
November 7th, 2012 DRAFT 1 Microsoft Research Technical Report MSR-TR-2012-78

RIN: A Declarative Specification
for Interactive Narratives over Rich Media

Naren Datha

Microsoft Research India
narend@microsoft.com

Joseph Joy

Microsoft Research India

josephj@microsoft.com

Eric Stollnitz

Microsoft Research Redmond

ericsto@microsoft.com

ABSTRACT

Rich media technologies like streaming video, gigapixel

panoramas, and terapixel maps are becoming broadly available on

the Internet. Although rich media offer wonderful opportunities

for creating experiences that have strong interactive and narrative
elements, the ways in which users experience these media are

widely disparate, involving a plethora of similar-yet-different web

sites and mobile applications, each with its own proprietary

rendering logic, data formats, and back-end services.

In this paper we introduce RIN —a declarative specification for
orchestrating interactive, cinematic narratives that thread through

an extensible set of rich media experiences. RIN’s XML (and

JSON equivalent) markup makes it straightforward to represent

complex, cinematic fly-throughs that fluidly compose diverse

media technologies, including gigapixel panoramas, terapixel
online maps, traditional paginated documents, and data

visualizations, choreographed together with audio, text, and video.

RIN introduces a concise representation of the logical state of an

experience, called Small State, and the specification of the

evolution of this state over time, called an Experience Stream.
These abstractions along with others introduced in this paper

enable a concise, declarative specification for a wide range of rich

media experiences. We believe RIN can serve as the foundation

for the next generation of standards-based rich media on the

Internet, enabling a variety of new and compelling scenarios.

1. INTRODUCTION
Rich media experiences on the web have moved far beyond text,

images, and video. There are numerous immersive web sites built
using technologies like Flash, Silverlight, HTML, and Java [1],

[11]; as well as applications available from proprietary app stores

run by technology companies Apple, Google, Microsoft, and

others [7], [13]. These experiences are developed with

technologies that use a combination of custom client-side
rendering and server-side storage and computation—examples

include gigapixel panoramas [10], Deep Zoom images [17],

streaming video, online maps, and data visualizations such as

PivotViewer [18]. Integrating any of these experiences into a web

site or application with today’s technologies requires custom
programming that relies on a menagerie of organically grown

libraries and web services, and in the case of applications targeted

at application stores, the proprietary APIs of the targeted devices.

Besides the barrier to building rich interactive experiences being

high, most such experiences on the web today exist in what we

call “islands of interactivity”—you can navigate to a particular

site, or download a particular application, and interact with each
experience in isolation.

We feel strongly that an enormous amount of information is latent

in the way people put rich interactive content through its paces,

add their own insights, and tell their own stories, employing

ancillary media to augment these stories. We are by no means the
first to make this observation. World Wide Telescope pioneered

the concept of interactive tours that guide you through its

particular realm, that of the solar system and the universe [9],

[11]. Google Earth [8] also supports tours over the Earth, and

Chronozoom [1] supports tours over the time span of the universe.
The architecture of each of these applications is done in a domain-

specific manner, and they are neither composable nor extensible.

In this paper we present RIN, which stands for Rich Interactive

Narratives. RIN has the following goals:

 Unify the worlds of cinematic narrative and interactive
exploration. Enable rich, cinematic-style nonlinear narratives,

threading through an open-ended set of interactive experiences

that include the latest breed of rich media technologies.

 Take a document-centric approach, as opposed to a
programming-centric approach. The hybrid narrative-

interactive experiences should be defined declaratively, with

transparent and concise logical structure that reflects the

semantics of the content.

To the best of our knowledge, RIN enables for the first time:

 A concise definition of the logical state of a wide range of rich

media experiences. This concept can be used to “jump” to a

particular state within an experience. When used as a deep

reference into rich content, RIN’s notion of state serves as a
generalization of the HTML “<a>” anchor tag to rich media.

 A declarative way to script a path through an open-ended set

of interactive experiences, forming an interactive narrative.

The interactive narrative enables both a cinematic “play”
experience (generalized to support multiple timelines) as well

as the ability to pause and explore the underlying interactive

experiences.

 A platform-agnostic architecture for rendering these
experiences. Both proprietary and standards-based platforms

are supported.

November 7th, 2012 DRAFT 2 Microsoft Research Technical Report MSR-TR-2012-78

Figure 1: A sampling of experiences built using RIN

(a) The Babbage Difference Engine No. 2 experience is

composed of multiple narrative threads that weave through a

media collection providing historical context, a gigapixel image

of the machine, videos of the engine in operation, and annotated
scans of the original design documents. Verbal narration

provides context while the underlying visual media is scripted to

change fluidly, highlighting the topic at hand. For example,

when describing the engine’s operation, the narrative pans and

zooms through the gigapixel image, then transitions seamlessly
into a video showing a part of the engine in operation. The user

may pause and explore at any time.

Image credits: Computer History Museum, Mountain View, and Science

Museum, London.

(d) This experience is a programming lesson, structured as a

two-person verbal dialog between an instructor and a student.

The dialog threads through a fully interactive interpretive
programming language session. As the dialog progresses, the

underlying interactive session evolves, i.e., code snippets are

inserted and run as part of the narrative. The user can interrupt

and try her own code variations at any time. In fact, at certain

points, the user has to step in and participate by entering or
modifying code and pressing “run.” Additional media (such as

the inset video pictured here) is brought in to illustrate certain

points in the lesson.

Image credits: Microsoft Developer Network

(c) This is an annotated account of a famous chess match,
complete with audio commentary. In contrast to just watching a

video, the user can select from multiple endings, and can

interrupt the narration at any time to move the chess pieces. The

underlying experience includes a built-in chess engine that can

simulate the moves of an opponent. At any point, the user can
resume the narrative, in which case the pieces all return to their

positions when the narrative was paused and the story continues.

(b) The Everest experience is a world of linked gigapixel

panoramas, with embedded “artifacts” that trigger various

stories composed of other media. For example, if the user taps

the second “+” artifact from the left, a sub-narrative is launched
that zooms into the boxy orange tent, and transitions to a 360-

degree panorama of the inside of the tent. The tent happens to be

a high-altitude gallery of images, and tapping any of these

images launches a sub-narrative that emerges into another

panoramic landscape, accompanied by a cinematically

compelling narrative and musical score.

Image credits: David Breashears and Glacierworks

November 7th, 2012 DRAFT 3 Microsoft Research Technical Report MSR-TR-2012-78

We have built tools to author RIN content, and a Web-plugin-

based player that renders RIN content. Work on an HTML5

player is under way. The tools have been used to create a wide
variety of content, a sampling of which is presented in Figure 1.

The examples in the figure cover widely different domains,

ranging from a world consisting of linked gigapixel panoramas to

an interpretative programming language session. Despite this

diversity, they all share a set of core abstractions, they are all
expressed in the same XML-based RIN markup language, and, in

fact, they were all authored using the same GUI authoring tool

(Figure 2). A single player is capable of interpreting and rendering

all of these examples, dynamically loading specialized

components as required.

RIN XML content (and JSON equivalent) is defined at a

fundamentally higher semantic level than presentation markup
languages like HTML and CSS, and is platform-agnostic. The

content is structured as a document that contains the abstractions

summarized below:

Experience contains the information required to define and

populate a particular rich media experience (such

as a particular instance of a panorama with
embedded content). This information typically

includes URLs pointing to data sources as well a

string that uniquely identifies the pluggable

components required to render the experience.

Small State represents the logical state of an experience at a

point in time. This core abstraction enables the

declarative manipulation of rich media

experiences.

Experience Stream represents the scripted evolution (i.e.,

animation) of a rich media experience as a series of

time-stamped snapshots of Small State.

Screenplay contains compositional and timing information that

specifies how multiple Experience Streams are

orchestrated into a single linear narrative sequence.

A RIN document may contain multiple screenplay
instances that thread through the same set of

underlying experiences. While each of these

individual screenplays defines a linear narrative

sequence, they may be linked together into an

arbitrary topology, or triggered by a user
interacting with embedded content, producing a

user experience that contains both linear and

nonlinear aspects.

Segment is a self-contained unit of RIN content, analogous

to a “page” in the HTML setting. Contains all the

information required to render a set of rich media
experiences as well as to play linear narrative

sequences that thread through them. A Segment

contains one or more Experiences, Experience

Streams and Screenplays.

This paper introduces the core RIN data abstractions and the

execution model for rendering RIN content.

2. MOTIVATION AND GOALS
While declarative formats exist for text, images, and graphics

primitives, most so-called “rich media” experiences are
incorporated into end-user applications and web sites by

imperative programming to APIs exposed by libraries. Examples

include: online maps such as Bing Maps and Google Maps;

gigapixel panoramas [10]; and data visualization controls such as

Pivot Viewer [18] and D3 [2]. In order to build an experience that
combines such experiences in nontrivial ways (beyond simple

mash-ups) programmers write custom code that ties events to

proprietary API calls. This process is pervasive and alternatives

are hardly considered. This is not surprising given that there is no

viable alternative to integrating these rich media technologies,
which often involve complex client-side code interacting with

server-side components. For example, smoothly panning and

zooming through a panorama requires client-side rendering logic

that dynamically pulls in and transforms pre-computed image

“tiles” from a server. Furthermore, these rich media technologies

have evolved organically, each with its own API set.

Unfortunately, this situation results in rich media applications and
web sites that are opaque in nature—either locked up in a tar ball

of interdependent client- and server-side scripting, or packaged as

one-off applications. One disadvantage is the incredible difficulty

of combining rich media into an application or web site, with

significant custom development overhead and a result that is often
tied to a particular technology or platform. Another significant

disadvantage is that the resulting applications become black

boxes, with little opportunity for federated use and repurposing of

content.

RIN has two chief goals:

Figure 2: Prototype Authoring Tool. The

tool emits XML RIN Segment files. RIN
content players are oblivious to the

existence of this tool; it represents one way

to create RIN content. The tool assembles

linear sections of an interactive narrative

over rich media. Rich media assets are
imported into the area in the upper left, and

are assembled into a screenplay using the

timeline below. Individual Experience

Streams are created by selecting an item on

the timeline, manipulating the underlying
rich media and capturing snapshots of

Small State.

November 7th, 2012 DRAFT 4 Microsoft Research Technical Report MSR-TR-2012-78

(a) Map (b) Panorama (a) Zoomable Image

1. Define a composite form of media experience that supports

multiple narratives threaded through a variety of rich media

experiences. The scope of RIN is not arbitrary multimedia
experiences, but rather composite experiences that merge

cinematic narrative with interactive exploration through an

open-ended set of rich media. The user can enjoy a video-

like “play” experience, or pause at any time to explore the

underlying media and choose alternative paths in a nonlinear
narrative.

2. Take a document-centric approach, as opposed to a

programming-centric approach. There should be a clear

separation of concerns between the declaratively specified

content and any code required to render the experience. The
document should have a transparent and concise logical

structure that reflects the semantics of the content, rather than

low-level presentation details mixed with scripts or code that

calls into a menagerie of libraries.

We believe a document-centric approach with a clear separation
of concerns between content and implementation opens up

numerous and exciting opportunities for construction,

transformation and consumption of the composite experiences,

analogous to the diversity of ways HTML markup is used to build

web experiences.

3. CORE ABSTRACTIONS

3.1 Experience and Small State
RIN enables an open ended set of rich media experiences to be

specified and manipulated declaratively, i.e., as data. RIN

provides consistent data abstractions that work across diverse

experiences. For example, in RIN, paths through an interactive
map, a Deep Zoom image and a 360-degree panorama are

represented by data that have consistent structure across these

different kinds of rich media. Key to enabling data-driven

manipulation of rich media experiences is the RIN concept of

Small State:

Small State is serializable data that represents partial,

logical state of an interactive experience.

Figure 4 illustrates the relationship between an interactive
experience and its Small State. The interactive experience (Bing

maps in this case) may have considerable internal state, and may

interact with external services (e.g., the Bing maps search engine

and tile server) in order to render the experience. The experience

typically interacts directly with the user (e.g., to permit panning
and zooming of the map). Small State is a partial and logical

representation of the state of the experience at a point in time. It is

partial because it does not represent the internal state of the

experience in its entirety, but rather only that portion of the state

that can be manipulated by a user or scripted from within RIN
content. A large amount of detail required to bring up the

experience is left out of Small State, and is represented by w in the

figure (w stands for world data). This includes all aspects of

theming and styling that are not modifiable by the user or
narrative script. This crucial separation of concerns enables the

concise and elegant manipulation of experiences. Small State is

logical because it is a semantic representation that captures the

high-level meaning for the experience to be in a particular state.

For example, RIN defines a Small State quantity known as a
viewport region, consisting of four real numbers. This piece of

data represents a rectangular region, in world coordinates, of an

underlying 2D experience that occupies the entire client viewport.

In the map example, the numbers represent the geographic

boundaries of the visible portion of the map. However, because
this single structure defines the world-to-viewport mapping

logically, it may be applied to any experience that has two

independent coordinates, including online maps, panoramas, and

2D images of any scale, as illustrated in Figure 3. In a later

section we show how one can compose scripted paths through
these media simply by specifying a sequence of viewport regions.

Small State may be defined for any experience, including the

navigation state of a paginated document, the query state for

faceted search over a large collection of items, the state of chess

pieces on a game board (Figure 1 (c)) or the evolving code of a

software program (Figure 1 (d)).

The relationship between an experience and its Small State is
represented symbolically by two functions, called α and γ (see

Figure 4). We refer to α as the “state extraction function,” since its

role is to query the internal state of the experience and extract the

corresponding Small State, s. For example, in the case of a map

w

Figure 3: Examples of a region mapping, part of Small State, applied to different kinds of rich media. The

orange regions define the portion of the underlying media that map to the client viewport.

Figure 4: Illustrating the conceptual relationship between an

experience and its Small State

November 7th, 2012 DRAFT 5 Microsoft Research Technical Report MSR-TR-2012-78

experience, s would contain the previously-mentioned region

mapping. We call γ the “execution function.” Supplied Small

State s, the γ function swings into action, manipulating the

experience to conform to s. In mathematical terms, α(γ(s)) = s.

Strictly speaking, γ is parameterized by w, the world data, which
provides the additional information required to fully render the

experience. The execution function γ employs information

implicit within the internal run-time state of the experience in

order to perform its role. For example, if s contains a viewport

region, and the experience is a gigapixel panorama, applying γ
causes the underlying panorama to pan and zoom appropriately

from its current state until the viewport contains precisely the

region of the panorama specified by s. Small State may be used to

succinctly characterize the user-modifiable and/or scriptable state

of a very wide and open-ended set of experiences. Section 5.1

presents the structure of Small State.

3.2 Experience Stream
Small State represents a snapshot of the partial state of an

experience. The second core RIN abstraction, Experience Stream,

represents the evolution of an experience as a function of time:

An Experience Stream s(t) is Small State as a function of

time.

An Experience Stream is a stream of Small State data. If the
execution function γ is applied to this stream, it produces a

scripted experience, in other words, it scripts or animates an

interactive experience along a predefined trajectory or path.

Conversely, the evolution of an experience while the user is

interacting with it may be represented logically and declaratively

as the Experience Stream α(t) .

While an Experience Stream is a continuous function of time, in

practice (i.e., in the RIN specification) it is typically represented

by discrete snapshots of Small State, called logical keyframes,

each with an associated timestamp. The Experience Provider (see

Figure 10) is responsible for smoothly interpolating the scripted
experience. In other words, the implementation turns a sequence

of discrete logical keyframes into a continuous function γ(s(t)).

Figure 5 depicts three discrete logical keyframes along a timeline,

and corresponding screenshots of a fluid flythrough of an image

that pans and zooms along a trajectory defined by Small State

contained within the keyframes.

Figure 6 shows an abstract representation of Experience Streams.

The figure shows two Experience Streams within the same
experience, represented as trajectories, i.e., paths, through the

state space that represent all possible values of Small State that

may be assumed by the experience.

The state space is typically a high dimensional space whose

dimensions could contain real and discrete values. For example,

the camera parameters that capture the world-to-viewport

mapping of panoramas, images and maps constitute a 4-

dimensional space – one for each of the 4 numbers that represent

the region illustrated in Figure 3. Added to these would be
additional dimensions to represent various viewing options (for

maps, these would include “aerial”, “road”, etc.)

The relationship between an experience and its Small State has

direct bearing on the organization of the software built to author

and render RIN content. Experience Provider libraries (see Figure

10) implement the equivalent of α and γ functions, and interpolate
smooth paths between the discrete keyframes. Section 5.2

introduces the structure of an Experience Stream.

3.3 Screenplay
RIN supports composition of experiences, and the primary unit of

composition is the Screenplay:

A Screenplay is an orchestration of multiple Experience

Streams along a linear timeline.

Figure 7 illustrates the logical structure of a Screenplay. The
boxes ES1-4 each represent an Experience Stream, and therefore

correspond to a trajectory in some experience.

The spatial layout of experiences may be explicitly specified (e.g.,

z-order) in the Screenplay. However most spatial layout details

are implicit in the theming and styling of the experience (e.g., a

player “Skin” experience that surfaces user interaction controls),

and thus form part of world data w.

Figure 8 represents the logical state of the system at the pause

point in Figure 7.

time

ES2

ES1

ES3

ES4
pause point

t
0
 t

1
 t

2

time

Figure 5: Illustrating an Experience Stream

B

D

A
C

Figure 6: Two Experience Streams within the same

Experience represented as trajectories A→B and C→D within

the state space of Small State

Figure 7: Illustrating Screenplay Structure. ES1-4 are
Experience Streams sequenced along a timeline. The user can

pause a playing screenplay at any time, represented by the

“pause point” in the figure. The user may then directly

interact with the experiences, and subsequently resume the

narrative.

November 7th, 2012 DRAFT 6 Microsoft Research Technical Report MSR-TR-2012-78

At the pause point, two Experience Streams are active, ES1 (in

experience 1, say a map experience), and ES3 (in experience 2,
say a block of text overlaying the map). The dotted line from the

pause point to “X” represents the user’s exploration path within

the map. The user has left the trajectory at the pause point and

manipulated the experience to end up at the point where the Small

State is represented by “X”. (In this example, let us assume that
the user’s exploration does not alter the state of experience 2.) On

resuming the Screenplay, an on-the-fly trajectory is generated

(solid line from “X” to the pause point) to “swing back” to the

correct point in the trajectory in order to resume playing ES1. In

the case of experience 2, since its state was not changed, resuming

would start exactly at the pause point.

The RIN XML and JSON formats for Screenplays has a simple

structure that provides metadata for Experience Streams that occur

on the timeline, including time offset and z-order. The RIN

Screenplay format is in fact not a core part of the RIN

specification. Instead, the reference player architecture (Figure
10) supports pluggable Screenplay Interpreters, and leaves it to

these interpreters to read and interpret the Screenplay data. A

chief motivation for this architecture is to encourage

experimentation in Screenplay functionality, including future

exploration of the use of the SMIL 3.0 [4] timing and

synchronization format.

Screenplay facilitates composition in the following ways:

 Multiple Experience Streams may be laid out on a timeline,
sequentially or overlapping, analogous to media items laid

out on a video sequence. Note that each Experience Stream is

a scripted path through what is often a fully interactive and

rich experience in its own right.

 Screenplays can be launched from within other Screenplays.
This recursive encapsulation enables more complex

composite experiences to be composed from simpler

structures, as well as enables the same assets to be referenced

from multiple locations.

 Objects embedded within experiences can trigger launching

of Screenplays. This is the primary mechanism to build non-

linear narrative topologies.

The above functionality enables a diversity of composite

experiences such as those introduced in Figure 1. For example, in

Figure 1(b), if the user invokes embedded artifacts such as the ‘+’
object, it triggers the playing of a Screenplay that launches a mini-

story. This story starts in the present experience (the gigapixel

panorama), brings in additional media components to augment the

cinematic feel, and involves a scripted pan and zoom through this

experience that in many cases ends in a different panorama
altogether. At any point the user can pause and explore, and may

launch a different sub-story by interacting with some other

artifact. The structure of our current version of Screenplay is

presented in 5.3.

3.4 Segment
Encapsulating all the structures discussed thus far is the Segment:

A Segment is the containing unit for experiences,

Experience Streams, Screenplays and the resources they

reference.

The Segment, illustrated in Figure 9, is analogous to an HTML
page in that it is a self-contained unit referencing everything

required to present a composite RIN experience. Included in a

Segment is a table of resources that provides a level of indirection

to all external resources referenced within the Experience

Streams. Segment structure is presented in Section 5.4.

4. EXECUTION MODEL
The RIN concepts of Experience, Small State, Experience

Streams, Screenplays and Segments are data abstractions for

representing interactive narratives over rich media. Bringing these

experiences to life requires an execution model that interprets and
renders RIN content. The semantics of this model are as important

as the declarative data specification. The semantics include

important pragmatic considerations such as interpolation with

fluid transitions, theming and localization.

RIN content can be created in any number of ways. It may be

hand-crafted using an authoring tool, such as the prototype

authoring tool shown in Figure 2 that was used to author all
content shown in Figure 1. Alternatively, content may be

B

X

pause point

E

F

Experience 1(map) Experience 2 (text)

pause point

A

Figure 8: Logical state of the system at a pause point

PRESENTATION PLATFORM
(HTML, Si lverl ight, etc.)

Network Services

panorama

etc.

OS services

map

RIN
XML/JSON
CONTENT

EXPERIENCE PROVIDERS

RIN

ENGINE

Figure 10: Reference Player Architecture

Segment

Other
Segment

s

Resource
Table

 Experiences

 Screenplays

Figure 9: Structure of a RIN Segment

November 7th, 2012 DRAFT 7 Microsoft Research Technical Report MSR-TR-2012-78

generated automatically by a program or service, or by

dynamically combining hand-crafted and automatically generated

content. Regardless of origin, RIN content may be “played” or
“rendered” by any implementation of the RIN Engine and

Experience Providers that conform to the reference architecture.

Figure 10 illustrates the reference architecture for rendering

content. RIN content (in XML or JSON form) is interpreted by the

core RIN engine, which dynamically loads Experience Provider

libraries as necessary to present the rich media experiences called

for by the document. The RIN engine and provider libraries
(collectively known as “RIN player”) are implemented using

appropriate presentation-layer technologies, such as Silverlight,

HTML/JavaScript, and potentially iOS and Android APIs.

Instances of the RIN player may be hosted in a diversity of ways,

ranging from being “div” elements within existing HTML content

to being a stand-alone application.

The blocks colored blue in Figure 10 represent RIN-specific code,

while the orange blocks represent existing rich-media controls for
experiences such as panorama viewing and online maps. The API

to the Experience Provider libraries is the most significant

extensibility interface in RIN since the entire user experience is

composed of one or more potentially -interacting Experience

Providers.

4.1 Player Functions
An instance of a RIN player is bound to a single Segment at any

point of time1. Once bound, the player has two primary states:

Playing: the content is in scripted mode – it is on

“autopilot” playing out a linear sequence as defined in a

Screenplay

Paused: the content is paused for user exploration – it is

in “manual” mode where the user may explore the

content

The following two Engine methods represent the essence of a RIN

player:

play screenplayId timeOffset

pause screenplayId timeOffset

Either method may be called when the player is in a Playing or

Paused state, on the same or different Screenplay. These two
functions encompass a significant amount of implicit behavior

that is not apparent at first glance. A large part of the behavior

involves producing fluid transitions when moving from the

current state to the desired state.

The Engine and the Experience Providers share responsibility for

executing play and pause with fluid transitions. In fact, the

sole reason for both play and pause to take screenplay ID and

time offset as parameters (as opposed to, say, introducing a

separate “seek” command2) is to give Experience Providers the

flexibility to craft on-the-fly trajectories customized for the

transition. We take a deeper look into transition semantics in

1 Complex content may be organized as multiple instances of RIN

Engines each bound to its own Segment, to enable scenarios

such as a RIN Segment playing as a piece of content within

another RIN Segment. The state of each instance is distinct.

2 Earlier versions of the RIN reference architecture had a “seek”

method at the level of the Engine and Experience Providers. This

method has since been discontinued in order to enable fluid

transitions.

Section 4.3. The remainder of this section describes the roles of

the Engine and the Experience Providers when processing

Screenplays.

 Initialization 4.1.1
Processing a Screenplay involves the following initialization

steps:

1. The RIN Engine identifies and loads the appropriate
Screenplay Interpreter—a subcomponent (not shown in

the figure) that understands how to interpret the

particular format of the Screenplay.

2. The Screenplay Interpreter uses information in the

Screenplay and referenced Experiences to identify the
appropriate Experience Providers—libraries that know

how to render particular Experiences. At the discretion

of the implementation, the orchestrator may

immediately load all the experience providers required

for the screenplay, or may defer loading until just before

they will actually be needed to render content.

 Preparing to Transition 4.1.2
Executing play or pause often involves switching context to a

different Screenplay or a different logical point in the current

Screenplay. This entails the following preparatory steps that need

to be executed before performing the actual transition:

1. The Screenplay Interpreter analyzes the Screenplay

information to determine which set of Experience Streams
need to be instantiated given the particular seek point. At its

discretion, for performance reasons, the interpreter may look

ahead to determine future resource requirements. For

example, if switching context to the pause point illustrated in

Figure 7, it would determine that Experience Streams ES1
and ES3 are required and may include ES4 because ES4 is

required shortly “downstream” from the current point.

2. The Screenplay Interpreter provides the Orchestrator (a

subcomponent of the Engine) a list of the Experience

Streams that are active at the desired point in the Screenplay
timeline.

3. The Orchestrator loads any required Experience Providers,

and if it has not already done so, requests that the Experience

Providers load the required experiences.

 Play 4.1.3
The Play operation is called to commence playback of a linear

section of a narrative at the specified time offset from the start of

the specified Screenplay. Play involves the following steps:

1. The Engine orchestrates the preliminary steps outlined in
Section 4.1.2, at which point all needed experiences are

loaded with the required Experience Streams.

2. The Engine instructs each Experience Provider to commence

rendering a scripted path, as specified by the loaded

Experience Stream, starting at the specified time offset
relative to the start of the Experience Stream.

3. Experience Providers in turn render their content using an

animated path in a manner appropriate for the specific

experience. Typically they have already set up interpolation

functions using data from the Experience Stream, and when
asked to play, they simply render the instantaneous view at

each cycle of a rendering loop by computing interpolated

values and passing those values to appropriate media-specific

API calls. For truly fluid transitions, the Experience

Providers may need to create on-the-fly transition trajectories
that are spliced into existing Experience Streams (such as

illustrated by the solid line from “X” to the pause point in

November 7th, 2012 DRAFT 8 Microsoft Research Technical Report MSR-TR-2012-78

Figure 8). Design guidelines to construct on-the-fly

trajectories to deal fluidly with the various transitions are an

important aspect of constructing good Experience Providers.
Section 4.3 has more details.

4. While play is in progress, the Orchestrator may, at its

discretion, look ahead in the screenplay to determine future

resource requirements, and may preload experiences. (In

practice, this is an important implementation detail. Our
player implementations aggressively preload media in order

to mitigate mid-stream pauses while content is being loaded.

This is a generalization of the kind of preloading that

happens in audio and video players.)

 Pause 4.1.4
The Pause operation is invoked to temporarily halt the progress of

a playing narrative, and optionally transition to a different logical
time in the same or a different Screenplay. Pause involves the

following steps:

1. The Engine orchestrates the preliminary steps outlined in

Section 4.1.2, at which point all needed experiences are

loaded with the required Experience Streams for the new

location (this is a no-op if there is no change in Screenplay

and time offset).
2. The Engine instructs all loaded Experience Providers to

transition the experiences from their present state (which

could be Play or Paused) to a Paused state at the specified

Experience Stream and time offset.

3. The Experience Providers in turn disengages any running
scripted animations and switches to interactive mode. As

with executing play, the Providers may need to craft on-

the-fly transition animations to fluidly transition the state

from its present state to the Paused state.

 Process URL 4.1.5
A key feature of RIN is that the state of a composite experience

can be succinctly represented as data. This includes the state of
the system in the case that the user happened to have paused and

explored the content. This data and can be encapsulated into a

URL, enabling expressive “deep references” into RIN content.

The URL includes the Spreenplay ID, time offset, and optional

user exploration state. Section 5.5 contains more details about

deep-referencing RIN content.

When presented with such a URL, the player needs to “rehydrate”

the state, and this involves the following steps:

1. Load and initialize the segment (Section 4.1.1);

2. Jump to the specified location by effectively executing

“pause screenplayId timeOffset”; and

3. Extract any user-exploration Small State from the URL

and push it down to the corresponding Experience

Providers.

4.2 Experience Provider Interface
The extensibility of RIN comes from the flexibility of the Small

State data definition (Section 5.1), as well as the interface between
the RIN Engine and the Experience Providers. Two core functions

of the Experience Provider interface are analogous to the Engine

methods introduced earlier:

 play experienceStreamId timeOffset

 pause experienceStreamId timeOffset

ExperienceStreamId identifies the Experience Stream. TimeOffset
identifies the logical time relative to the start of the Experience

Stream.

Additional interfaces facilitate inter-experience communication as

well as ease the implementation of Experience Providers. For

example, the α Small State extraction function (introduced in

Section 3.1) takes the form of a callback method where a provider

notifies the Engine of changes in the experience state in the form
of a Small State update; other experiences can register to receive

these notifications. Another significant subset of functionality is

the support for theming and localization via dynamic resource

resolution. These and additional aspects of the provider interface

are documented in the RIN SDK.

4.3 Fluid Transitions
Cinematically fluid transitions are an important part of the overall

RIN experience. Experience Providers play a critical role in this,

and need to pay special attention to transitions between the

playing and paused states and when switching among Experience
Streams. Figure 11 illustrates two characteristic kinds of

transitions, labeled T1 and T2.

Transition T1 is initiated when the user has paused the narrative

and is at explore point X. Some event (typically the user clicking

on an object) has triggered this transition, which eventually causes

Experience Stream C-D to play. Note that simply resuming a

narrative from explore point X is a special case of this kind of

transition.

Transition T2 is initiated without user interaction at the end of

Experience Stream A-B. This transition is typically launched by

the Screenplay Interpreter in response to “end action” metadata

present in the Screenplay.

Transitions can be considered Experience Streams that are

generated on-the-fly by the Experience Provider, taking into

account the start and end conditions. End conditions include both
the instantaneous experience state as well as dynamics, i.e. rate of

change. For example, due to dynamics considerations, the

transition T2 depends on whether the narrative is to be in the

paused or playing state at the end of the transition. If the end state

is Paused then the transition would have an easing function that
brings all movement gradually to a stop at the end of the

transition. If the end state is Playing then movement would be

adjusted to match the rate of change of Experience Stream C-D at

the point of attachment.

While fluid transitions provide the best experience, ultimately it is

up to implementers of Experience Providers to decide how much
to invest in fluid transitions. The simplest approach is to abruptly

“jump” to the desired state with no attempt to craft a fluid

transition or match end-state dynamics.

5. DECLARATIVE SPECIFICATION
This section presents an overview of the syntactic structure of the
core RIN data abstractions. The full details are present in the RIN

B

D

A
C

X Y
T1

T2

Figure 11: Illustrating fluid transitions T1 and T2

November 7th, 2012 DRAFT 9 Microsoft Research Technical Report MSR-TR-2012-78

document specification, the latest draft of which is available on

request.

5.1 Small State Structure
The set of possible rich media experience RIN supports is open

ended—any experience that can be wrapped in an Experience

Provider library that implements the α and γ functions may be

incorporated into RIN content. In order to avoid a proliferation of

gratuitous custom Small State definitions, RIN factors Small State
into a set of sub-structures we call Slivers. The RIN document

specification includes a foundational set of Slivers. Our goal is

that the logical state of a wide range of experiences is represented

and manipulated by means of relatively few, well documented

Slivers. A second, equally important benefit of Slivers is to enable
the specificaion of partial updates to Small State. Partial updates

may be used for efficient notification of real time state updates, as

well as to efficiently represent Experience Streams, as explained

in Section 5.2.1.

Slivers are incorporated into Small State in the form of collections

of properties grouped by a named target. Each target identifies a
logical endpoint within a user experience to which the properties

are addressed. Small State has the following form:

[XML]

<state>

 <target1 (scalar properties) >

 (compound properties)

 </target1>

 <target2 (scalar properties) >

 (compound properties)

 </target2>

 (additional targets and their contained properties)

</state>

[JSON]

"state": {

 target1: {

 (properties)
 },

 target2: {

 (properties)
 },

 (additional targets and their contained properties)

}

In the notation above, target1 and target2 are placeholders

for specific named targets such as viewport (which is the target

for all Small State that defines the visual transformation from

Experience-specific world coordinates to viewport coordinates).

Sliver properties may be either scalars or compound objects, and

accordingly they are present as either attributes or elements in the

XML version or as scalars or compound objects in the JSON

version.

The following sample of Small State contains a single target

(viewport) which contains a single compound property

(region):

[XML]

<state>

 <viewport>

 <region>

 <center x="0.2" y="0.3"/>

 </region>

 </viewport>

</state>

[JSON]

"state": {

 "viewport": {

 "region": {

 "center": {

 "x": 0.2,

 "y": 0.3

 },

 "span": {

 "x": 0.7,

 "y": 0.5

 }

 }

 }

}

The region property specifies a mapping from the 2D

coordinate system of a particular experience (say, a map of the

world) to the viewport on the display device. Its <center>

element defines a point in world coordinates (latitude and

longitude), and its element defines the width and height

of the rectangular region, also in world coordinates.

Note that the same Sliver structures can apply to different kinds of

experiences, representing media that are traditionally manipulated

using completely different sets of APIs. For example, the

region property may be applied to any media whose primary

world coordinate system is based on a 2D manifold. Figure 3
shows how maps, panoramas, and zoomable images may all use

region to express the world-to-viewport mapping.

The following example introduces additional targets with a mix of

scalar properties:

[XML]

<state>

 <appearance displayMode="minimized"/>

 <animation offset="2.0" duration="10.0"

 play="true"/>

</state>

[JSON]

"state": {

 "appearance": {

 "displayMode": "minimized"

 },

 "animation": {

 "offset": 2.0,

 "duration": 10.0,

 "play": true

 }

}

The appearance target specifies the style of appearance, such

as whether the object should appear in a minimized form.

The animation target provides the state of execution of linearly

animated media, such as video, audio, or even a RIN Screenplay.

Table 1 lists the current set of standard targets.

November 7th, 2012 DRAFT 10 Microsoft Research Technical Report MSR-TR-2012-78

Table 1: Standard Sliver Target Definitions

Target Description

appearance General appearance aspects

viewport World to viewport mapping

filter Content filters (search)

animation State of linearly animated media

document Discrete part of document being

displayed

collectionReferences A meta target that associates

Small State with named sub-

components (see text for details)

Appearance, viewport and animation were introduced

earlier.

Filter contains properties that define a subset of content that is

to be viewed. Filter has two properties currently defined,

simpleSearch and facetedSearch. SimpleSearch

supports a single text query, while facetedSearch supports

faceted search. A sample filter Sliver is shown below:

[XML]

<state>

 <filter>

 <simpleSearch query="monuments"/>

 </filter>

</state>

[JSON]

{

 "state": {

 "filter": {

 "simpleSearch": {

 "query": "monuments"

 }

 }

 }

}

Document contains discrete information that identifies the

specific portion of content being viewed, such as the page number

when viewing a multi-page document.

A sample document Sliver is presented below:

[XML]

<state>

 <document pageNumber="20"/>

</state>

[JSON]

{

 "state": {

 "document": {

 "pageNumber": 20

 }

 }

}

CollectionReferences is an advanced mechanism to
specify the Small State for subcomponents within an experience.

CollectionReferences is a “meta target” in the sense that

other targets may be nested within its specification. The special

element itemReference is used to address a particular item

within a collection.

The following example defines the state of objects within two

collections, one named “highlights” and the other named

“source-1”. In addition, the latter collection has a search filter
associated with it. Note that Slivers may be attached to collections

as well as items.

[XML]

<state>

 <collectionReferences>

 <collectionReference

 resourceId="highlights">

 <itemReferences>

 <itemReference itemId="H-1">

 <appearance displayMode="hidden"/>

 </itemReference>

 </itemReferences>

 </collectionReference>

 <collectionReference

 resourceId="source-1">

 <filter>

 <simpleSearch query="parts"/>

 </filter>

 <itemReferences>

 <itemReference itemId="EA-1">

 <appearance

 displayMode="expanded"/>

 <animation offset="0.5"

 duration="2.0" play="true"/>

 </itemReference>

 </itemReferences>

 </collectionReference>

 </collectionReferences>

</state>

[JSON]

{

 "state": {

 "collectionReferences": {

 "highlights": {

 "itemReferences": {

 "H-1": {

 "appearance": {

 "displayMode": "hidden"

 }

 }

 }

 },

 "source-1": {

 "filter": {

 "simpleSearch": {

 "query": "parts"

 }

 },

 "itemReferences": {

 "EA-1": {

 "appearance": {

 "displayMode": "expanded"

 },

 "animation": {

 "offset": 0.5,

 "duration": 2.0,

 "play": true

 }

November 7th, 2012 DRAFT 11 Microsoft Research Technical Report MSR-TR-2012-78

 }

 }

 }

 }

 }

}

A primary use of collectionReferences is to define the

visibility and selection state of objects embedded within an

experience—for example, a “pushpin” embedded in a Deep Zoom

image such as shown in Figure 12. The itemId attribute

identifies the specific item (“EA-1” is the ID of the left-most item

embedded in the figure). The Sliver properties indicate that this

item should change to the “expanded” state and (if possible)

start playing any associated animation or video from a starting

offset of half a second for a duration of two seconds.

The collectionReferences syntax applies to any

experience that supports addressable embedded content. In fact

this is leveraged to represent the Small State of an instance of the

RIN player itself, as explained in Section 5.5. RIN narratives can

thus keyframe not just the path through visually immersive
content, but also control objects embedded within it, declaratively

as instances of Small State present in logical keyframes within an

Experience Stream.

Experience Providers are responsible for manipulating the state of

embedded content based on the content of Experience Streams.

Our RIN implementation provides a set of helper libraries to

support keyframing of embedded content and these libraries are
used by Experience Providers for a variety of media including

panoramas, maps, paginated documents and even video.

Slivers have been defined for several additional targets and as the

project evolves these definitions are being refined to cover as

many cases with as few definitions as possible.

The user-manipulatable and scriptable aspect of experience state

are represented by standard Sliver definitions where possible.

Additionally, custom state Slivers may be defined for aspects of
logical state of the user experience that are not covered by

existing Sliver definitions. For example, a custom Small State

definition is used for manipulating the interactive software

programming experience described in Figure 1 (d). The custom

state contains snippets of F# (programming language) code
representing the evolution of small programs to convey

programming concepts.

Small State may be used to both characterize and manipulate the

real-time state of an experience. This may be used in a number of

scenarios. A core use for Small State is to script animated paths

through interactive experiences using the Experience Stream

abstraction.

5.2 Experience and Experience Stream

Structure
The Experience structure contains the information required by an

Experience Provider to instantiate a particular rich media
experience, and is also a container for Experience Streams

associated with the experience. The specification of Experience is

straightforward, as shown in the example below, with details

elided for brevity:

[XML]

<experience id="map-1"

 providerId="CompanyX.MapProvider">

 <data>

 (experience metadata)

 </data>

 <experienceStreams>

 <experienceStream id="ES-1">

 <keyframes>

 <keyframe offset="0.0">

 <state>

 (Slivers)

 </state>

 </keyframe>

 <keyframe offset="2.0">

 <state>

 (Slivers)

 </state>

 </keyframe>

 (additional keyframes)

 </keyframes>

 </experienceStream>

 (additional Experience Streams)

 </experienceStreams>

</experience>

[JSON]

{

 "map-1": {

 "providerId": "CompanyX.MapProvider",

 "data": {

 (experience metadata)

 },

 "experienceStreams": {

 "ES-1": {

 "keyframes": [

 {

 "offset": 0.0,

 "state": { (Slivers) }

 },

 {

 "offset": 2.0,

 "state": { (Slivers) }

 },

 (additional keyframes)

]

 },

 (additional Experience Streams)

 }

 }

}
Figure 12: Illustrating Embedded Artifact state. The artifact

on the left (“PRINTER UNIT”) has ID “EA-1” and is in an

“expanded” state.

November 7th, 2012 DRAFT 12 Microsoft Research Technical Report MSR-TR-2012-78

The experience structure encapsulates multiple Experience

Streams, i.e., instances of s(t), each with a unique identifier. Each

stream represents a labeled thread of exploration through the same
experience. These labeled threads may be referenced from

multiple Screenplays, providing the base capability to support

nonlinear narratives. For example, Figure 1 (b) is a screenshot of a

nonlinear narrative composed of narrative threads that are

triggered by the user selecting an embedded object. This is
implemented by binding a different Screenplay to the behavior

attached to each embedded object. Clicking on an object causes

the Orchestrator to start the corresponding Screenplay. The

Screenplay in turn will reference the appropriate labeled

Experience Streams from each of the Experiences that make up
the composite experience. The result is a fluid transition to a

separate narrative thread.

 From Keyframes to s(t) 5.2.1
The keyframes represent partial discrete snapshots of Small State.

The snapshots are partial in a very specific and constrained way

we explain later. The offset attribute specifies the time offset

from the start of the Experience Stream, thus a keyframe with

time offset T represents a subset of Small State at time T.

Experience Providers are responsible for using these partial
discrete snapshots to build a continuous “play” experience

representing s(t). This requires an interpolation scheme that works

with the partial nature of the keyframes. Each keyframe contains a

subset of Small State Sliver targets. Each target, if present, must

contain a fully specified set of properties for that Sliver. This
constraint provides clear semantics and a practical way to

interpret partial keyframes. To interpolate among a set of partial

keyframes, the Provider must form independent “sub streams” of

keyframes, one for each Sliver target. Each sub stream is a

sequence of fully specified snapshots of a particular Sliver target

(such as viewport.)

Some Slivers contain properties that are inherently continuous,

requiring smooth interpolation, for example the region

property. Other Sliver properties are discrete, such as

displayMode. It is up to each provider to correctly interpret

and interpolate the different properties that in aggregate make up

Small State.

If a particular Sliver property is unspecified it is to be interpreted
as taking on a default value. Thus an “empty” Sliver consisting of

a target with no properties indicates a reset to all default values for

that Sliver.

5.3 Screenplay Structure
The Screenplay structure is not part of the core RIN specification.
Instead RIN supports pluggable Screenplay Interpreters, each of

which may use a custom Screenplay format. This is primarily

because this aspect of RIN is most in flux, and there is a

possibility that we may use an existing standard, such as the SMIL

3.0 Timing and Synchronization profile [4], as well as the
possibility that certain scenarios may call for more specialized,

sophisticated and/or dynamic notions of a timeline. The current

version (illustrated in Figure 7) represents a Screenplay as a

simple list of Experience Stream Identifiers with associated

properties that include the start offset, duration and optional z-

Index. A sample Screenplay is presented below.

[XML]

<screenplays>

 <screenplay id="SCP-1">

 <data>

 <experienceStreamReferences>

 <experienceStreamReference

 experienceId="E-1"

 experienceStreamId="ES-1"

 begin="44.2"

 duration="8.1"/>

 <experienceStreamReference

 experienceId="E-2"

 experienceStreamId="ES-2"

 begin="52.3"

 duration="6.5"/>

 </experienceStreamReferences>

 </data>

 </screenplay>

</screenplays>

[JSON]

{

 "SCP-1": {

 "data": {

 "experienceStreamReferences": [

 {

 "experienceId": "E-1",

 "experienceStreamId": "ES-1",

 "begin": 44.2,

 "duration": 8.1

 },

 {

 "experienceId": "E-2",

 "experienceStreamId": "ES-2",

 "begin": 52.3,

 "duration": 6.5

 }

]

 }

 }

}

5.4 Segment Structure
The Segment is the top-level RIN construct. A sample Segment is

presented below. Some fields are elided for brevity. In particular,

not shown are metadata that can be inserted into the key structures

(segment, resource, experience, screenplay, and also

experienceStream and keyframe) by including a data

element, which is an open-ended dictionary of objects. (We have

seen one example of this in the Screenplay sample in the previous

section.)

[XML]

<segment estimatedDuration="58.8"

 defaultScreenplayId="SCP-1"

 theme="modern">

 <providers>

 <provider

 id="mapProvider"

 name="Microsoft.Research.MapProvider"

 version="1.0"/>

 </providers>

 <resources>

 <resource id="R-1" uriReference="…"/>

 </resources>

 <experiences>

 <experience id="ES-1">

 …

 </experience>

November 7th, 2012 DRAFT 13 Microsoft Research Technical Report MSR-TR-2012-78

 </experiences>

 <screenplays>

 <screenplay id="SCP-1">

 …

 </screenplay>

 </screenplays>

</segment>

[JSON]

{

 "estimatedDuration": 58.8,

 "defaultScreenplayId": "SCP-1",

 "theme": "modern",

 "providers": {

 "mapProvider": {

 "name": "Microsoft.Research…"

 "version": "1.0"

 }

 },

 "resources": {

 "R-1": {

 "uriReference": "…"

 }

 },

 "experiences": {

 "ES-1": {

 …

 }

 },

 "screenplays": {

 "SCP-1": {

 …

 }

 }

}

5.5 Deep-referencing RIN Content
The mechanism of Small State provides a general way to

reference deep into RIN content. Conceptually, one can think of
this reference as a Small State representation of the entire RIN

player after the user has, through exploration, manipulated the

composite experience to a particular state. Examples include:

 jumping to a particular time offset within a particular

Screenplay;

 highlighting an embedded object overlaid over a map
while viewed from a particular zoom level; and

 zooming into and highlighting a small section of a

video, perhaps accompanied by a text annotation.

Deep referencing enables many scenarios including indexing and

search into rich media, and user-created annotations over rich

media.

 Small State Representation 5.5.1
The state of a RIN player bound to a particular RIN Segment is

represented using the previously-introduced document,

animation and (optionally) collectionReferences

Small State Slivers. The document Sliver encodes the

Screenplay ID. The animation Sliver encodes the time offset
along the Screenplay timeline. This highly concise representation

is sufficient to encode the state of the player at a particular point

in time along a particular Screenplay timeline.

CollectionReferences encodes any deviations from the

path specified in the timeline. More specifically,

collectionReferences encodes the Small State of those

experiences (if any) whose states differ from their implicit state at

the specified time offset along the timeline. A sample is presented

below:

[XML]

<state>

 <document screenplayId="SCP-1"/>

 <animation begin="2.0"/>

 <collectionReferences>

 <collectionReference

 resourceId="experiences">

 <itemReferences>

 <itemReference itemId="ES-1">

 (Slivers representing changes in ES-1)

 </itemReference>

 </itemReferences>

 </collectionReference>

 </collectionReferences>

</state>

[JSON]

{

 "state": {

 "document": {

 "screenplayId": "SCP-1"

 },

 "animation": {

 "begin": 2.0

 },

 "collectionReferences": {

 "experiences": {

 "itemReferences": {

 "ES-1": {

 (Slivers representing changes in ES-1)
 }

 }

 }

 }

 }

}

 URL Representation 5.5.2
A deep reference into RIN content can be represented using a

URL with the following syntax:

rin://segment-reference?screenplayId=value

&begin=value#rest-of-state

The fragment portion of the URL denoted by “rest-of-state” is

populated with a stripped-down version of the JSON

representation of the content of itemReferences, with

whitespace removed and special characters appropriately escaped.

Here is an example (without escaping special characters):

rin://sample.xrin?screenplayId=SCP-1

&begin=2.0#{"ES-1":{…},…}

The use of compression to further reduce URL size is being

explored. Note that the burden of parsing JSON is placed on the

player. We chose JSON rather than inventing a new format for the

serialization of Small State. Very simple players can simply
ignore text after the “#” character, thereby limiting themselves to

only referencing content along a timeline.

November 7th, 2012 DRAFT 14 Microsoft Research Technical Report MSR-TR-2012-78

6. CONSTRUCTING AND

TRANSFORMING CONTENT
RIN defines a document format and reference player architecture

that dynamically pulls in Experience Provider libraries as
required. There is no restriction on how RIN content is created

and over time we expect an ecosystem of tools and services,

including run-time services that may dynamically create content

analogous to dynamically-created HTML, now pervasive on the

Web. We have explored two ways of constructing RIN content
that represent two ends of the spectrum. Our biggest investment is

in RIN Studio (Figure 2) an Experience Stream and Screenplay

authoring GUI tool that enables the composition of linear

sequences of Experience Streams. This tool is a workhorse and

was used to create the content in all the examples shown in Figure
1. We have also built a service, called DRIN (for Dynamic RIN)

that dynamically creates simple RIN narratives on any Wikipedia

topic. Given just a Wikipedia topic as input, DRIN does some

simple structure analysis and crafts a single Screenplay and a set

of Experience Streams that include a synthesized audio narrative
and music track, as well as pan-and-zoom slideshow of images

obtained by an Internet image search.

RIN content may also be transformed. For example, a more

sophisticated Experience Stream can be transformed into a

simpler one that loses functionality but has fewer run-time

requirements and better archival characteristics. We call such

transformations that convert one Experience Stream to another
Experience Stream Projections. One concrete example that we

have implemented is pre-rendering Experience Streams to video

and having both the original and video versions available at

rendering time. This allows for pre-rendered smooth interpolation
when the narrative is playing, but when the narrative pauses, the

original experience is brought up, properly synchronized (by

supplying the current Small State) and ready to interact with the

user.

The RIN format may even be used as a pure data representation

with no intent of playing the content within a RIN player. For

example, it may be used as a unified way to represents annotations
over video, images, panoramas and maps. Another example is to

use Small State as a general mechanism to convey state changes

among cooperating subsystems. These are areas of current

research.

Having defined the declarative semantics of RIN content, defined

a set of standard Small State Slivers that define the logical state of

a wide variety of experiences, and built a reference player and a
stable of Experience Providers for these experiences, RIN is now

at the stage where we are starting to work with a few collaborators

on vertical scenarios that range from museum kiosks to rich

websites. We feel that the full impact of RIN will be realized

when the specification and reference implementations become
used as the foundation of a broad range of scenarios driven by

different organizations, with the RIN specification being the

common lingua franca for interactive narratives over rich media.

7. RELATED WORK
There is a substantial body of work on interactive storytelling and

nonlinear narratives. This includes general principles such as

defined by Szilas and Rety [16], specific techniques for automatic

and semiautomatic narrative construction, such as Raconteur by
Chi and Lieberman [5], and frameworks for construction and

authoring in vertical domains such as GeoTime by Eccles et al [6].

We consider RIN as potentially an enabling platform for many of

these techniques, while broadening the scope of storytelling to

include fluid and cinematic narratives over new kinds of rich

media.

World Wide Telescope [11] is the pioneer of combining narrative

(in the form of tours) with exploration of a large and complex

world (the universe). The concept of combining tours with
exploration has also been adopted by Google Earth [8], and most

recently, by LADS [3] and ChronoZoom [1]. Each of these is a

closed system that includes a built-in definition of the “world”

over which the tours take place, and also the representation of the

authored content is neither extensible nor designed to be authored
or rendered by entities beyond a single proprietary system. RIN

can be thought of a generalization of the concept of tours to cover

arbitrary worlds, while defining the semantics of the resulting

content so as to open up authoring and presentation. In fact, the

creators of the LADS technology are exploring the use of the RIN
HTML and JavaScript stack for the next generation of their

software, called Touch Art Gallery (TAG).

There is an interesting body of work around storytelling in the

context of data visualization. The GeoTime system by Eccles et al

[6], while scoped to the vertical domain of stories over geo-
temporal data (data with location and time attributes), describes a

general system for obtaining “snapshots” of visualization state in

their Capture Management System, which they describe as being

capable of handling the states of other visualizations through a

plug-in system. The actual data format is not described, and the
captured snapshots are stored in a database in a proprietary

format. GeoTime snapshots can be thought of as an opaque form

of Small State. The concept of visualization state is also utilized in

the Tableau system by Segel and Heer [15]. In both GeoTime and
Tableu, states are discrete snapshots, and various points in the

story can bring up the visualizations synchronized to particular

states. These systems do not have RIN’s cinematic notion of

Experience Streams that encode fluid paths through arbitrary

worlds, nor do they compose multiple experiences into a holistic
experience. The authors believe that there is interesting research

to be done in combining RIN’s concept of Experience Streams, as

well as the diversity of rich media that it supports with Tableau’s

state-based approach to data visualization, to form rich narrative

experiences that are both cinematically compelling and
information-rich.

The Synchronized Multimedia Integration Language (SMIL) [4]

is a declarative specification for multimedia and a W3C

recommendation. The latest (3.0) version is split into several

modules that include transition effects, animation, and timing. The
bulk of the specification defines visual and audio effects at a far

lower level than RIN. In fact, Experience Providers could well use

SMIL as part of their implementation. In practice, however,

combinations of CSS and JavaScript (or proprietary equivalents)

are often used to implement rich media experiences. The part of
SMIL that remains most relevant to RIN is the Timing and

Synchronization module. RIN Screenplays allow pluggable

Screenplay interpreters, and while our current implementation

uses a relatively simple format, it is quite conceivable that more

sophisticated timings can be encoded using SMIL timing and
synchronization primitives with a corresponding RIN Screenplay

interpreter. We have not felt the need for this, however, because

RIN Screenplays orchestrate events at a much higher level,

leaving lower-level timing and synchronization details to the

Experience Providers.

November 7th, 2012 DRAFT 15 Microsoft Research Technical Report MSR-TR-2012-78

8. CONCLUSION
Document standards are falling behind the capabilities of rich

media experiences on the Web, with the dominant document

standards (HTML and CSS) defined at a fundamentally low level.

As a result, the higher-level functionality required to implement

rich media experiences is frequently implemented as opaque,
organically evolving, and often proprietary JavaScript or OS-

specific libraries. End-to-end experiences are built as web sites

with opaque back ends or as monolithic applications targeting the

various application stores. The ability to mix and match and

thread through rich media from multiple sources is practically
nonexistent.

We introduce RIN, a presentation infrastructure driven by a high-

level declarative specification that has a generalized notion of

serialized logical state, called Small State, at its core. We define

the runtime execution model, which may target any presentation
platform, including HTML5 and JavaScript, and which processes

declarative content that is defined at a logical level. Our initial

focus has been on enabling a document-centric representation of

interactive narratives that thread through an extensible set of rich

media experiences. We feel that the concept of Small State could
be used in a broader set of scenarios, such as collaborative editing

and sharing of content—including users’ exploratory paths

through rich media—as well as use of Small State to characterize

and analyze user interactions with rich media experiences. These

are promising areas for future work.

We believe that RIN has the potential to enable a vibrant

ecosystem of tools and services to create, analyze, transform,

remix and present interactive narratives, bucking the current trend

toward a Balkanization of rich media. To this end, we are

presently building an HTML5 and JavaScript implementation of
RIN, and at the same time refining the definitions of a standard set

of State Slivers. Our goal is to provide a standards-based

implementation of RIN to the broader multimedia community in

academia and industry.

9. ACKNOWLEDGEMENTS
We would like to thank Sriram Rajamani for many stimulating

discussions leading to a refinement of concepts around Small

State. We would like to thank and acknowledged Curtis Wong for
his pioneering work on combining narrative with interactive

experiences; in many ways RIN can be thought of as a

generalization of World Wide Telescope and earlier projects.

We would like to thank P. Anandan, B. Ashok, Gordon Bell,

Michael Cooper, Steve Drucker, Anoop Gupta, Rick Szeliski,

Andries van Dam, Matt Uyttendaele, and Curtis Wong for their
long term advice and support that have helped shape the direction

of this project.

We would like to acknowledge the past and present members of

the extended RIN Team, responsible for building the RIN Studio

authoring tool, the RIN Silverlight and HTML players and

Experience Providers, hosting infrastructure, narrative

construction and academic outreach: Nikhil Arjunagi, Joybroto
Banerjee, Nikhil Chandran, Aldo John, Tanuja Joshi, Vinay

Krishnaswami, Saurabh Kothari, Chinmay Kulkarni, Ajay

Manchapelli, Gautham Mudambi, Prasad Naldurg, Vidya

Natampally, Siddharth Prakash, Archana Prasad, Poornima

Rajagopal, Kanchen Rajanna, Satish Sangameswaran, Aditya

Sankar, Jatin Shah, Gopal Srinivasa, Anand Tekaday, Sridhar

Vedantham and Sujit Warrier.

We would like to thank Ryan Lester for being an early user of the

nascent RIN HTML and JavaScript stack.

This project was made possible thanks to the support of

Microsoft Research Connections, the MSR India Advanced
Development Group, and the MSR Redmond Interactive Visual

Media Group.

10. REFERENCES
[1] U. C. Berkeley and Microsoft Research. ChronoZoom. Web

site. http://eps.berkeley.edu/~saekow/chronozoom/

[2] Bostock, M., Ogievetsky, V. and Heer, J. D3: Data-Driven

Documents. In Proc. IEEE InfoVis, 2011.

[3] Brown University. The Large Artwork Display on the

Surface (LADS) project. http://cs.brown.edu/research/lads/.

[4] Bulterman, D. and Rutledge, L. SMIL 3.0: Flexible

Multimedia for Web, Mobile Devices and Daisy Talking

Books. Springer; 2nd ed. 2008.

[5] Chi, P.-Y. and Lieberman, H. Raconteur: From Intent to

Stories. In Proc. ACM IUI. 2010.

[6] Eccles, R., Kapler, T., Harper, R., and Wright, W. Stories in

Geo Time. In Proc. IEEE VAST. 2007.

[7] Element Collection, Inc. The Elements: A Visual

Exploration. Apple iPad application.
http://itunes.apple.com/us/app/elements-visual-

exploration/id364147847?mt=8.

[8] Google. Google Earth. Application and Web Experience.

www.earth.google.com.

[9] Gray, J., Szalay, A., (2002) The World-Wide Telescope, an

Archetype for Online Science. Microsoft Research Technical

Report MSR-TR-2002-75, 2002

[10] Kopf, J., Uyttendaele, M., Deussen, O., Cohen, M.,

Capturing and Viewing Gigapixel Images. In Proc. ACM

SIGGRAPH, 2007

[11] Microsoft Research. World Wide Telescope. Application and

Web Experience.

[12] National Film Board, Canada. Bear 71. Interactive

Documentary. http://bear71.nfb.ca/#/bear71.

[13] Push Pop Press. Our Choice. Apple iPad application.

http://pushpoppress.com/ourchoice/.

[14] http://www.worldwidetelescope.org/Home.aspx

[15] Segel, E and Heer, J. Narrative Visualization: Telling Stories

with Data. In Proc. IEEE InfoVis. 2010.

[16] Szilas, N, and Rety, J-H. Minimal Structures for Stories. In
Proc. ACM Workshop on Story Representation, Mechanism

and Context. 2004

[17] Microsoft Corp’s Deep Zoom. Wikipedia article

http://en.wikipedia.org/wiki/DeepZoom.

[18] Microsoft Corp’s Pivot Viewer. Wikipedia article

http://en.wikipedia.org/wiki/Microsoft_Live_Labs_Pivot

: Reference player architecture

http://eps.berkeley.edu/~saekow/chronozoom/
http://cs.brown.edu/research/lads/
http://itunes.apple.com/us/app/elements-visual-exploration/id364147847?mt=8
http://itunes.apple.com/us/app/elements-visual-exploration/id364147847?mt=8
http://www.earth.google.com/
http://bear71.nfb.ca/#/bear71
http://pushpoppress.com/ourchoice/
http://www.worldwidetelescope.org/Home.aspx
http://en.wikipedia.org/wiki/DeepZoom

