action. One such simple formulation that considers all of 

these factors to generate a feature value from a 〈      〉 triple is: 

 (      )

 ∑    
          (    )        (  ) 

∑   (     )       (      )

   

 

Given appropriate choices for the related query function, the 

weighting, similarity, and action, one can derive many commonly 

studied features for personalization.  For example, when the set of 

related queries comprises all queries in the user’s past interaction, 

the relationship weight is uniformly 1, the similarity function 

returns 1 for identical URLs and 0 otherwise, and the action is 

whether or not the user clicked on the document from the related 

query, then the resulting feature is simply the number of times the 

user has clicked on d.  With the same choices except where the 

related queries are only queries from the past interactions that are 

identical, then one obtains the number of previous times the user 

clicked on d when issuing q, a quantity highly indicative of 

refinding in personalization research [31]. 

This framework is useful for studying different temporal views 

because it allows us to vary the weight and related query functions 

to capture temporal effects while ensuring each time view has 

comparable features. Furthermore, it is amenable to choosing 

multiple types of similarity functions and yielding comparable 

feature families. For example, given a representation of a 

document, d, as a vector of topic probabilities then one reasonable 

similarity function would be the inner product between the current 

document and the document from the related query,       Again 

assuming that all queries in a user’s history are uniformly 

weighted and the action is a click, then the resulting feature is the 

inner product between the topics of results that the user has 

clicked on in the past and the topics of the current document.  

Seeing how this amounts to the inner product over all clicked on 

topics and d’s topics is instructive in understanding how these 

features could be computed efficiently in practice. For any 

similarity function that can be written as the inner product of two 

documents by using a representation of the document,  ( ), such 

that    (     )  〈 (   )  ( )〉, we can rewrite the inner 

product as an inner product of d and an aggregated weight vector: 

 (      )

 〈 ( ) ∑    
          (    )        (  )

∑ (   )       (      )

   

〉 

 〈 ( )  (       )〉 

where  (       ) is shorthand for the weight vector derived from 

the sum. This new weight vector is more convenient to work with 

because it can be updated simply by adding in the most recent 

interactions for any case where the relationship weight does not 

change based on the overall interaction history.  Even when the 

related queries selection is more complex such as including all 

queries that are a superset of the current query, this can be 

computed efficiently by constructing an inverted index for each 

user mapping query words to weight vectors,  (       ). 

When the representation  ( ) returns a document’s topic vector, 

one obtains quantities commonly used in studying personalization 

by topic [25]. When the representation is based on identical 

URLs, we capture that by defining  ( ) as a sparse vector over all 

URLs (i.e., 1 for the argument URL and 0 elsewhere). 

Now that we have laid the foundations for the framework and 

shown that it can be used to represent several previously-proposed 

personalization features, we address the problems of choosing 

functions for related queries, relationship weight, similarity, and 

actions motivated by literature on personalized search. Each 

combination of these will yield a feature which we use as input to 

the machine-learned ranker examined in this study. 

3.2  Query Selection and Weighting 

3.2.1 Temporal Selection 
We now return to our depiction of time views of a profile in Fig-

ure 1 and define concretely how we represent these views.   We 

represent the Session, Historic, and Aggregate views as choices of 

the     (  ) function. That is, the Session view returns the 

queries from the current session. If the related function is 

“identical queries”, then together with the Session view filter the 

sum is over “identical queries within the session.” Likewise, the 

Historic view returns queries before the current session, and the 

Aggregate view returns all queries in the user’s past interactions. 

Thus, given choices for the parameterization of weight, similarity, 

and action, instead of having a single feature, we now have three 

features: a session version, a historic version, and an aggregate 

version. When we turn to modeling later in the paper, we separate 

the features and build models using only features from each view 

enabling us to study each view and compare the views with the 

same number and types of features in each. 

Note that we chose to make a session distinction since sesssions 

have been commonly used as a proxy to identify task boundaries 

[15][17]. Session has been used in the context of personalization 



to predict short-term activity [33][34], and it is currently of broad 

interest to the IR community as a track in the Text Retrieval 

Conference [16]. For our purposes a session is demarcated by 30 

minutes of user inactivity as described in [32]. 

3.2.2 Temporal Weighting 
In addition to the session boundary, we may also posit that recent 

interactions of a user matter more than distant ones. This has been 

captured in personalization by introducing a decay function on 

past interactions [10][23][27][34]. We introduce a similar decay 

into our framework by setting the relationship weighting function, 

   , to a decay value. Let  (  ) refer to the number of queries in 

the time view (session, historic, aggregate) by which the related 

query precedes the current query. Thus  (  ) =1 is the most re-

cent previous query (in session, history, and aggregate respective-

ly). Then we choose   (  )   as the decay, where c is a decay 

factor. Rather than emphasizing absolute time, this emphasizes 

recent activity. Figure 2 shows the weights for various decay fac-

tors over previous queries. For experiments reported in this paper, 

we chose  =0.95 (shown as a red dotted line in the figure) be-

cause it lies between the extremes of massively emphasizing re-

cent activity and uniformly emphasizing all actions. We also used 

simple uniform weighting ( =1), shown as the blue solid horizon-

tal line at the top of Figure 2. 

 

Figure 2. Query decay weights given various decay factors. 

3.2.3 Query Generalization and Specialization 
Various studies have demonstrated that users interact differently 

with results if they have recently generalized a query (reformulat-

ed by dropping words) or specialized it (reformulated by adding 

words) [36]. Because of this we introduce four choices for the 

       (    ) function: (1) all queries in the user’s profile (gen-

erated using     (  )), giving rise to features that capture the 

user’s preference for a document independent of the current que-

ry,  ; (2) all queries exactly matching   in the user’s profile, 

which captures specific interactions; (3) all queries in the profile 

that are (improper) subsets of  , which captures behavior on gen-

eralizations of   (i.e. a subset has fewer words and is therefore 

more general); (4) all queries in the profile that are (improper) 

supersets of  , which captures behavior on all specializations of  . 

The subsets and supersets were determined after stopwords were 

removed and had to share at least one non-stopword with   (i.e., 

empty sets were not permitted). 

3.3 URL Representation 
As noted in Section 3.1, the user’s interaction with a particular 

document is a useful predictor for personalization as an indicator 

of re-finding behavior. Therefore, we use one choice of  ( ) 
which returns a sparse vector over URLs (document IDs) that is 1 

for the dimension corresponding to the URL of  ’s argument and 

0 elsewhere. As further discussed in Section 3.1, this gives rise to 

a variety of useful features depending on the remaining parameter 

choices, e.g., the user’s preference (measured as number of clicks) 

for a document: (1) across all queries; (2) for the current query,  ; 

(3) for generalizations of  ; and (4) for specializations of  . 

3.4 Topical Representation 
Topical representations of documents are commonly used in per-

sonalization studies (e.g., [14][25][34]). To obtain such a topic 

representation for this study, we labeled each document with a 

vector of probabilities of categories from the top two levels of the 

ODP hierarchy using a text-based classifier. Each document’s 

vector was restricted to the three most probable classes. The clas-

sifier has a micro-averaged F1 value of 0.60 and is described more 

fully in [2]. As mentioned in Section 3.1, given appropriate choic-

es for the remaining parameters, this representation will yield 

features that capture the user’s preference for the topics of  : (1) 

across all queries; (2) for the current query,  ; (3) for generaliza-

tions of  ; and (4) for specializations of  . To measure the simi-

larity between the document’s topical representation and 

 (       ) resulting from the topic parameterization we use the 

cosine similarity, which is commonly used in the literature.  

3.5 Search Actions 
While a variety of behavioral signals have been studied in the 

literature, we restrict our choice for the       (      ) function 

to satisfied (SAT) clicks on the search engine result page.  A SAT 

click involves a user dwelling on the result for at least 30 seconds 

or one which terminates the search session [12][13]. We focus on 

SAT clicks since research indicates that dwell time is indicative of 

relevance and that clicks with short dwell times (“quick backs”) 

are unlikely to be relevant [37]. 

3.6 Profile Information Measures  
Personalization studies have also commonly introduced features 

that measure the amount of information known about the user or 

the appropriateness of personalizing for a query [1][8][30][34].   

Similar notions also emerge from our framework. When the 

choice of relationship weight, the representation, and action are all 

non-negative, then  (       ) can be treated as describing a 

probability space over the representation space,  ( )  by 

normalizing across the feature dimensions. In fact, if we further 

summed across all users when the relationship is exact query 

match, with the URL representation, and click actions, then the 

entropy of the resulting vector is QueryClickEntropy, commonly 

referred to as click entropy in earlier personalization research 

[11][30]. To simplify the  personalized versions because tracking 

all URLs for a user can be costly, we make a simplifying 

assumption and compute this entropy over (clicked) rank positions 

instead of URLs.  If the same query always returns the same 

search results in the same rank order, then the personalized click 

entropy for a query (UserQueryPositionEntropy) is the same as a 

personalized computation for standard click entropy. 

Likewise, we use the topical representation and compute entropy 

of the resulting  (       ). In which case if we sum across users, 

we obtain QueryTopicEntropy (used to identify ambiguous 

queries for personalization in [25]), conditional on the user across 

all queries we obtain UserTopicEntropy, conditional on user and 

query we obtain UserQueryTopicEntropy, and similarly for subset 

and superset. Because these entropy-based features derive from 

the appropriate parameterization of  (       ), they can depend 

on each time view and use decay or uniform weighting. 
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Table 1. Summary of Features.  For each parameterized feature, the feature type       (      ) = SAT click. When a row has the 

“Temporal Selection” box checked then a version is instantiated for each value of     (  )                         When a 

row has the weight box checked then a version is instantiated for each value of      uniform, decay.  Thus rows with both tem-

poral selection and temporal decay correspond to 3 views × 2 weight = 6 features. 

Temporal 

Selection 
Weight Feature Description                                                           

Query-Doc-User Features 

× × 
DocTopicCosineUserTopicProfile : cosine of 

 ( )  (       ) with         (    )=all,   ( )         
Topic similarity of overall user’s history to this URL 

× × 
UserClicksOnUrl : inner prod. of 

 ( )  (       ) with         (    )=all,   ( )      

Click count of overall user’s history to this URL 

× × 
DocTopicCosineUserTopicProfileForQuery : cosine of 

 ( )  (       ) with         (    )=q,   ( )         
Class similarity of selected user history (exact query) to this URL 

× × 
UserClicksOnUrlForQuery : inner prod. of 

 ( )  (       ) with         (    )=q,   ( )       

Click count of selected user history (exact query) to this URL 

× × 
DocTopicCosineUserTopicProfileForSubsetQuery : cosine of 

 ( )  (       ) with         (    )=subset q,   ( )         
Class similarity of selected user history (subset of query after 

stopword removal) to this URL 

× × 
UserClicksOnUrlForSubsetQuery : inner prod. of 

 ( )  (       ) with         (    )=subset q,   ( )      

Click count of selected user history (subset of query after stop-

word removal) to this URL 

× × 
DocTopicCosineUserTopicProfileForSupersetQuery : cosine of 

 ( )  (       ) with         (    )=superset q,   ( )         
Class similarity of selected user history (superset of query after 

stopword removal) to this URL 

× × 
UserClicksOnUrlForSupersetQuery : inner prod. of 

 ( )  (       ) with         (    )=superset q,   ( )       

Click count of selected user history (superset of query after stop-

word removal) to this URL 

Query Features 

Query Ambiguity Measures 

  
  

QueryClickEntropy  

(commonly called click entropy in the literature) 

Measures the diversity of clicks across users.  Higher entropy 

indicates queries with more intents 

    
QueryTopicEntropy 

Higher entropy indicates topically ambiguous. 

Query Difficulty Measures 

    PositionInSession Easy queries come early in a session with reformulations later 

    QueryLength Query length has been shown to be predictive of query difficulty 

    QueryFrequency More frequent queries often have more click information 

Query-Doc 

    Rank Rank of base ranker – non-personalized estimate of relevance 

Query-History Features 

Query Number Features in Profile (not quite analogs) 

×   NumberOfQueries Number of distinct queries in interaction view 

×   NumberOfSessionsWithQuery Number of sessions in view containing this query 

×   NumberOfSubsetQueries Number of distinct queries in view matching subset relation 

×   NumberOfSupersetQueries Number of distinct queries in view matching superset relation 

Focus of User Profile 

× × 
UserTopicEntropy: entropy of normalized 

 (       ) with         (    )=all,   ( )        
Measures diversity of the user’s observed needs 

× × 
UserQueryTopicEntropy: entropy of normalized 

 (       ) with         (    )=q,   ( )        
Measure of diversity of topics that have satisfied the user’s need 

for this exact query in the past 

× × 
UserSubsetQueryTopicEntropy: entropy of normalized 

 (       ) with         (    )=subset q,   ( )        
Measures diversity of topics that have satisfied the user’s need for 

the selected (subset) history 

× × 
UserSupersetQueryTopicEntropy: entropy of normalized 

 (       ) with         (    )=superset q,   ( )        
Measure of diversity of topics that have satisfied the user’s need 

for the selected (super) history 

× × 
UserPositionEntropy: entropy of normalized 

 (       ) with         (    )=all,   ( )           

Higher positional entropy means that the user is not always satis-

fied by results in the top position 

× × 
UserQueryPositionEntropy: entropy of normalized 

 (       ) with         (    )=q,   ( )           

Higher positional entropy means that the user is not always satis-

fied by results in the top position for this query. If the results for a 

query are always stable, this is personalized click entropy 

 



 

We also introduce simple features that measure the number of 

queries or sessions containing the query in each view. We use 

these features in our model and describe them in detail in Table 1. 

3.7 Additional Features and Summary 
In addition to the features listed thus far, we also have a number 

of other non-personalized features of the query and the search 

results that we use in our models. These include the query click 

entropy and query class entropy (whose relationship to the 

framework is described in Section 3.6), which measures the diver-

sity of clicks across users, and the diversity of topics in the search 

results for the current query, both derived from historic log data. 

Other features such as the length of the query and the rank posi-

tion of each of the result URLs, as determined by the baseline 

ranker, are also included. A full description with additional moti-

vation of each of these additional features, as well as all features 

described in text above, is provided in Table 1.  

In summary, we consider several features, 3 temporal views and 2 

weights. There are 14 rows in the table that depend both on tem-

poral selection and weight accounting for 14×3×2=84 features. 

There are four features that depend only on temporal selection 

accounting for 4×3=12 features, and there are 6 features that have 

no temporal selection or weight – resulting in 102 features total. 

Restricting the set of features used to a single temporal view 

yields 14×2+4+6=38 features. 

4. EXPERIMENTAL METHODOLOGY 
Using the models described in the previous section, we aim to 

answer questions about the relative performance of each of the 

temporal views. In this section we describe the method that we 

followed for our experiments. We begin by describing the set of 

research questions that we answer in our study. 

4.1 Research Questions 
The study investigates the following conditions, each specifying 

the amount and type of search history used for personalization: 

1. Session: All previous actions in current search session. The full 

set of features in Table 1 instantiated for the Session view 

yielding 38 features. 

2. Historic: All previous actions apart from those in the current 

session. The full set of features in Table 1 instantiated for the 

Historic view yielding 38 features. 

3. Aggregate: All previous actions before the current query. The 

full set of features in Table 1 instantiated for the Aggregate 

view yielding 38 features. 

4. Union of Session, Historic, and Aggregate: Combines the sets 

of features associated with each of the three other views. The 

full set of features in Table 1 instantiated for the each of the 

Session, Historic, and Aggregate views yielding 102 features 

(32 temporal selection features × 3 + the 6 additional features). 

Adding the Union condition allows the ranker to determine how 

much weight to put on each of the three possible time views.  

Using these four conditions, we train models that re-rank the top 

Web search results provided by a large commercial search engine. 

The baseline used for our experiments is the original ranking of 

the top ten results provided by the engine. Note that this baseline 

is highly competitive and outperforming it is very challenging.  

We address the following three research questions:  

1. Do short- and long-term models both provide evidence for 

improved personalization? (Session, Historic vs. baseline) 

 Which one provides more? (Session vs. Historic) 

 Do they provide additive information? (Union vs. the best-

performing model of Session and Historic) 

2. Does aggregating all activity (with or without a decay factor 

emphasizing recent activity) capture the full interaction of 

short- and long-term models? (Aggregate vs. Union) 

3. Do some features act differently in short- versus long-term 

models? (Can the performance of Union be explained by any 

of Session, Historic, or Aggregate?) 

Answers to these questions provide valuable insight about the 

relative utility of the time views and help inform decisions about 

when and how to use these views for search personalization. 

4.2 Data Set and Evaluation Methodology 
The primary source of data for this study is a proprietary data set 

comprising anonymized logs of users of the Microsoft Bing 

search engine. The logs contained a unique user identifier, a 

search session identifier, the query, the top-10 URLs returned by 

the search engine for that query, and clicks on the results. We 

used eight weeks of log data gathered from July and August 2011 

to train and evaluate our different models. Logs were collected 

from flights where other personalization support was disabled, so  

as to not bias our results with other personalization signals. 

For evaluation, we need a personalized relevance judgment for 

each result. Obtaining many explicit relevance judgments from 

real users is impractical, and there is no known approach to train 

expert judges to provide reliable judgments that reflect real user 

preferences. Hence we obtained these judgments using a log-

based methodology inspired by [12] and similar to that used in 

[2][8]. Specifically, we assign a positive judgment to one of the 

top 10 URLs if it is a satisfied result click (SAT click). We define 

a SAT click in a similar way to previous work [12] as either a 

click followed by no further clicks for 30 seconds or more, or the 

last result click in the session. We also assign a positive judgment 

to a URL if it is a SAT click in one of the following two queries in 

the session -- as long as all queries up to the SAT click share at 

least one URL in the top 10 with the original query. The remain-

ing top-ranked URLs receive a negative judgment. This gives us a 

positive or negative judgment for each of the top-10 URLs for 

each query. The rank positions of the positive judgments are used 

to evaluate retrieval performance before and after re-ranking. 

Specifically, we measure our performance using the mean average 

precision (MAP) of the re-ranked lists. This is the mean of the 

average precision attained for each of the queries across the top-

10 results retrieved before re-ranking (for the baseline) and after 

re-ranking (for each of the views of interest). Queries for which 

we cannot assign a positive judgment to any top-10 URL are ex-

cluded from the dataset. 

We used a modified form of five-fold cross validation by user for 

training and testing, splitting based on user identifier. This is mod-

ified in the sense that during each fold 80% of the users were used 

for training and 20% of the users were held out for testing, but all 

of the test data came from the week after the training data. Split-
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Figure 3. Illustration of our usage of data to  

profiles relative to the training and testing sets. 

 



ting on user meant that there are no overlapping users between 

training and test. We did this because we wanted to ensure that the 

predictive patterns we learned also apply to users not seen during 

model training (as would be the case when deploying such models 

in practice). Figure 3 demonstrates how we extracted training and 

test data from the logs. Both training (week 7) and testing (week 

8) data use the six weeks immediately prior to each to ensure fea-

ture distributions between train and test are based on the same 

amount of profile information. For each query in week seven, the 

historic features are computed based on actions from up to six 

weeks before that query (weeks 16). For users in the test fold 

(week 8), we used data from weeks 2–7 to build the profiles. Be-

cause we aim to compare the contributions of both historic and 

recent activity, if users lack search activity in a timespan then 

reliably comparing our experimental outcomes becomes challeng-

ing. We leave studying how this tradeoff changes with the amount 

of available history from a user as future work. Therefore, we 

restricted users to those with at least one SAT click in each of the 

six weeks before the week of interest (note this only uses weeks 

17 and does not use knowledge of week 8 when selecting users). 

Over the 8 week period, the selection process resulted in around 

155K user profiles over 10.4M sessions with an average of 174.40 

(σ=181.49) queries/user and 2.61 queries/session (σ=3.36). All 

MAP results are means of performance across the five folds. 

4.3 Experiments 
Using the described dataset, we train a ranking model using the 

LambdaMART learning algorithm [35] for re-ranking the top ten 

results of the query. LambdaMART is an extension of Lamb-

daRank [3] based on boosted decision trees. LambdaMART has 

been shown to be one of the best algorithms for learning to rank. 

Indeed, an ensemble model in which LambdaMART rankers were 

the key component won Track 1 of the 2010 Yahoo! Learning to 

Rank Challenge [6]. However, we note the choice of learning 

algorithm is not central to this work, and any reasonable learning 

to rank algorithm would likely provide similar results. 

We use LambdaMART with 500 decision trees. We did a grid 

search using cross-validation by user over a 5 percent sample of 

the training set using the Union feature set.  We used a range of 

number of leaves   {35, 70, 140, 280, 560}, minimum instances 

in a leaf node  {200, 400, 800, 1600, 2000}, learning rate   

{0.075, 0.15, 0.30, 0.60}, and number of trees in the ensemble 

 {50, 100, 200, 400}.  There was relative insensitivity in the area 

where number of leaves ≤ 100, learning rate ≤ 0.3, minimum in-

stances in a leaf node ≤ 2000, and number of trees   [50,200].  

We broke ties arbitrarily and used number of leaves = 70, mini-

mum instances in a leaf node = 2000, learning rate = 0.3, and 

number of trees = 50. After sweeping to determine parameters, we 

used the same parameters for all other models. We did this be-

cause we wish to understand how each model/feature set behaves 

in combination with the other parameters. For each fold, 10% of 

the training set is used as validation for model selection.  

5. RESULTS 
In this section we present the findings of our analysis. We focus 

on comparing the performance of the models constructed using 

the four conditions listed in Section 4.1. We begin by describing 

the overall performance of the models across all queries, then 

focus only on queries for which there is a measurable difference 

in search performance (e.g., where MAP changes) since those 

more clearly illustrate performance differences (although mask 

coverage effects, which we also explore). We report the change in 

performance from the baseline ranking – a highly competitive top 

Web search engine. We also conducted paired  -tests to compare 

the performance of the models with each other and the baseline. 

5.1 Overall Performance 
We begin by analyzing the overall performance of the models 

over the baseline. We measured the change (difference) in MAP 

from the baseline non-personalized search engine ranking’s MAP 

across all queries for each of the four experimental conditions.  

For proprietary reasons, we only report the change from the base-

line’s MAP, rather than reporting absolute performance. 

5.1.1 Performance on All Queries 
Figure 4 presents the change in overall MAP for each model from 

the baseline. Error bars denote standard error of the mean in this 

chart and all other charts in the remainder of the paper. 

 

Figure 4. Average change in MAP from baseline ranker MAP 

As seen in Figure 4, all methods improve over the baseline (i.e., 

all reported changes are positive). All gains over the baseline and 

differences between methods are significant with paired t-tests at 

p < .01. The figure shows increasing amounts of profiling infor-

mation leads to greater improvements in retrieval perfor-

mance. Interestingly using all sets of features (Union) and allow-

ing the ranker to learn how the time views should be used for each 

query leads to the largest improvements over the baseline. This 

suggests that how personalization should be applied may be more 

nuanced than simple aggregation can capture (e.g., there may be 

times when we want to ignore historic data for personalization if 

the task is atypical of the user). We emphasize that while greater 

profiling information leads to better performance, this is not a 

foregone conclusion. For example, if every session was a new task 

unlike anything a user has previously done, then we would expect 

Session to outperform Historic. Likewise, if simple combinations 

of long- and short-term data could fully summarize the infor-

mation available, then Union would not outperform Aggregate. 

5.1.2 Effect of Query Position in Session 
During search sessions, searchers reformulate their queries and 

adapt their information needs based upon exposure to information. 

We wanted to study whether this had an effect on the performance 

of the models. Figure 5 shows the average change in MAP from 

the baseline, broken out by the query position in the session, from 

the first to the fifth query and all remaining queries thereafter. 

 
Figure 5. Avg. change in MAP by position of query in session. 
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From Figure 5, we see the Session-based personalization steadily 

increases its gains as more session information becomes available 

and seems to stabilize around 0.55 gain in MAP. On the other 

hand, Historic quickly decreases its gains as the information from 

the current session is not captured and the searcher’s immediate 

interests may not be reflected in their long-term interests. It is 

interesting to note that by the fifth query, the session information 

accounts for half the gains in personalization (Aggregate vs. His-

toric). Looking at Union we can see that allowing the ranker to 

learn how to combine short- and long-term history leads to the 

best gains versus simple aggregation of the two profile sources. 

Note that the gains of Union over the other models are significant 

at p < .01 across all queries in the session except the first. For the 

first query in a session, the three models incorporating historic 

information have access to the same information, and as expected, 

their performance is nearly statistically identical. Overall this 

implies that re-finding and personalization are likely qualitatively 

different in the short term versus long term – otherwise simple 

aggregation would likely capture the behavior. 

5.2 Performance When Measurably Different  
Until now, we have focused on the effect on overall retrieval per-

formance. However, since personalization may only be appropri-

ate for a subset of queries, a more sensitive measure of the relative 

performance of the temporal views is to consider only perfor-

mance on queries where personalization resulted in a different 

MAP score (i.e., non-zero difference) than the baseline – which 

we call measurably different queries for brevity. This provides 

important insight into the relative precision that each personaliza-

tion method has independent of the fraction of queries that they 

affect. We present results from that analysis in this section. 

5.2.1 All Measurably Different Queries 
We begin by examining the change in MAP for the measurably 

different queries. Figure 6 shows the average change for each of 

the four profiling methods. 

 

Figure 6. Average change in MAP given measurably different. 

The figure shows that the gains are much larger when we focus on 

the measurably different queries (e.g., for Session, the MAP gain 

is more than 4 vs. 0.2 in Figure 4). The relative ordering of the 

sources is the same as presented in Figure 4, although the perfor-

mance of the three models which incorporate historic information 

are more similar between themselves and more noticeably differ-

ent from Session than when looking at changes in overall MAP. 

Differences are significant with paired  -tests at p < .01 for all 

comparisons apart from the Aggregate versus Union comparison, 

which is significant at p < .10. 

5.2.2 Effect of Query Position in Session 
In a similar way to earlier, we also study the effect of query posi-

tion in session on the change in MAP for the measurably different 

queries. Figure 7 shows the gain over the baseline as the session 

proceeds. We see the gains per query are quite large, ranging from 

3 points to 13 points of MAP. Several observations can be made 

from these differences. Again we see that the gain from Session 

increases then plateaus and that the gain from Historic decreases 

as the session progresses. Differences between Session and His-

toric are significant at p < .01 apart from at queries 3 and 4 where 

the gains in MAP that they offer cross. 

 

Figure 7. Average change in MAP on measurably different 

queries for each temporal view vs. position of query in session. 

Next, we see that the gains of Aggregate and Union over measur-

ably different queries are comparable in all positions (Union is 

better but generally not significant, other than at queries 3 and 5 

(p < .05)). Since Union outperforms Aggregate overall (see Sec-

tion 5.1.1) this implies the query volume impacted is the key dif-

ference (also see Figure 9) and suggests that being able to differ-

entially weight short-term and long-term behavior can personalize 

different sets (i.e., it is not simply a gain in precision over the 

same queries). 

Finally, the large increase in MAP in the first position for the 

methods using long-term information suggests that more ambigu-

ous queries, which personalization most benefits [11][30], may be 

more likely to happen as the first query in the session. This intui-

tively makes sense since much session behavior is captured by 

refinement and reformulation after the first query.1 In Figure 8 we 

examine several important properties of the queries in each posi-

tion in the session to help us interpret such differences.  We report 

Z-scores to highlight how the queries in each position differ from 

the mean of all positions.  

 

Figure 8. Mean of query properties for queries in a position 

normalized by their overall mean and standard deviation.  

Below/above zero is below/above average. Y-axis units are 

standard deviations (represented as the Z-score). 

                                                                 
1 The small gains with large variance of Session in position one results 

from a small number of queries that improve from the non-
personalization features (e.g., query frequency, length) that are always 

available. It is clear from the error bars, that this is non-significant. 
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From Figure 8, we see the first position consists of very short 

queries that are frequent and have lower than average click entro-

py with higher than average topic ambiguity.  Perhaps this is the 

reason why long-term profiles are so successful in the first posi-

tion since they can frequently provide disambiguation. The most 

clear trend observable in the graph is for query length. Typically 

short queries start a session but the query length increases dramat-

ically later in the session.  While the low click entropy at the first 

position may seem contradictory to having ambiguous queries at 

the start of a session, this is an effect of the frequency of short 

sessions containing primarily navigational intents.  For example, 

if we focus simply on sessions of length five or more, the z-score 

of the click entropy in the first position of such long sessions is 

0.04 – well above the average.  The decrease in ambiguity and 

increase in complexity (length) later in the session may explain 

why observed gains in MAP across the impacted queries are lower 

as we extend further into the session. 

5.2.3 Query Volume Impacted by Personalization 
Since personalization is not applied to all queries, it is important 

to understand the fraction of queries that can be affected by each 

of the time views. Overall the query volume impacted (percentage 

of measurably different queries) for the methods ranges from 

5.42% (Session) to 9.05% (Union). However, there are some in-

teresting effects when we consider the position of the query in the 

session. Figure 9 presents the fraction of queries with impacted 

performance at different query positions in the session. 

 

Figure 9. Percentage of queries with performance different 

than baseline vs. position of query in session. 

In examining the impact percentages reported in Figure 9, we see 

that all of the methods personalize more often later in the ses-

sion. This rate of impact rises most rapidly for the Session person-

alization as more information becomes available to it. Interesting-

ly, impact rate also rises for the Historic method even though that 

method does not incorporate information from the current ses-

sion. This suggests that long sessions may be a priori more likely 

to come from a user’s prototypical interests although this observa-

tion requires further study. Changes in impact rate as the session 

proceeds may indeed be related to changes in query properties 

such as query length and popularity as the session proceeds and 

searchers’ needs become more narrowly focused. As we saw in 

Figure 8, properties of the queries change over the course of the 

search session, and these changes may affect the percentage of 

queries that are amenable to personalization. 

5.3 Effects of Other Conditions 
As well as measuring the effect of time view on the performance 

of the model, we also explored the effects of other conditions 

mentioned in Section 3. Given the representation, one possibility 

is that the uniform weight or the decay weighting is crucial.  For 

all of the features that use a weight we ran an ablation study that 

only used uniform weighted features, decay-weighted, or both and 

we observed no significant differences (not shown for space). 

It is also interesting to consider whether these temporal aspects 

that happen using all features (All) are due only to topical effects 

(Topic) or to URL effects (URL).  We summarize these conditions 

in Figure 10, normalizing each of them by the maximum perfor-

mance within condition to focus on the temporal trend within 

condition.   

 

Figure 10. Changes in performance for other model conditions 

relative to the best performing time view and condition pair. 

We see the same trends observed overall also hold within each of 

these conditions. This implies that the tradeoffs between short- 

and long-term aspects are not simply due to effects seen under one 

representation but are more general across representation choices.  

Both for space and because our emphasis here is on temporal 

aspects, we do not focus on comparing performance across condi-

tions and address that in future work. 

6. DISCUSSION AND IMPLICATIONS 
We have studied how short-term (session) behavior and long-term 

(historic) behavior interact, and how each may be used in isolation 

or in combination to optimally contribute to gains in relevance 

through search personalization. Through a large-scale analysis of 

search logs, we have shown: that historic behavior provides sub-

stantial benefits at the start of a search session; that short-term 

session behavior contributes the majority of gains in an extended 

search session; and that the combination of session and historic 

behavior outperforms either using just session behavior alone or 

using simple aggregations. Importantly, we also showed that by 

learning a combination of the three views, the model can deter-

mine which should be weighted most highly given the current 

query and prior behavior. These results have important implica-

tions for search personalization, which has typically only studied 

short- or long-term behaviors independently. We show there is 

value from carefully considering interactions between them. 

We observe that over the course of a search session there are vari-

ations in query properties such as query length and query ambi-

guity. These query changes may also affect the potential for per-

sonalization. As the session proceeds, we observe that more que-

ries can be impacted by personalization since there may be more 

evidence of searcher interests resulting in increasing overall utili-

ty, but smaller gains in retrieval effectiveness for queries that do 

change, perhaps because the queries are more difficult. 

Our research improves the understanding of how short- and long-

term behaviors can be used by search engine designers to improve 

the performance of search personalization. For example, based on 

the position of the current query in a session, the search engine 

could use a particular source (e.g., historic data early in the ses-

sion, session data as the session proceeds). However, we have also 

shown we can learn a model that can outperform any source in 

isolation and appropriately choose behaviors from each time view 

to attain better retrieval performance. Future work will extend this 
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research, including actions beyond clicks (e.g., skips) and other 

query similarity measures. We will also quantify the impact of 

short-term modeling for the cold-start problem of providing per-

sonalization to users with no previously observed interactions.  

7. CONCLUSIONS 
Previous work in search personalization has leveraged short-term 

or long-term behaviors to construct models of searcher interests. 

However, little is known about how these behaviors interact and 

when we should be leveraging them separately or in combination. 

In this paper we investigated the interaction between short- and 

long-term interests, and how this information can be combined to 

learn performant search personalization models. We demonstrated 

the benefits of historic behavior: at the outset of a session, short-

term models yield benefit as the session proceeds; and allowing 

the ranker to learn weights for short-term features, long-term fea-

tures, and their combination models searcher interests more effec-

tively. This work makes an important step toward unifying prior 

work on personalization. Future work will explore further aspects 

of the interaction between different feature durations as well as 

other conditions from the framework that we only touched on 

briefly here (e.g., topic vs. URL), all focusing on how best to 

improve search performance through personalization.  
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