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ABSTRACT 

During software development, engineers often reuse a code 

fragment via copy-and-paste with or without modifications or 

adaptations. Such practices lead to a number of the same or 

similar code fragments spreading within one or many large 

codebases. Detecting code clones has been shown to be useful 

towards security such as detection of similar security bugs and, 

more generally, quality improvement such as refactoring of code 

clones. A large number of academic research projects have been 

carried out on empirical studies or tool supports for detecting code 

clones. In this paper, we report our experiences of carrying out 

successful technology transfer of our new approach of code-clone 

detection, called XIAO. XIAO has been integrated into Microsoft 

Visual Studio 2012, to be benefiting a huge number of developers 

in industry. The main success factors of XIAO include its high 

tunability, scalability, compatibility, and explorability. Based on 

substantial industrial experiences, we present the XIAO approach 

with emphasis on these success factors of XIAO. We also present 

empirical results on applying XIAO on real scenarios within 

Microsoft for the tasks of security-bug detection and refactoring.   

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: [Distribution, Maintenance, 

Enhancement] 

General Terms 

Security, Algorithm 

Keywords 

Code clone, code duplication, duplicated security vulnerability, 

code-clone detection, code-clone search 

1. INTRODUCTION 
During software development, engineers often reuse a code 

fragment via copy-and-paste with or without modifications or 

adaptations. Such practices lead to a number of the same or 

similar code fragments called code clones spreading within one or 

many large codebases. Detecting code clones [6][10][14][18][20] 

has been commonly shown to be useful towards various software-

engineering tasks such as bug detection and refactoring. 

In general, there are four main types of code clones [6][20]. Type-

I clones are identical code fragments except for variations in 

whitespace, layout, or comments. Type-II clones are syntactically 

identical fragments except for variations in identifiers, literals, 

types, whitespace, layout, or comments. Type-III clones are 

copied fragments with further modifications such as changed, 

added, or removed statements, in addition to variations in 

identifiers, literals, types, whitespace, layout, or comments. Type-

IV clones are code fragments that perform similar functionality 

but are implemented by different syntactic variants. 

Among these four types of code clones, type-III code clones with 

or without disordered statements, called near-miss code clones, 

are of high practical interest because they may potentially have a 

negative impact on the code quality and increase maintenance cost 

[10]. For example, problems might occur when some code is 

changed for fixing a bug but the same fix is not applied to its 

clones. Another example is inconsistent evolution of code clones, 

e.g., one piece of code is changed for supporting more data types, 

but its clones are not changed accordingly. Figure 1 shows an 

example near-miss clone (which indicates a bug) reported by a 

Microsoft engineer. The difference between the code snippets A 

and B is relatively large: one statement in the code snippet B 

(Line 16) is replaced by 4 statements in code snippet A (Lines 16-

19), and the “if” statement in code snippet B (Lines 23-25) is 

updated as Lines 24-28 in A with significant changes in the “if” 

condition. 

A large number of academic research projects [20] have been 

carried out on empirical studies or tool supports for detecting code 

clones.  However, in practice, so far few such research projects 

have resulted in substantial industry adoption beyond the 

empirical studies conducted by researchers themselves. Although 

a few integrated development environments have integrated the 

generic feature of code-clone detection, this feature has limited 

support for real use in practice, and no industrial experiences are 

reported on the application of such feature.  

In this paper, we attempt to address this issue and share to the 

community with experiences of carrying out successful 

technology transfer of our new approach of code-clone detection 

[8], called XIAO. XIAO has already been used by a large number 

of Microsoft engineers in their routine development work, 

especially engineers from a security-engineering team at 

Microsoft who have been using XIAO’s online clone-search 

service since May 2009 to help with their investigation on security 

bugs. XIAO has been integrated into Microsoft Visual Studio 

2012, to be benefiting a huge number of engineers in industry. 

Based on our experiences [8] of collaborating with Microsoft 

engineers on using and improving XIAO along with our 
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observations on real use of XIAO by Microsoft engineers, we 

attribute the success of XIAO to four main factors: its high 

tunability, scalability, compatibility, and explorability. 

High tunability of XIAO is achieved with a new set of similarity 

metrics in XIAO, reflecting What You Tune Is What You Get 

(WYTIWYG): users can intuitively relate tool-parameter values 

with the tool outputs, and easily tune tool-parameter values to 

produce what the users want. For example, the similarity-

parameter value of 100% should lead to outputs of two exactly 

same cloned snippets, and the 80% value should lead to outputs of 

two cloned snippets with 80% similarity judged by the users. The 

parameters of the proposed metrics in XIAO enable users to 

effectively control the degree of the syntactic difference between 

the two code snippets of a near-miss clone pair: the degree of the 

statement similarity, the percentage of inserted/deleted/modified 

statements in the clone pair, the balance between the code-

structure similarity, and the quantity of disordered statements. 

Such high tunability of XIAO is critical in applying an approach 

of code-clone detection such as XIAO to a broad scope of 

software-engineering tasks such as refactoring and bug detection 

since these different tasks would require different levels of 

parameter values. 

High scalability of XIAO in analyzing enormous lines of code is 

achieved with a well-designed scalable and parallelizable 

algorithm with four steps. These four steps include preprocessing, 

coarse matching, fine matching, and pruning. Preprocessing 

transforms source-code information to filter out inessential 

information such as code comments, and map code entities such 

as keywords and identifiers to tokens. Such information 

preprocessing reduces the cost burden of the actual analysis. To 

offer high scalability, XIAO splits the main analysis into two 

steps: coarse matching and fine matching.  Coarse matching is 

less costly but less accurate than fine matching. The scope 

narrowed down by coarse matching is fed to fine matching, 

achieving a good balance on analysis scalability and accuracy. 

The step of pruning further improves the analysis accuracy. In 

addition, the clone-detection algorithm of XIAO can be easily 

parallelized. XIAO partitions the codebase and performs code-

clone detection on each code-partition pair. Each instance of 

XIAO detects clones on a number of pairs. The results of all the 

instances are then merged. 

High compatibility of XIAO in analyzing code in different 

development environments (such as different build systems) is 

achieved with its compiler-independent lightweight and pluggable 

parsers. XIAO has built-in parsers for the C/C++ and C# 

languages. We define an open Application Programming Interface 

that allows the easy plug-in of parsers to support various 

programming languages. It should be noted that the parsing task is 

lighter than the comprehensive functionalities offered by 

compilers. Compared with approaches of parse-tree-based clone 

detection such as Deckard [14][9], our approach has the advantage 

of compiler independence; it can be easily applied to 

accommodate different language variants and build environments, 

which typically exist in real settings of software development, 

especially for C/C++ [7]. 

High explorability of XIAO in supporting users to easily explore 

and manipulate detected code clones is achieved with its well-

designed user interfaces including visualization support. We 

design a simple heuristic to define the level of difference between 

cloned snippets. We also use the metric to rank clones to prioritize 

the review of clones to identify bugs. XIAO includes clone 

visualization to clearly show the matching blocks and the block 

types of a clone pair. This way, users can quickly capture whether 

there is any difference between the two cloned snippets, what kind 

of difference it is, and how much difference there is. XIAO also 

includes a tagging mechanism to help coordinate joint efforts of 

reviewing code clones from multiple engineers. 

We have released XIAO to Microsoft engineers since April 2009 

and a great number of Microsoft engineers from different teams 

have used it. XIAO has been integrated into Microsoft Visual 

Studio 2012, to be benefiting a huge number of engineers in 

industry. 

The rest of this paper is organized as follows. We present our 

code-similarity metric in Section 2. We introduce our clone-

detection algorithm and visualization/reporting in Section 3 and 

Section 4, respectively. We present our empirical study in Section 

5 and report several real-use scenarios in Section 6. Section 7 

discusses related work and Section 8 concludes. 

2. CODE SIMILARITY METRIC 
Considering possible edits that can be applied to source code after 

it has been copied and pasted, we have identified three important 

// 3 identical statements omitted here 

4. switch (biBitCount) 

5. { 

// 9 identical statements omitted here 

15. case 24: // 24bpp: Read colours from pixel 

       

      // 3 identical statements omitted here 

4. switch (biBitCount) 

5. { 

// 9 identical statements omitted here 

15. case 24: // 24bpp: Read colours from pixel 
16. case 32:  

17. palEntry.rgbRed    = ((RGBQUAD *)pPixel)->rgbRed; 

18. palEntry.rgbGreen = ((RGBQUAD *)pPixel)->rgbGreen; 

19. palEntry.rgbBlue    = ((RGBQUAD *)pPixel)->rgbBlue; 

16.    palEntry = *(RGBQUAD *)pPixel; 

17.      break; 

18.  

19.  

20.     default:    // What else could it be? 

21.     return 0; 

22.   } 

23.   if (palEntry.rgbRed == 0xFF && palEntry.rgbGreen == 

0xFF 

24.    &&palEntry.rgbBlue == 0xFF || palEntry.rgbRed == 0xC0  

25.    palEntry.rgbGreen == 0xC0 && palEntry.rgbBlue == 0xC0) 

26.  

27.      return FALSE; 

28.   return TRUE; 

20. break; 

21. default: // What else could it be? 

22. return 0; 

23. } 

24. if (palEntry.rgbRed >= 0xFE && palEntry.rgbGreen >= 0xFE && 

25. palEntry.rgbBlue >= 0xFE ||((palEntry.rgbRed >= 0xbf && 

26. palEntry.rgbGreen >= 0xbf && palEntry.rgbBlue >= 0xbf) && 

27. (palEntry.rgbRed <= 0xc1 && palEntry.rgbGreen <= 0xc1 && 

28. palEntry.rgbBlue <= 0xc1))) 

29.    return FALSE; 

30. return TRUE; 

Code Snippet A Code Snippet B 

Figure 1. An example of near-miss code clones in a commercial codebase 



inconsistencies that are present in near-miss clones and that 

should be measured: 

1. Statement-level difference, which may be caused by adapting 

the copied code to the coding style of the source file where it 

is copied to, e.g., a few identifiers are renamed; 

2. Inserted/deleted/modified statements, which can be the result 

of changes to the code necessary for fixing bugs or 

implementing new features; 

3. Disordered statements, which may be related to either a 

change of code logic or coding style. 

We define our code-similarity metric to take these three types of 

inconsistencies into account. Before we define our metric, we next 

define three binary relationships between source-code statements. 

Let   be an alphabet whose symbols are syntactical tokens, and 

    be a source-code statement. 

Definition 1 (Exact-Match) Let   and    be two source-code 

statements; let     be the token length of the statement s, and s[i] 

be the i-th token of s. Then   and    are Exact-Match-related if 

and only if                 [ ]    [ ]         . 

Definition 2 (Transformed-Match) Let        be a token-

mapping function (e.g., mapping several different identifiers to 

the same token). The statements   and    are Transformed-

Match-related if and only if                   [ ]      [ ]  
        . 

Definition 3 (α-Transformed-Match) The statements     and     

are α-Transformed-Match-related if and only if they are 

Transformed-Match-related and there exist at least   
                   distinct indexes         such that   [  ]  
  [  ]      . 

Intuitively, two statements are Exact-Match-related if they are 

identical after code formatting is ignored, and are Transformed-

Match-related if they are identical after both code formatting and 

identifier renaming are ignored. The α-Transformed-Match 

relationship provides the flexibility for controlling the degree on 

what percentage of renamed identifiers between two matched 

statements are tolerated. In fact, the α-Transformed-Match 

relationship is equal to the Transformed-Match relationship when 

    , and equal to the Exact-Match relationship when    . 

We next illustrate these three relationships with examples. 

Consider that the parameterized versions of three statements A, B, 

and C listed below are identical. 

A: If (foo(a, b, c) == null)

B: If (foo(a, b1,c1) == null)

C: If (bar(x, y, z) == null)

A1: If ( T ( T, T, T) == T)

B1: If ( T ( T, T, T) == T)

C1: If ( T ( T, T, T) == T)

Original statements Parameterized statements
 

Consequently, any two of them are Transformed-Match-related. 

Each statement has 13 tokens. Statements A and B have 11 

identical tokens out of the 13 tokens (84.6%); Statements A and C 

have 9 identical tokens out of the 13 tokens (69.2%). If α = 0.6, A 

is α-Transformed-Match-related to both B and C; if α = 0.8, A is 

α-Transformed-Match-related to only B. 

In practice, Statements A and C could have a totally different 

semantic and could not be caused by copy-and-paste, thus being 

of low interest to users who focus on copy-and-paste clones. 

Definition 4 (Disordered-Match-Score, in short as DMS) 

Consider two code snippets    and    where m distinct statements 

in    at positions            match m distinct statements 

at positions               in   . Let d be the number of inversion 

pairs1 in the index sequence    
    

    
  . The Disordered-Match-

Score (DMS) of    and    is defined as 

           
   

   
                                        (1) 

The DMS measures the structure difference of the two code 

snippets. The smaller the value of the DMS is, the more similar 

the structures of the two code snippets are because there are fewer 

disordered statements. The possible value of the DMS is from 0 

(when there is no inversion pair) to m (when the order is fully 

reversed). Figure 2 shows an example of two code snippets with 

disordered statements: the statement in Line 4 on the left snippet 

is moved to Line 2 on the right. The statements in Lines 1 to 5 on 

the left snippet correspond to the statements in Lines 1, 3, 4, 2, 

and 5 on the right snippet. The inversion pairs of this index 

sequence are (3, 2) and (4, 2). The DMS of the two snippets in the 

example is 1 (being 2*2/4  . 

1   for (i = 0; i < 10; i++) {

2       a++;

3       b++;

4       c=foo(a, b);

5       d=bar(a, b, c);}

1   for (i = 0; i < 10; i++) {

2       c=foo(a, b);

3       a++;

4       b++;

5       d=bar(a, b, c);}

 

Figure 2. Example of disordered statements 

Definition 5 (α-Transformed Similarity) Let     be the number 

of statements of a code snippet S. The α-Transformed Similarity 

between two snippets   and    is defined as 

             
             

         
                           (2) 

where m is as in Definition 4 and   is a penalty coefficient to the 

DMS. We use the α-Transformed similarity to measure code 

similarity hereafter. 

Definition 6 (Transformed Similarity) The Transformed 

Similarity,             is defined as its α-Transformed Similarity 

with       . 

Definition 7 (Clone Pair) Code snippets S1 and S2 are a clone pair 

when                    , where γ is a configurable 

similarity threshold. 

Definition 7 satisfies the requirement posed at the beginning of 

this section. It controls the statement-level difference by the value 

of  . It controls the number of inserted/deleted statements 

proportionally to the size of the code snippets by the value of  ; 

the bigger the snippets, the more inserted/deleted statements are 

tolerated. The penalty coefficient   permits users to control the 

amount of disordered statements in a clone pair. 

3. CLONE-DETECTION ALGORITHM 
Figure 3 shows an overview of our clone-detection algorithm, 

consisting of four steps: preprocessing, coarse matching, fine 

matching, and pruning. Our algorithm takes one codebase as input 

and produces code clones detected from the codebase (our 

                                                                 

1 http://en.wiktionary.org/wiki/inversion_pair 

Code 

base
 Source Code 

Parser
Parameterizer Indexer

Rough 

Matching

Fine 

Matching
Clone 

Candidates
Code 
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Statement 

Hash 

Dictionary

Pruning

Preprocessing

Figure 3. Overview of XIAO’s algorithm of code-clone detection 



algorithm can handle multiple codebases by treating them as one 

codebase). 

In the preprocessing step, the source-code parser extracts the 

location information of all the functions and their statements. 

Then the code is parameterized and indexed similar to the 

preprocessing techniques of CP-Miner [21]. 

In the coarse-matching step, for each function f in the codebase, a 

list of its clone-candidate functions       is detected. Each 

candidate function has a sufficient number of statements with the 

same hash value as at least one statement in f. This step helps 

reduce the search space of the fine-matching step. 

In the fine-matching step, we identify all clone pairs between each 

function f and each of its clone-candidate functions       using 

the metric in Definition 6, with      . The setting of α = 0 

enables us to use the hash values of the parameterized statements 

to easily verify the matching relationship; θ = 0 enables us to 

easily calculate the similarity using Equation (2). 

In the pruning step, we recalculate the similarity of the clone pairs 

obtained in the fine-matching step, using the user-specified non-

zero values of α and θ, and thus prune the clone pairs with a 

similarity that is less than the similarity threshold γ. We next give 

the details of the last three steps in this section. 

3.1 Coarse Matching 
Given a function f and a statement-hash dictionary D, the coarse-

matching algorithm returns a list of candidate functions       so 

that at least a minimum and sufficient number of statements in f 

and any function in       have the same hash values. Doing so 

ensures that only functions sharing a minimum and sufficient 

number of statements are searched for code clones. In this way, 

the search space is reduced from the whole input codebase to just 
     . All possible function pairs that potentially contain cloned 

code snippets are identified by performing the coarse matching on 

all the functions in the input codebase. The steps of fine matching 

and pruning are then performed between f and each function in 
      to obtain actual clones. 

We next define the concepts of the Hit Function and Clone 

Candidate Function to help illustrate the coarse-matching 

algorithm. 

Definition 8 (Hit Function) Let        be a hash function, 

and          be the extension of the token-mapping function 

T (see Definition 2) to whole statements. A function      is named 

as a Hit Function of a function f if there exist a statement s in f and 

a statement    in      that satisfy                     . 

Definition 9 (Clone-Candidate Function) A function     is a 

Clone-Candidate Function of a function f if there exist at least 

nmatch statements in f with     as one of its Hit Functions and  

          (
 

   
         )                            

where L is the number of the statements in f,   is the clone-

similarity threshold in Definition 7, and MinS is the minimal 

number of statements that a cloned snippet should have. 

Intuitively, a Hit Function     has at least one parameterized 

statement in common with function f.    has at least nmatch 

common parameterized statements with f. 

Suppose that   is the hash dictionary of an input codebase. For 

every statement s in function f, the coarse-matching algorithm 

uses D to generate a list of Hit Functions        by retrieving 

functions each of which contains a parameterized statement with 

the same hash value as that of the parameterized form of s. 

        is the multiset union of all the functions in the Hit 

Function lists for every statement of f. The total hit count of each 

function in         is equal to the function’s multiplicity in 

       . We then identify a list of Clone-Candidate Functions of 

f as those functions in         with no less than nmatch 

occurrences. 

3.2 Fine Matching 
The coarse matching identifies a list of Clone-Candidate 

Functions for each function f in the input codebase. There may not 

be clone pairs between f and     for the following reasons: 

(a) the matched parameterized statements may be so scattered in 

f and    that the similarity between the snippets in f and 

   is not high enough;  

(b) multiple parameterized statements in f or    may be 

mapped to the same tokenized statement in    or f, causing 

that the number of one-to-one matched statements between f 

and    is not high enough; 

(c) two statements are not necessarily α-Transformed-Match-

related even if they have the same hash value;  

(d) there might be mismatched statements between f and    due 

to hash collisions, although the probability of hash collision 

is quite low;  

(e) some matched statements could be instances of disordered 

matches and the penalty to the disordered match in Equation 

(2) would cause that the similarity is not high enough.   

We address issues (a) and (b) in the fine-matching step and issues 

(c), (d), and (e) in the pruning step.  

The goal of the fine-matching step is to identify all snippet pairs 

(between f and    ) whose Transformed Similarity (Definition 6) 

is not less than a specified threshold. We formulate this problem 

as finding code snippets   and    in f and    , respectively, that 

satisfy 

 (  (    ))   (  (    ))    

  

         
     

}                    (4) 

where      and     , (i = 1, … , m) are m statements in   and   , 

respectively. Equation (4.a) ensures that there are m matching 

parameterized statements; Equation (4.b) ensures that the α-

Transformed Similarity of   and    is not less than the similarity 

threshold   given the values of α and   in Equation (2) are equal 

to 0. 

We next first present how to determine whether a given snippet 

pair   and    satisfies equation (4), and then present how to 

efficiently scan f and     to find all the possible pairs of   and    

in f and    . 

To determine whether   and    satisfy Equation (4), we calculate 

the value of m as follows. Suppose that (1)                is 

the list of the hash values for which at least one statement in    

and one statement in    are mapped to   , and (2) there are also 

n1,i and n2,i statements with the hash value Vi in   and   , 

respectively. It easily follows that there are ni = min(n1,i, n2,i) 

matched parameterized statements in   and   . Therefore, m can 

be easily calculated as 

      
 
                                                               (5) 

Accordingly, we determine whether   and    satisfy Equation (4). 

The next subtask is to scan all the possible snippet pairs in f and 

   . We take a two-step procedure. First, given a snippet    in f, 



we scan all the possible    in     and determine whether   and 

  satisfy Equation (4). Second, we enumerate all the possible   in 

f and repeat the first step. 

During the first step, we use a sliding window on top of the 

statement sequence of    to enumerate all the code snippets in 

   . The statement sequence inside the window is the current 

code snippet S2. To satisfy Equation (4), the number of statements 

of S2 in     should satisfy the following constraint:  

                                 (6) 

where      
 

   
    ,      

   

 
    . Therefore, we need to 

use a set of sliding windows with sizes ranging from      to 

     to enumerate all possible snippets in    . Given a sliding 

window size k, the window starts from position 1 (  ) that covers 

the first k statements in    . After checking whether the snippet 

inside the window and    satisfy Equation (4), the window moves 

one step further to position 2 (  ), and so on. Compared with the 

code snippet covered by   , the code snippet covered by    has 

only the first statement of     removed and the statement in 

position k+1 added. Therefore, we calculate the value of m for the 

code snippet in    by just updating the value of m for the code 

snippet in   , i.e., by removing the contribution of the first 

statement and adding the contribution of the added statement in 

Equation (5). 

During the second step, we use a sliding window to enumerate all 

the possible snippets    in f, and repeat the first step. The size of 

this sliding window ranges from |   |  (the total number of 

statements in    ) to MinS (the minimal number of statements 

that a cloned snippet should have). 

We further optimize the algorithm in a number of ways. For 

example, the sliding windows in the first step could directly move 

to the next statement that matches at least one statement in f. In 

addition, once a snippet pair is identified as passing the fine 

matching, we further execute the pruning step against the pair to 

determine whether it is an actual clone pair or not. Once a snippet 

pair passes the pruning, we continue to perform the fine matching 

in the remaining parts of f and    ; in this way we avoid getting 

overlapped clone pairs. 

3.3 Pruning 
In the pruning step, we prune the snippet pairs obtained in the 

fine-matching step to get code clones that satisfy our code-clone 

definition with the specified non-zero values for α and θ in 

Equation (2). This step addresses issues (c), (d) and (e) mentioned 

at the beginning of Section 3.2.  

To address these three issues, we need to get the α-Transformed-

Match-related statements (Definition 2) in the two code snippets 

in the pair such that the Disordered-Match-Score (DMS) 

(Definition 4) of the two snippets is minimized. We then calculate 

the α-Transformed-Similarity based on Equation (2) and discard 

the snippet pair if its α-Transformed-Similarity value is lower than 

the threshold.  

We use a greedy technique called Karp-Rabin Matching and 

Greedy String Tiling [30] to get the matched statements. The 

basic idea is to use a dynamic-programming algorithm to find the 

maximal consecutive statement sub-sequences      in S1, and      

in S2, with the same number of statements, and each statement in 

     α-Transformed-Match-related with the statement at the 

corresponding position in     . The next step is to exclude the 

statements in      and      from S1 and S2, respectively, and repeat 

the step on     
    and     

   . By reiterating this process until 

there are no further matches, we get a set of statement-sub-

sequence pairs in S1 and S2, which are α-Transformed-Match-

related to each other. The matched statements that we need to 

obtain are the union of all the sub-sequence pairs. At this point, 

we calculate the α-Transformed Similarity and determine whether 

S1 and S2 are a clone pair based on Definition 7. 

4. VISUALIZATION AND REPORTING  
As important and integral components of XIAO, the clone 

visualization and reporting mechanism provides a rich and 

interactive user experience for engineers to efficiently review the 

clone-analysis results and take corresponding actions. 

Clone reporting. We design a simple heuristic to define the level 

of difference between cloned snippets. In particular, it first filters 

out all those exactly the same cloned snippets, since cloned 

snippets with slightly different logics would be more bug-prone. 

We use a metric (called bug likelihood) to rank clones to prioritize 

the review of clones to identify bugs. We also design a simple 

heuristic to measure in what extent the cloned snippets are similar 

to each other and how easily they can be refactored (e.g., the exact 

same copies could be easier to be refactored than others). We call 

this metric as refactoring likelihood. To facilitate users to act on 

the reported clones, we have developed XIAO’s Clone Explorer, a 

component of clone reporting and exploration shown in Figure 4. 

It organizes clone statistics based on the directory hierarchy of 

source files in order to enable quick and easy review at different 

source levels (Figure 4①). A drop-down list (②) is provided to 

allow pivoting the clone-analysis results around the bug likelihood 

(③), refactoring likelihood, and clone scope. Clone scope 

indicates whether cloned snippets are detected inside a file, cross-

file, or cross-folder. For a selected folder in the left pane, the right 

pane (④) displays the list of clone functions (those including 

cloned snippets), which could be sorted based on bug likelihood 

or refactoring likelihood (⑥). Filters (⑤) on the clone scope, 

bug likelihood, or refactoring likelihood are provided to enable 

easy selection of clones of interest. 

Clone visualization. Figure 5 shows how the Clone-Visualizer 

component visualizes the clone pair illustrated in Figure 1. The 

key to clone visualization is to clearly show the matched 

statement blocks and the block types. We categorize the matched 

blocks into the following types: exactly same (i.e., there are only 

possible formatting differences), similar-logic block (i.e., there are 

identifier substitutions between the two blocks), different logic 

(i.e., the statements in the two blocks are not of the similar-logic 

type but are still similar), and extra logic (i.e., the statements of a 

block show up in one copy of the clone pair, but not in the other 

copy). In this way, users can quickly determine whether there is 

any difference between the two cloned snippets, what kind of 

difference it is, and how much difference there is. Blocks are 

numbered for correspondence display (Figure 5 ①), and different 

colorings are used to indicate different block types (②). The left 

and right source panes are synchronized, and navigation buttons 

are provided to navigate through source code by matched blocks 

instead of statements in order to improve review efficiency (③). 

Users can take an immediate action of filing a bug once a clone is 

confirmed to be a bug or a refactoring target (⑤), or copying the 

code out for more investigation (④). 



Tagging. One important requirement of XIAO is to help 

coordinate joint efforts of reviewing code clones from multiple 

engineers. We have designed a tagging mechanism for engineers 

to easily work together. One clone already reviewed by an 

engineer can be tagged as “immune”2, “bug”, or “refactoring”. 

Then the other reviewing engineers could choose to easily skip 

these already reviewed clones. Note that these tags need to be 

tracked as done in XIAO when a new version of codebase is 

analyzed. Overall, a tagging mechanism (Figure 4 ⑦) serves two 

main purposes. First, users can tag some clones as “immune” at 

various occasions. For example, some detected clones do not 

include buggy code or become refactoring targets. Second, we can 

implicitly collect user feedback and evaluation results in order to 

keep improving our clone-analysis algorithms. 

5. EMPIRICAL STUDIES 
In this section, we present the empirical results of applying XIAO 

on commercial codebases. In our studies, we used seven 

commercial codebases at Microsoft. In the seven commercial 

                                                                 

2 An immune clone is one of no particular interest to engineers. 

codebases, six are in C/C++ and one is in C#; the numbers of lines 

of code vary between 1.9 million and 12 millions. 

The environment for running XIAO was a workstation running 

Windows 7 64 bits with two Intel Xeon 2.0GHz processors and 

12GB memory. We relied on human inspection to classify 

whether a detected clone is a real clone.   

5.1 Clone-Detection Effectiveness  
Figure 6 shows the distribution of the types of code clones 

detected by XIAO across the seven commercial codebases, when 

using the default settings: MinS = 10, α = 0.6, γ = 0.8. The figure 

shows that the near-miss clone pairs detected by XIAO are a 

significant portion of all the clone pairs, ranging from 63% to 93% 

for the commercial codebases.  

On each of two commercial codebases (out of the seven) at 

Microsoft, one of its Microsoft engineers (i.e., those who 

developed the codebase and are familiar with the codebase) 

helped evaluate some clone-analysis results generated by XIAO 

on the codebase. We named these two engineers as Engineers I 

and II. 
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Figure 5. Visualizing differences of a clone pair 

 



 

Figure 6. Distribution of clone types of seven commercial 

codebases (all in C/C++ except C1 in C#) detected by XIAO 

Engineer I reviewed 69 clone groups (each of which includes a set 

of similar clone pairs) with 184 functions in total. All reviewed 

functions are of non-zero bug likelihood and refactoring 

likelihood. Using the tagging functionality of XIAO, Engineer I 

tagged 7 (10%) clone groups as potential bugs and 16 (23%) clone 

groups as refactoring targets. All together there were 23 (33%) 

clone groups that were identified as actionable (i.e., either 

potential bugs or refactoring targets). 

Engineer II evaluated a small set of clones found by XIAO in a 

system component that consists of high-quality source code. The 

source code of this component has been stable with few changes 

for a number of years. We did not expect to find clone-related 

bugs in this case. Instead, we were interested in looking for 

refactoring targets in high-quality code. Engineer II reviewed a 

total of 39 clone groups with 102 functions.  The numbers of 

clones in these clone groups vary from 2 to 7, except one clone 

group, which contains 20 clones. All these 20 clones deal with 

Windows Event operations and they have slight differences in 

code logic. Including this clone group, Engineer II tagged 8 

(16.3%) clone groups with 46 functions as refactoring targets. 

5.2 Runtime Cost and Scalability 
The running time of XIAO against a large codebase (with the 

default environment) varies depending on the used settings: from 

6 minutes (MinS = 20, α = 1, γ = 1) to 23 minutes (MinS = 10, α = 

0.4, γ = 0.8). Basically, increasing γ tends to linearly decrease the 

spent time; increasing MinS decreases the spent time; increasing α 

does not change the spent time. This behavior can be easily 

explained: increasing the value of γ leads to a smaller number of 

clone-candidate functions in the coarse-matching step, thus 

decreasing the time spent in each of the successive steps; 

increasing MinS leads to a smaller number of snippets to be 

checked; α is used in the pruning step, which is the last step, and 

affects only the number of obtained clones but does not affect the 

spent time. 

Instead of using the default environment, we evaluated the 

scalability of our XIAO system using an HPC cluster with one 

master node and four computing nodes (a high-performance 

computing environment that XIAO leverages to deal with a huge 

number of lines of code). The master node has four AMD Opteron 

880 Dual-core 2.4GHz CPUs and 32GB memory. Each of the four 

computing nodes has two Intel E5335 Dual-core 2.0GHz CPUs 

and 8GB memory. Both the master and computing nodes are 

running on Windows Server 2008 HPC Edition. 

Online clone search. We indexed a commercial codebase with 

about 130 million lines of code to evaluate the scalability of 

XIAO’s online clone-search engine. Code snippets with three or 

more statements are accepted as valid input for clone search. The 

preprocessing (including source-code parsing, tokenization, and 

indexing) was conducted on one computing node and it took 3 

hours and 42 minutes to finish. Source code is divided into 

partitions each with 5MB storage size and these partitions are 

evenly distributed on the four computing nodes. Then 16 instances 

of the online clone-search engine were running to serve online 

queries. We randomly selected 1000 code snippets from the 

codebase as inputs. The size of these 1000 snippets ranges from 3 

to 100 and the number of snippets for each size is about the same. 

The clone-similarity threshold is set to be 0.6. The number of 

found cloned snippets ranges from 1 to 1000 and the average time 

of each query is a number of seconds. 

Offline clone detection and analysis. We evaluated the 

performance of XIAO’s offline clone detection and analysis on a 

commercial codebase with 26 million lines of code using the same 

system setup as that in the online-search environment. Clones of 

functions with at least 20 lines of statements were found using the 

similarity threshold of 0.6. Preprocessing was conducted on one 

computing node. The clone detection and analysis were performed 

in parallel on the 4 computing nodes. It took 3 hours and 30 

minutes to finish the entire process. The time breakdown of each 

step (in the unit of seconds) is preprocessing (1,014), coarse 

matching (9,803), fine matching (213), and clone analysis (1,462). 

The average amount of memory used by each instance of clone 

detection and analysis is about 120MB. 

6. APPLICATION SCENARIOS IN 

PRACTICE  
We have released XIAO inside Microsoft for different 

development teams to use (with the first version released in April 

2009). There were more than 750 downloads of the tool as of the 

end of year 2010.  

Copy-Paste-Bug Detection and Refactoring. An example 

application scenario of XIAO was already described in Section 1. 

In this scenario, an engineer at Microsoft reviewed 69 clone 

groups for a total of 184 snippets taken from the results of code-

clone detection for a commercial codebase. All reviewed clones 

were near-miss code clones. He identified 7 (10%) clone groups 

as potential bugs and 23 (33%) clone groups as refactoring targets 

(including the 7 with potential bugs).  The motivating example 

shown in Figure 1 is one of these seven cases. Function A on the 

left side is from a shared component, and function B on the right 

side is from an application. As confirmed by the code owner, B 

was copied from A for quick reuse quite some time ago. However, 

the engineer of B was not aware of the changes made to A after 

the copying. 
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// 14 identical statements omitted here  

::SendMessage(hwndCombo, CB_LIMITTEXT, GetMaxCharacters(), 

0); 

int iFlags = 0; 

if (!GetIsIMEAvailable()) 

iFlags |= SES_NOIME; 

if (iFlags) 

::SendMessage(hwndCombo, EM_SETEDITSTYLE, iFlags, iFlags); 

// 5 identical statements omitted here  

::SendMessage(hwndCombo, EM_SETCOMBOBOXSTYLE,  

SCB_NOAUTOCOMPLETEONSIZE, SCB_NOAUTOCOMPLETEONSIZE); 

// 2 identical statements omitted here  

Figure 7. A confirmed bug: extra statements for bug fixing 

were added (with the gray background) to one function but 

not to its cloned one. 



The clone-related bug shown in Figure 7 is another example 

reported by the same engineer. In this case, the two functions 

originally had similar functionalities. Later on a number of 

statements were added to one function (with the gray background 

in Figure 7) to ensure the synchronization between Windows GDI 

objects; nevertheless, this bug fix was not applied to the other 

function. 

The two functions shown in Figure 8 have only slight differences. 

In fact, they are the same except for one similar-logic block (the 

second statement in the figure) and one different-logic block (the 

first statement). This case was analyzed by XIAO to have a high 

rank in both bug likelihood and refactoring likelihood. As 

confirmed by its engineer, the differences between the two 

functions are by-design, and the clones are not buggy. In the 

meantime, this case was confirmed to be refactorable. 

Figure 9 shows a clone group that was tagged as “Immune”. 

Although there do exist slight logic differences between the two 

functions, the differences were confirmed to be intentional. 

Currently it is difficult for XIAO to handle false-positive cases 

such as this one in clone analysis. 

Based on our observation, an engineer often tries to prioritize his 

refactoring efforts, i.e., starting from easy-to-refactor clones 

(which are often those with high similarity). Another factor for 

tuning parameters is that a higher value of the similarity threshold 

needs less running time to get clone-detection results. Therefore, 

the engineer could choose relatively high similarity threshold first 

(e.g., 100% the same), to get some easy-to-refactor clones within 

relatively short clone-detection time. If there is a need to 

aggressively identify more refactoring opportunities, a relatively 

small value of the similarity threshold could be used. In some 

situations, a relatively high value of the similarity threshold would 

be used. For example, we observed that engineers dealing with a 

codebase with 20+ million LOC would like to identify file-level 

clones with 99% similarity and set a relatively high value of the 

similarity threshold to accomplish this goal. 

Detection of Duplicated Vulnerable Code. A security-

engineering team at Microsoft has been using XIAO’s online 

clone-search service since May 2009 to help with their 

investigation on security bugs. There were more than 590 million 

lines of code being indexed. During the second half of year 2010, 

there were a number of vulnerable code snippets searched against 

the XIAO service. Among these searching cases, there were 

18.3% cases with good hits, i.e., for these cases, the security-

engineering team needs to do further investigation to confirm 

whether there are duplicated vulnerabilities. Given high severity 

of security bugs, 18.3% good-hit cases are very good results. 

In an example real case, a reported security vulnerability could 

cause potential heap corruption and lead to remote code 

execution. After investigation, the vulnerable code snippet was 

found in codebase A: a buffer-overflow check was missing there. 

Using XIAO’s clone-search service, one security engineer on the 

security engineering team found three clones of the vulnerable 

code snippet – one is also in codebase A and the other two belong 

to codebase B. This security engineer contacted the code owners 

of these three cloned snippets and confirmed that one snippet in 

codebase B was vulnerable.  After the contact, the development 

team owning the vulnerable cloned snippet in B had confirmed to 

fix this security bug while the security bug in codebase A was 

fixed. 

XIAO’s clone-search service has greatly improved the 

productivity of the security engineers and it enhanced the 

reliability of the bug-investigation process as well. Based on the 

clone-search results, security engineers are able to obtain a better 

understanding of the potential impact of security vulnerabilities 

and communicate more effectively with development teams on 

vulnerability investigation and fixing. 

In this application scenario of XIAO, security engineers would 

like to have high recall of clone detection (i.e., little chance of 

missing clones). Therefore, for this application scenario, XIAO 

has the default value of 0.6, a relatively small value for the 

similarity threshold. The value is tunable by security engineers to 

achieve even higher recall. 

Discussion. For the two types of application scenarios, we 

observed that the second scenario on detecting duplicated 

vulnerable code (with the target users as security engineers) has 

occurred much more often than the first scenario, especially on 

refactoring (with the target users as software engineers). Such 

observation could be explained with two factors. First, refactoring 

conducted by software engineers occurs much less frequently than 

investigation of security bugs, which are the routine work of 

security engineers. Second, the severity of consequence on 

missing a refactoring opportunity is much less than the one on 

missing a security bug.  

// 6 identical statements omitted here  

 

RectF rectImage(0.0f, 0.0f, (float)m_piISGU-

>GetItemWidthPx() - 1.0f, (float)m_piISGU->GetItemHeightPx() - 

1.0f); 

 

// 61 identical statements omitted here  

colorBorder.SetFromCOLORREF(GetBorderColor()); 

 

// 2 identical statements omitted here  

// 6 identical statements omitted here  

 

RectF rectImage(0.0f, 0.0f, (float)s_cxInkItem - 1.0f, 

(float)s_cyInkItem - 1.0f); 

 

 

// 61 identical statements omitted here  

colorBorder.SetFromCOLORREF(GetFrameColor()); 

 

// 2 statements identical omitted here  

Figure 8.   A confirmed example of code refactoring 

if (!pxdsi || !pxdsl) 

 

// 13 identical statements omitted here 

if (FAILED(pxdsi->HrDeleteNode(ppxslChildren[l])))  

 

// 10 statements identical omitted here 

if (!m_spxdsi || !m_spxdsl || !m_pDesc) 

 

// 13 identical statements omitted here 

if (!ParseProperty(ppxslChildren[l])) 

 

// 10 identical statements omitted here 

Figure 9.    A clone group tagged as “Immune” 

 



7. RELATED WORK  
Research on code-clone detection has been an active research 

topic in recent years [3][10][17][24][27]. Roy et al. [27] 

conducted an extensive survey on this research topic. 

In contrast to other previous approaches on code-clone detection 

that conduct aggressive code parameterization without imposing 

any constraint on characteristics of statements (e.g., CCFinder 

[18], CP-Miner [21], and Deckard [14]), our code-similarity 

metric enables users to control the degree of tolerating statement 

variations by parameter α, allowing XIAO to filter out many false-

positive clones that other approaches would report. Our code-

similarity metric also enables users to control the percentage of 

inserted/deleted/modified statements, allowing XIAO to detect 

near-miss code clones with any number of statement gaps. At the 

same time, the algorithm efficiency is still achieved since XIAO 

uses a coarse-to-fine mechanism. Token-based approaches either 

cannot effectively detect near-miss clones (e.g., CCFinder) or 

cannot efficiently detect clones with over three gaps (e.g., CP-

Miner). 

Clone-detection approaches based on parse tree (e.g., CloneDR 

[5][6] and Deckard) can detect near-miss clones with over three-

statement gaps. However, in their approaches, either the 

percentage of shared tokens [5][6] or the feature-vector distance 

[14] is used to approximate the tree-edit distance. Although such 

approximation enables efficient detection algorithms, it leads to 

false positives, due to the loss of structural similarity caused by 

the approximation. 

Our code-similarity metric also takes into account disordered 

statements, allowing XIAO to detect near-miss clones with 

disordered statements. Many other token-based detection 

approaches such as CCFinder or CP-Miner do not detect clones 

with disordered statements; parse-tree-based approaches can 

detect clones with disordered statements; however, they suffer 

from false positives. 

Recently, Gabel et al. [11] proposed a scalable algorithm for 

detecting semantic code clones based on dependency graphs. 

They defined semantic code clones as isomorphic sub-graphs of 

the code’s dependency graph. Kim et al. [19] also proposed a 

memory-comparison-based algorithm for code-clone detection, 

called MeCC. Their approach can detect near-miss code clones, 

including clones with disordered statements. Their focus is on 

detecting semantic code clones, and it is unclear how their 

detected code clones overlap with near-miss code clones (the 

focus of XIAO). Such investigation is left for future work. 

Besides advances in clone detection, recent research has also 

made progress on applying clone detection in various software-

engineering tasks such as bug detection and refactoring. Near-

miss code-clone detection has been used to help identify code-

refactoring opportunities [12][31] or find plagiarisms [25][26]. To 

search whether there are cloned copies of a piece of buggy code, 

Li and Ernst proposed CBCD [23], a scalable clone-search 

algorithm that compares graph isomorphism over program 

dependency graphs. At Microsoft, XIAO has also been used for 

searching cloned code (e.g., detection of duplicated vulnerable 

code) and finding refactoring opportunities; comparing to these 

previous approaches, XIAO is more general and can be used in 

broader scenarios with high tunability, scalability, compatibility, 

and explorability. 

One important application of detecting near-miss code clones is 

helping engineers to identify potential bugs caused by inconsistent 

code changes. CP-Miner [21]  detects bugs caused by 

inconsistently renamed identifiers. The approach by Jiang et al. 

[15] detects inconsistent contexts of detected code clones. Since 

XIAO is able to detect near-miss code clones with arbitrary gaps, 

XIAO has the capability of detecting more types of bugs caused 

by inconsistent code changes.  

There are various tools for code-clone detection available as either 

open-source tools or commercial tools. Each one performs well in 

only some aspects. Most of them can detect type-I/II clones well, 

but have limited capability on detecting type-III clones. Few of 

them can detect code clones with disordered statements. Few of 

them provide good tunability. In contrast, XIAO can detect type-

III code clones with or without disordered statements, and has 

high tunability on the tolerance of inserted/deleted statements. 

Some of existing tools provide Graphical User Interfaces (GUI) 

available for exploring code clones. There exists a GUI front-end 

called GemX for CCFinder [18] to allow users to interactively 

explore clones with different metrics, such as LOC and distance 

of folder locations. CP-Miner provides visualization for 

highlighting clone differences without the concept of blocks. 

Simian 3  is a Similarity Analyzer for identifying duplication in 

code written in various languages. It provides limited 

explorability, displaying only one snippet from each clone group 

(assuming all copies from a clone group are exactly the same). 

CloneDR [5][6] provides a summary report and individual clone-

set reports, but provides no visualization of clone differences. The 

uniqueness of XIAO in terms of explorability lies in supporting 

rich interaction and visualization: intuitive visualization of 

differences between cloned snippets besides allowing users to tag 

code clones. 

There are some available tools with features of code-clone 

management, such as CloneTracker [9] and SimScan 4 . 

CloneTracker is useful for engineers to track code clones. 

SimScan also provides GUI for clone management and tracking, 

supporting simultaneous editing.  XIAO’s tagging mechanism can 

serve for similar purposes but XIAO provides both clone 

detection and management with high tunability, scalability, 

compatibility, and explorability. 

The most recent related work is the work done by Jang et al. [13]. 

They developed a scalable approach for detecting unpatched code 

clones. Their approach is language agnostic and produces 

relatively low false-detection rate. They applied their approach on 

entire OS distributions. While sharing the features of high 

scalability and compatibility as their approach, our approach is 

applied on commercial codebases, and is designed to be 

continuously used by engineers in their daily practices. Therefore, 

our approach has unique features such as high tunability and 

explorability. 

8. CONCLUSION  
In this paper, we report our experiences of carrying out successful 

technology transfer of our new approach of code-clone detection, 

called XIAO. XIAO has been integrated into Microsoft Visual 

Studio 2012, to be benefiting a huge number of engineers in 

industry. We have discussed main success factors of XIAO: its 

high tunability, scalability, compatibility, and explorability. We 

have also presented empirical results on in-practice applying 

XIAO on real scenarios within Microsoft for the tasks of security-

bug detection and refactoring. The results demonstrate the 

                                                                 

3 http://www.harukizaemon.com/simian/index.html 

4 http://blue-edge.bg/simscan/ 

http://www.ccfinder.net/ccfinderxos.html
http://www.semanticdesigns.com/Products/Clone/COBOLCloneDR.html
http://www.cs.mcgill.ca/~swevo/clonetracker/
http://blue-edge.bg/simscan/simscan_help_r1.htm
http://www.harukizaemon.com/simian/index.html


benefits of XIAO in these tasks. In addition, it was observed that 

applying XIAO on detecting duplicated vulnerable code (with the 

target users as security engineers) has occurred much more often 

than the applying XIAO on refactoring (with the target users as 

software engineers).  
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