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Abstract
Most conversational understanding (CU) systems today employ
a cascade approach, where the best hypothesis from automatic
speech recognizer (ASR) is fed into spoken language under-
standing (SLU) module, whose best hypothesis is then fed into
other systems such as interpreter or dialog manager. In such ap-
proaches, errors from one statistical module irreversibly propa-
gates into another module causing a serious degradation in the
overall performance of the conversational understanding sys-
tem. Thus it is desirable to jointly optimize all the statistical
modules together. As a first step towards this, in this paper, we
propose a joint decoding framework in which we predict the op-
timal word as well as slot (semantic tag) sequence jointly given
the input acoustic stream. On Microsoft’s CU system, we show
1.3% absolute reduction in word error rate (WER) and 1.2%
absolute improvement in F measure for slot prediction when
compared to a very strong cascade baseline comprising of the
state-of-the-art recognizer followed by a slot sequence tagger.
Index Terms: ME, CRF, SLU, CU, ASR

1. Introduction
In today’s state-of-the-art conversational understanding sys-
tems, it is a norm to employ a cascade approach where many
statistical and rule based modules are connected to one another
following a simple pipeline. Traditionally such systems connect
ASR with SLU so that one best output from ASR is fed into
SLU sub modules for slot sequences tagging and domain & in-
tent classification. In this paper we focus on the slot sequence
prediction task for SLU and propose a joint decoding approach
where both recognition and semantic tagging performance is
improved. Improving ASR further benefits tasks which are in-
dependent of slot sequence tagging.

More formally, given acoustic signal, A, ASR outputs most
likely word sequence, W∗ given by

W∗ = argmax
W∈W

P (A|W)× P (W) (1)

Typically in cascade systems, this ASR 1-best hypothesis is then
fed into SLU system (say targeting slot sequence prediction) to
output most likely sequence of slots, C∗, given by:

C∗ = argmax
C∈C

P (C|W∗) (2)

Unfortunately, ASR is usually far from perfect and typi-
cally W∗ suffers from many word errors leading to errors in
the prediction of slot sequence. Previously, researchers have ad-
dressed this issue by incorporating more information from ASR
search spaces viz. confusion networks, N-best lists and word
lattices. For instance, recently, Kurata et.al. [1] proposed an
approach for named entity recognition on spoken utterances. In

this work, they clustered confusion bins of confusion networks
and trained a model maximizing the posterior probability of a
named entity conditioned on some finite number of cluster IDs,
representative of the words in some finite context surrounding
the named entity. Such an approach approximates the prob-
ability of slot sequence directly given acoustics.1 Previously,
researchers have also tried to model P (C|A) explicitly. For in-
stance, Yaman et.al. [2], modeled this distribution as the joint
distribution of C and W given A, summing over all possible
word sequences: P (C|A) =

∑
W∈W P (C,W|A). However,

summing over full length word sequences is not a computation-
ally easy task and hence they approximated the sum with a max
and also approximated the space of word sequences W with the
one obtained in the form of N-best lists after decoding A with
an ASR. Similarly, instead of doing sequence prediction, they
focused only on utterance classification task.

In the above and related other approaches such as [3], it is
the contention to improve slot sequence prediction performance
by modeling only slot sequences directly given acoustics with-
out worrying about improving ASR performance. Although im-
proving ASR performance may not be that essential from a min-
imalistic view of just named entity recognition or slot sequence
prediction task, however, conversational understanding encom-
passes many other tasks which are independent of slot sequence
or named entity recognition. Tasks such as intent determination
or interpretation of spoken utterance etc. rely on features ex-
tracted from not only transcribed word sequences but also hy-
pothesized slot sequences. Thus it becomes important to im-
prove performance of both ASR and SLU modules jointly. In
this paper, we take a first step towards this and propose a joint
decoding framework in which given acoustics, we model the
joint distribution of W and C, i.e., we seek pair of sequences
comprising of words and slots such that jointly they maximize
the posterior probability given acoustics. Formally:

{C,W}∗ = argmax
C∈C,W∈W

P (C,W|A) (3)

The rest of the paper is organized as follows. In the next
section – Sec. 2, we describe mathematical formulation for joint
decoding. In Sec. 3, we describe in brief how we process lat-
tices and do search on them for joint recognition and tagging. In
Sec. 4, we describe our experimental setup and present results
and finally conclude in Sec. 5.

2. Mathematical Formulation
As discussed above, we aim to find pair of sequences composed
of words and slots such that the posterior probability of this pair

1argmaxC∈C P (C|A) ≈ argmaxC∈C P (C|ϕ(A)), where
ϕ(A) can capture ASR confusions easily obtained from confusion net-
works, N-best lists or even word lattices.



is maximized given acoustics:

{C,W}∗ = argmax
C∈C,W∈W

P (C,W|A)

= argmax
C∈C,W∈W

P (C|W,A)P (W|A)

= argmax
C∈C,W∈W

P (C|W)P (A|W)P (W) (4)

where the first term of the last step follows from the assump-
tion that given word sequences, slot sequences and acoustics
are conditionally independent. Second term of the last step fol-
lows from the Bayes’ rule and ignoring P (A), since A is ob-
served and hence fixed.2 We restrict the space of word sequence
hypotheses to those possible in the word lattice obtained after
decoding acoustic observation with ASR engine.

Typically, P (C|W) is modeled directly either using Max-
imum Entropy (ME) [4] framework3 or Conditional Random
Field (CRF) [5] framework or more traditionally as a genera-
tive model by invoking Bayes’ rule and putting a prior on the
slot sequence i.e. P (C). Formulation presented in (4) above
has previously been proposed by Pieraccini et.al. [6] where
they modeled the relation between C and W using a generative
model rather than a discriminative one. However, due to the
complexity of the task, they did not report any results. Servan
et.al. [7] too formulated the joint decoding problem similarly.
They demonstrated reductions in concept error rate sometimes
at the expense of increased word error rate. We, in this paper,
decompose the joint formulation differently and use a state-of-
the-art discriminative model for P (C|W) as it has been shown
that they outperform generative models such as the ones using
Hidden Markov Models. The novelty of our work lies in the
fact that use of powerful discriminative models on word lattices
allow us to capture a variety of features, something which is
extremely difficult in a finite state automaton representation of
joint language model of concepts and words.

CRF models the posterior distribution of a slot sequence
given a word sequence as shown below:

P (C|W) =
1

Z(W)

T∏
t=1

ψ(ct, ϕ(c
t−1
1 ), γt(W)) (5)

where, ϕ(ct−1
1 ) is an equivalence classification of slot sub se-

quence up to (t − 1)th position. In first order linear chain
CRFs, this function returns ct−1. Similarly, γt(W) is a position
specific equivalence classification of the entire word sequence.
Typically, this function returnswt+n−1

t−n+1 i.e., n-grams around the
tth word position.4 ψ(·) is an exponentiated weighted sum of
active features.

ME models, on the other hand, model local distribution of a
particular slot type given some context of slots and words. Thus,
the posterior distribution of slot sequence given word sequence
is first broken down using chain rule and then each component

2In practice, we use a scaling parameter on tagging model, to bal-
ance the dynamic range of all component models.

3ME models are traditionally referred to as local classifiers and not
sequence classifiers, however, we can use series of ME classifiers cou-
pled with a Viterbi search algorithm without any beam pruning, for do-
ing an optimal sequence tagging.

4This assumes the model uses only lexical features.

is modeled using a ME model:

P (C|W) =

T∏
t=1

P (ct|ct−1
1 ,W)

≈
T∏

t=1

P (ct|ϕ(ct−1
1 ), γt(W))

where, similar to CRF, ϕ(ct−1
1 ) returns ct−1 and γt(W) returns

wt+n−1
t−n+1 . Each individual distribution is then modeled as shown

below:

P (ct|ϕ(ct−1
1 ), γt(W)) =

ψ(ct, ϕ(c
t−1
1 ), γt(W))

Z(ϕ(ct−1
1 ), γt(W))

(6)

where ψ(·) is an exponentiated weighted sum of active features
and Z(·) is a normalization constant.

From (4), (5) and (6), it is clear that the search for opti-
mal pair of slot and word sequences on word lattice can become
intractable under the CRF model as this model requires to ex-
plicitly compute Z(W) when there are multiple W to be com-
pared. On the other hand, due to local nature of ME models, we
can make use of dynamic programming on word lattices, some-
thing much more tractable. Computation of Z for ME models is
not very expensive because exponentiated weighted feature sum
of active features has to be evaluated only for a handful of pre-
dicted slot types (in our case, 50). We thus propose to use ME
models in conjunction with ASR acoustic model and language
models to solve (4). We invoke chain rule to obtain:

P (C|W)P (A|W)P (W)

=

T∏
t=1

P (ct|ct−1
1 ,W)P (at|wt)P (wt|wt−1

1 )

≈
T∏

t=1

P (ct|ct−1, γt(W))P (at|wt)P (wt|wt−1
t−n+1)

where we are assuming that for given A and W, we can ob-
tain segmentation of the acoustics from the speech lattice and
once we have such a segmentation, the posterior probability of
any particular acoustic sub string, at, belonging to some tth

segment is independent of acoustic sub strings up-to t− 1 seg-
ments and all words of W but wt when conditioned on wt.5

We also work with n-gram language model (LM) and restrict
the context at any tth position to contain previous n− 1 words
only.

3. Lattice Expansion and Viterbi Decoding
In order to assign LM probability for a word on an arc and prob-
ability of some slot type given the context of previous words
and previous slot type, it is essential that the lattice maintains
at-least as much unique context, at every arc, as is required for
the prediction. Weng et.al. [8] describe an algorithm to achieve
node splitting for trigram LM rescoring on word lattices pro-
duced using a bigram LM. We propose a node splitting algo-
rithm, which is similar in spirit to Weng et.al.’s algorithm, but
differs in the fact that it is generalized to n-gram context i.e.
beyond 2 words as well as in the key aspect that for any node
under consideration, information from only the preceding arcs

5In our work, if γt(W) returns wt+n−1
t−n+1 , we will refer the model

to have left and right (LR) context. If it returns wt
t−n+1, we will refer

the model to have just left (L) context.



is used to either split or merge the nodes, thus avoiding the need
to process all outgoing arcs from the current node. Details are
as follows:

The algorithm iteratively splits and merges the node of the
input lattice to resolve the n-gram ambiguities. Algorithm 1
illustrates the steps for maintaining unambiguous left context
of n − 1 words at every arc. We will introduce some notation.
Let us represent the input lattice by GL and output lattice by
GQ. The lattices are directed acyclic graphs and hence we will
represent the set of vertices and edges in them by (VL, EL) and
(VQ, EQ) respectively. For any node r ∈ VL, we will denote
the set of expanded nodes (∈ VQ) by Sr and initialize S0 to
have state 0 implying that the start state of input lattice expands
to just one start state in the output lattice.

The algorithm then proceeds exploring each node of GL in
a topological order. For every such node r, it iterates over all
incoming arcs and for every such incoming arc, e, it finds out its
start state s and then iterates over all of s’s expanded states as
recorded in GQ. For each such an expanded state, p0, in GQ, it
finds out the sub string of n−2 words, v, on previous n−2 arcs
eventually ending at p0 (since GQ maintains the unambiguous
context for n-gram processing at each arc, the words v will be
the same no matter which n− 2 arcs end at p0). It then iterates
over all arcs between s and r in the input latticeGL and for each
arc, finds the word associated with it. For each such word, w
and its associated cost c, it finds out if the word sequence v, w
exists on any n − 1 consecutive arcs in GQ.6 If it exists, then
end state for these consecutive arcs is found out (∈ GQ) and
for this state, m′, a new arc {p0,m′} with word label w and
cost c is added to GQ. If it does not exist, then GQ is updated
with new node m, new edge {p0,m} with word label w and
cost c. We also map node r (∈ GL) to the set of its expanded
nodes Sr (∈ GQ), now also containing the newly created node
m. Value of m is then incremented by 1. The resulting lattice
is an equivalent lattice7 and maintains a unique left context of
n−1 words thus allowing for unambiguous n-gram processing.
Fig. 1 shows a toy word graph and its expanded representations,
in order to maintain unambiguous left bi-gram context. Unlike
exhaustively splitting all the nodes (Fig. 1(b)), the above node
splitting and merging technique avoids state space blowing up
issue (Fig. 1(c)) by merging states 3 & 5 and states 4 & 6.

Our speech lattices contain pauses and silence symbols,
which do not contribute towards tagging and hence we remove
them by first mapping them to epsilon symbols and then re-
moving them using fstrmepsilon functionality offered by
OpenFST toolkit [9].8 Although we remove these special to-
kens, it is made sure that the overall score of the complete path
in the word lattice is not altered.

In our work, we not only need left unambiguous context,
but also right. In order to do that, we first represent our word
lattice as a weighted finite state machine and then take the fol-
lowing steps:

1. We use Alg. 1 to expand the lattice to have left unam-
biguous context.

2. We then reverse the FSA representation of lattice. We
make use of fstreverse functionality of OpenFST.

6this is done using a Hash function, which is reset for every r, s pair
to make sure that GQ does not add any new paths with respect to the
original lattice.

7by equivalent we mean that language accepted by GL is same as
that accepted by GQ and vice versa.

8Word lattices are directed acyclic graphs and can be represented as
weighted finite state automaton (W-FSA).

Algorithm 1 Node Splitting Algorithm
Require: Lattice: GL = (VL, EL)

return Lattice: GQ = (VQ, EQ)
m = 1
Hash H, mapping sequence of words to a state
VQ = {0}, EQ = ϕ
S0 = 0
for r ∈ VL in topological order do

for s ∈ VL : {s, r} ∈ EL do
for p0 ∈ VQ : p0 ∈ Ss do

v = word({pn−2, pn−3}) · . . . · word({p2, p1})
·word({p1, p0})
∀i ∈ {0, . . . , n− 3} : {pi+1, pi} ∈ EQ

for w ∈ word({s, r}) do
c = costw({s, r})
{// Merge and Split part}
if exists H({v, w}) then
m′ = H({v, w})
word({p0,m′}) = w; cost({p0,m}) = c
EQ = {EQ, {p0,m′}}

else
H({v, w}) = m
Sr = {Sr,m}; VQ = {VQ,m}
EQ = {EQ, {p0,m}}
word({p0,m})=w; cost({p0,m})=c; m++

end if
end for

end for
Reset H

end for
end for

3. We again use Alg. 1 to expand the reversed lattice (this
takes care of maintaining right context in the original lat-
tice).

4. We reverse the lattice back. This results in lattice with
both left and right unambiguous context at every arc.

Once we obtain the expanded lattice, we traverse the lattice
in a topological order and at every arc, we extract the unam-
biguous word context (left and right) and for every possible slot
type on the previous arc, we obtain a distribution over all slot
types on the current arc using ME model. We then use Viterbi
decoding to find out an optimal path comprising of words and
tags in the lattice such that the joint probability is maximized
given acoustics.9

(a) Word graph (b) Exhaustive node
splitting

(c) Compact node
splitting

Figure 1: Toy word graph and its expanded representations

9In our implementation of Viterbi decoding, at any word arc in the
lattice and for every slot type on that arc, we remember the best in-
coming word-slot pair transition by evaluating all possible slots on all
previous word arcs.



4. Experiments and Results

We have focused on slot sequence tagging for spoken language
understanding on Microsoft’s CU system. The acoustic and
language model for our ASR were trained from thousands of
hours of annotated speech from a large variety of domains, in-
cluding voice search. Our n-gram language model (LM) is a
class grammar where named entity classes (movie names, actor
names etc.) are expanded in turn to a full set of exhaustive en-
tries. Our conversational understanding task pertains to movies
domain, where a user issues a natural language query to retrieve
movies and/or information there of. For instance, a user could
say “show me movies with brad pitt” or “who is
the director of titanic” etc. Our slot sequence tag-
ger was trained with 2 kinds of discriminative models – Maxi-
mum Entropy (ME) and Conditional Random Fields (CRF). We
made use of Wapiti tool [10] to train these models. We trained
these models on a set of about 12K utterances, comprising of
queries such as the ones mentioned above. We set aside another
4K utterances, which we split into two to form two data sets,
each comprising about 2K utterances. We used one of them
as a held-out / development data set to find out optimal scal-
ing parameter for the tagging model. Our ME and CRF models
were trained with lexical features. We used the current word and
words from the window of 2 words around the current word to
extract local features. For ME model training, we used both left
(3 words) as well as left and right features (5 words). In all our
experiments with CRFs, we used left and right context so as to
have the best baseline possible. The total number of slot types
is 50.

Table 1 shows performance of various methods under vari-
ous configurations. ME-L and ME-LR correspond to ME model
using left alone and left & right context respectively. Similarly,
CRF-LR corresponds to CRF model using both left and right
context. We compare performance of various models under 4
configurations: (a) Manual Transcription (Manual), (b) Speech
word lattice oracle word sequence, the one which minimizes
word error rate (Lat OB), (c) Speech word lattice maximum a
posteriori 1 best word sequence (Lat 1B) and (d) Our proposed
joint decoding framework, which maximizes the joint proba-
bility of words and tags given acoustic signal (Jnt.Dec.). Setups
(a), (b) and (c) correspond to cascade system. The slot sequence
tagging performance on the lattice oracle hypotheses possibly
represent an upper bound on the tagging accuracy. Setup (d)
corresponds to the proposed joint decoding approach.

From the results, we can see that if we use cascade model
i.e. use the top hypothesis from ASR and then do slot sequence
tagging on it using discriminative models, then we end up get-
ting an F measure of 72.2%, 74.8% and 78.0% using ME-L,
ME-LR and CRF-LR models respectively. As against that, our
proposed method obtains an F measure of 75.8% and 79.2%
using ME-L and ME-LR models respectively. F measure of
79.2% using ME-LR joint decoding setup is a 4.4% and 1.2%
absolute improvement over ME-LR and CRF-LR cascade base-
lines. Use of CRF models for joint decoding is left as part of
our future work.

Another very interesting result is in terms of improvement
in transcription accuracy. While the word error rate (WER)
in cascade setup (irrespective of slot sequence model used) is
same as that obtained from ASR lattice 1-best decoding, it is
1.3% absolute lower in joint decoding setup. Thus our pro-
posed method not only improves tagging accuracy of slots, but
also reduces the WER of the hypothesis.

(a) Development data set

ME-L ME-LR CRF-LR
Setup WER F WER F WER F

(a) Manual 0 87.7 0 90.3 0 91.2
(b) Lat OB 10.4 80.8 10.4 83.3 10.4 84.3
(c) Lat 1B 18.7 74.0 18.7 76.8 18.7 77.8
(d) Jnt.Dec. 17.5 77.0 17.8 79.7 - -

(b) Evaluation data set

ME-L ME-LR CRF-LR
Setup WER F WER F WER F

(a) Manual 0 85.4 0 88.2 0 90.6
(b) Lat OB 10.3 78.6 10.3 81.4 10.3 83.9
(c) Lat 1B 19.7 72.2 19.7 74.8 19.7 78.0
(d) Jnt.Dec. 18.7 75.8 18.4 79.2 - -

Table 1: Performance (WER (%) and F measure) of cascade
and proposed joint decoding technique. Use of CRF models for
joint decoding is left as part of our future work.

5. Conclusions
In this paper, we presented a novel joint decoding framework for
joint recognition and tagging of hypotheses. We demonstrated
significant improvements in both recognition and semantic tag-
ging accuracy, over cascade approach. As part of future direc-
tions, we plan to use CRF model, with possibly additional fea-
tures such as pre- and suffix-features etc. [11], for joint decod-
ing and use the improved word sequence hypotheses for other
SLU tasks such as intent determination, domain classification
etc.
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