
Crawling Deep Web Entity Pages

Yeye He
∗

Univ. of Wisconsin-Madison
Madison, WI 53706

heyeye@cs.wisc.edu

Dong Xin
Google Inc.

Mountain View, CA, 94043
dongxin@google.com

Venkatesh Ganti
Google Inc.

Mountain View, CA, 94043
vganti@google.com

Sriram Rajaraman
Google Inc.

Mountain View, CA, 94043
sriramr@google.com

Nirav Shah
Google Inc.

Mountain View, CA, 94043
nshah@google.com

ABSTRACT
Deep-web crawl is concerned with the problem of surfacing hid-
den content behind search interfaces on the Web. While many
deep-web sites maintain document-oriented textual content (e.g.,
Wikipedia, PubMed, Twitter, etc.), which has traditionally been the
focus of the deep-web literature, we observe that a significant por-
tion of deep-web sites, including almost all online shopping sites,
curate structured entities as opposed to text documents. Although
crawling such entity-oriented content is clearly useful for a variety
of purposes, existing crawling techniques optimized for document
oriented content are not best suited for entity-oriented sites. In this
work, we describe a prototype system we have built that specializes
in crawling entity-oriented deep-web sites. We propose techniques
tailored to tackle important subproblems including query genera-
tion, empty page filtering and URL deduplication in the specific
context of entity oriented deep-web sites. These techniques are ex-
perimentally evaluated and shown to be effective.
Categories and Subject Descriptors: H.2.8 Database Applica-
tion: Data Mining
Keywords: Deep-web crawl, web data, entities.

1. INTRODUCTION
Deep-web crawl refers to the problem of surfacing rich infor-

mation behind the web search interface of diverse sites across the
Web. It was estimated by various accounts that the deep-web has
as much as an order of magnitude more content than that of the
surface web [10, 14]. While crawling the deep-web can be im-
mensely useful for a variety of tasks including web indexing [15]
and data integration [14], crawling the deep-web content is known
to be hard. The difficulty in surfacing the deep-web has inspired a
long and fruitful line of research [3, 4, 5, 10, 14, 15, 17, 22, 23].

In this paper we focus on entity-oriented deep-web sites. These
sites curate structured entities and expose them through search in-
terfaces. Examples include almost all online shopping sites (e.g.,

∗Work done while author at Google, now at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$10.00.

ebay.com, amazon.com, etc.), where each entity is typically a prod-
uct that is associated with rich structured information like item
name, brand name, price, and so forth. Additional examples of
entity-oriented deep-web sites include movie sites, job listings, etc.
Note that this is to contrast with traditional document-oriented deep-
web sites that mostly maintain unstructured text documents (e.g.,
Wikipedia, PubMed, etc.).

Entity-oriented sites are very common and represent a signifi-
cant portion of the deep-web sites. The variety of tasks that entity-
oriented content enables makes the general problem of crawling
entities an important problem.

The practical use of our system is to crawl product entities from
a large number of online retailers for advertisement landing page
purposes. While the exact use of such entities content in adver-
tisement is beyond the scope of this paper, the system requirement
is simple to state: We are provided as input a list of retailers’ web-
sites, and the objective is to crawl high-quality product entity pages
efficiently and effectively.

There are two key properties that set our problem apart from tra-
ditional deep-web crawling literature. First, we specifically focus
on the entity-oriented model, because of our interest in product en-
tities from online retailers, which are entity-oriented deep-web sites
in most cases. While existing general crawling techniques are still
applicable to some extent, the specific focus on entity-oriented sites
brings unique opportunities. Second, a large number of entity sites
(online retailers) are provided as input to our system, from which
entity pages are to be crawled. Note that with thousands of sites as
input, the realistic objective is to only obtain a representative con-
tent coverage of each site, instead of an exhaustive one. Ebay.com,
for example, has hundreds of thousands of listings returned for the
query “iphone”; the purpose of the system is not to obtain all iphone
listings, but only a representative few of these listings for ads land-
ing pages. This goal of obtaining representative coverage contrasts
with traditional deep-web crawl literature, which tends to deal with
individual site and focus on obtaining exhaustive content coverage.
Our objective is more in line with the pioneering work [15], which
also operates at the Web scale but focuses on general web content.

We have developed a prototype system that is designed specifi-
cally to crawl representative entity content. The crawling process
is optimized by exploiting features unique to entity-oriented sites.
In this paper, we will focus on describing important components of
our system, including query generation, empty page filtering and
URL deduplication.

Our first contribution is to show how query logs and knowledge
bases (e.g., Freebase) can be leveraged to generate entity queries
for crawling. We demonstrate that classical techniques for infor-

URL
Template
Generation

Query
Generation

URL
generation URL

Repository

URL
scheduler

Web
document
crawler

URL
extraction/

deduplication

Web
document

filter

Freebase Query log

List of
deep‐web

sites

Crawled
web

document

Figure 1: Overview of the entity-oriented crawl system

mation retrieval and entity extraction can be used to robustly derive
relevant entities for each site, so that crawling bandwidth can be
utilized efficiently and effectively (Section 5).

The second contribution of this work is a new empty page filter-
ing algorithm that removes crawled pages that fail to retrieve any
entities. This seemingly simple problem is nontrivial due to the di-
verse nature of pages from different sites. We propose an intuitive
filtering approach, based on the observation that empty pages from
the same site tend to be highly similar (e.g., with the same page lay-
out and the same error message). In particular, we first submit to
each target site a small set of queries that are intentionally “bad”,
to retrieve a “reference set” of pages that are highly likely to be
empty. At crawl time, each newly crawled page is compared with
the reference set, and pages that are highly similar to the reference
set are predicted as empty and filtered out from further processing.
This weakly-supervised approach is shown to be robust across sites
on the Web (Section 6).

Additionally, we observe that the search result pages typically
expose additional deep-web content that deserves a second round of
crawling, which is an interesting topic that has been overlooked in
the literature. In order to obtain such content, we identify promis-
ing URLs on the result pages, from which further crawling can be
bootstrapped. Furthermore, we propose a URL deduplication al-
gorithm that prevents URLs with near-identical results from be-
ing crawled. Specifically, whereas existing techniques use con-
tent analysis for deduplication which works only after pages are
crawled, our approach identifies the semantic relevance of URL
query segments by analyzing URL patterns, so that URLs with sim-
ilar content that differ in non-essential ways (e.g., how retrieved en-
tities are rendered and sorted) can be deduplicated. This approach
is shown to be effective in preserving distinct content while reduc-
ing the bandwidth consumption (Section 7).

2. SYSTEM OVERVIEW
Deep-web sites URL templates

ebay.com www.ebay.com/sch/i.html?_nkw={query}&_sacat=All-Categories
chegg.com www.chegg.com/search/?search_by={query}
beso.com www.beso.com/classify?search_box=1&keyword={query}

... ...

Table 1: Example URL templates

In this section we explain each component of our system in turn
at a very high level. The overall architecture of our system is illus-
trated in Figure 1.

URL template generation. At the top left corner the system
takes a list of domain names of deep-web sites as input, and an ex-

ample of which is illustrated in the first column of Table 1. The
URL template generation component then crawls the home-pages
of these sites, extracts and parses the web forms found on the home-
pages, and produces URL templates. Example URL templates are
illustrated in the second column of Table 1. Here the boldfaced
“{query}” represents a wild-card that can be substituted by any
keyword query (e.g., “iphone”); the resulting URL can be used to
crawl deep-web content as if the web forms are submitted.

Query generation and URL generation. The query generation
component at the lower left corner takes the Freebase [6] and query
logs as input, outputs queries consistent with the semantics of each
deep-web site (for example, query “iphone” may be generated for
sites like amazon.com or ebay.com but not for tripadvisor.com).

Such queries can then be plugged into URL templates to sub-
stitute the “{query}” wild-card to produce final URLs, which will
be stored in a central URL repository. URLs can then be retrieved
from the URL repository and scheduled for crawling at runtime.

Empty page filter. It is inevitable that some URLs correspond-
ing to previously generated queries will retrieve empty or error
pages that contain no entity. Once pages are crawled, we move to
the next stage, where pages are inspected to filter out empty ones.
The process of filtering empty pages is critical (to avoid polluting
downstream operations), but also non-trivial, for different sites in-
dicate empty pages in disparate ways. The key insight here is that
empty pages from the same site tend to be highly similar. So we in-
tentionally retrieve a set of pages that are highly likely to be empty,
and filter out any crawled pages from the same site that are similar
to the reference set. Remaining pages with rich entity information
can then be used for a variety of purposes.

URL extraction/deduplication. Additionally, we observe that
a significant fraction of URLs on search result pages (henceforth
referred to as “second-level URLs”, to distinguish from the URLs
generated using URL template, which are “first-level URLs”) typi-
cally link to additional deep-web content. However, crawling all
second-level URLs indiscriminately is wasteful due to the large
number of second level URLs available. Accordingly, in this com-
ponent, we filter out second-level URLs that are less likely to lead
to deep-web content, and dynamically deduplicate remaining URLs
to obtain a much smaller set of “representative” URLs that can
be crawled efficiently. These URLs then iterate through the same
crawling process to obtain additional deep-web content.

3. RELATED WORK
The aforementioned problems studied in this work have been ex-

plored in the literature to various extents. In this section, we will
describe related work and discuss key differences between our ap-
proach in this work and existing techniques.

URL template generation. The problem of generating URL
templates has been studied in the literature in different contexts.
For example, authors in [4, 5] looked at the problem of identify-
ing searchable forms that are deep-web entry points, from which
templates can then be generated. The problem of parsing HTML
forms for URL templates has been addressed in [15]. In addition,
authors in [15, 20] studied the problem of assigning combinations
of values to multiple input fields in the search form so that content
can be retrieved from the deep-web effectively.

In our URL template generation component, search forms are
parsed using techniques similar to what was outlined in [15]. How-
ever, our analysis shows that generating URL templates by enu-
merating values combination in multiple input fields can lead to an
inefficiently large number of templates and may not scale to the
number of websites that we are interested in crawling. As will be
discussed in Section 4, our main insight is to leverage the fact that

for entity-oriented sites, search forms predominantly employ one
text field for keyword queries, and additional input fields with good
“default value” behavior. Our URL template generation based on
this observation provides a tractable solution for a large number of
potentially complex search forms without significantly sacrificing
content coverage.

Query generation and URL generation. Prior art in query gen-
eration for deep web crawl focused on bootstrapping using text ex-
tracted from retrieved pages [15, 17, 22, 23]. That is, a set of seed
queries are first used to crawl pages. The retrieved pages are an-
alyzed for promising keywords, which are then used as queries to
crawl more pages recursively.

There are several key reasons why existing approaches are not
very well suited for our purpose. First of all, most previous work
[17, 22, 23] aims to optimize coverage of individual sites, that is,
to retrieve as much deep-web content as possible from one or a few
sites, where success is measured by percentage of content retrieved.
Authors in [3] go as far as suggesting to crawl using common stop
words “a, the” etc. to improve site coverage when these words are
indexed. We are in line with [15] in aiming to improve content cov-
erage for a large number of sites on the Web. Because of the sheer
number of deep-web sites crawled we trade off complete coverage
of individual site for incomplete but “representative” coverage of a
large number of sites.

The second important difference is that since we are crawling
entity-oriented pages, the queries we come up with should be en-
tity names instead of arbitrary phrases segments. As such, we lever-
age two important data sources, namely query logs and knowledge
bases. We will show that classical information retrieval and entity
extraction techniques can be used effectively for entity query gen-
eration. To our knowledge neither of these data sources has been
very well studied for deep-web crawl purposes.

Empty page filtering. Authors in [15] developed an interest-
ing notion of informativeness to filter search forms, which is com-
puted by clustering signatures that summarize content of crawled
pages. If crawled pages only have a few signature clusters, then
the search form is uninformative and will be pruned accordingly.
This approach addresses the problem of empty pages to an extent
by filtering uninformative forms. However, this approach operates
at the level of search form / URL template, it may still miss empty
pages crawled using an informative URL template.

Since our system generates only one high-quality URL template
for each site, filtering at the granularity of URL templates is likely
to be ill-suited. Instead, our approach considers in this work fil-
ters at page level — it can automatically distinguishes empty pages
from useful entity pages by utilizing intentionally generated bad
queries. To our knowledge this simple yet effective approach has
not been explored in the literature.

A novel page-level empty page filtering technique was described
in [20], which labels a result page as empty, if either certain prede-
fined error messages are detected from the “significant portion” of
result pages (e.g., the portion of the page formatted using frames,
or visually laid out at the center of the page), or a large fraction
of result pages are hashed to the same value. In comparison, our
approach obviates the need to recognize the significant portion of
result pages, and we use content signature instead of hashing that
is more robust against minor page differences.

URL deduplication. The problem of URL deduplication has re-
ceived considerable attention in the context of web crawling and in-
dexing [2, 8, 13]. Current techniques consider two URLs as dupli-
cates if their content are highly similar. These approaches, referred
to as content-based URL deduplication, proposes to first summa-
rize page contents using content sketches [7] so that pages with

Figure 2: A typical search interface (ebay.com)

similar content are grouped into clusters. URLs in the same cluster
are then analyzed to learn URL transformation rules (for example,
it can learn that www.cnn.com/story?id=num is equivalent
to www.cnn.com/story_num).

In this paper, instead of looking at the traditional notion of page
similarity at the content level, we view page similarity at the se-
mantic level. That is, we view pages with entities from the same
result set (but perhaps containing different portions of the result,
or presenting with different sorting orders) as semantically simi-
lar, which can then be deduplicated. This significantly reduces the
number of crawls needed, and is in line with our goal of obtaining
representative content coverage given the sheer number of websites
crawled.

Using semantic similarity, our approach can analyze URL pat-
terns and deduplicate before pages are crawled. In comparison,
existing content-based deduplication not only requires pages to be
crawled first for content analysis, it would not be able to recognize
the semantic similarity between URLs and would require billions
of more URLs crawled.

Authors in [15] pioneered the notion of presentation criteria, and
pointed out that crawling pages with content that differ only in pre-
sentation criteria are undesirable. Their approach, however, dedu-
plicates at the level of search forms and cannot be used to dedupli-
cate URLs directly.

4. URL TEMPLATE GENERATION
As input to our system, we are given a list of entity-oriented

deep-web sites that need to be crawled. Our first problem is to gen-
erate URL templates for each site that are equivalent to submitting
search forms, so that entities can be crawled directly using URL
templates.

As a concrete example, the search form from ebay.com is shown
in Figure 2, which represents a typical entity-oriented deep-web
search interface. Searching this form using query “ipad 2” without
changing the default value “All Categories” of the drop-down box
is equivalent to using the URL template for ebay.com in Table 1,
with wild-card “{query}” replaced by “ipad+2”.

The exact technique that parses search forms is developed based
on techniques proposed in [15], which we will not discuss in details
in the interest of space. However, our experience with URL tem-
plate generation leads to two interesting observations worth men-
tioning.

Our first observation is that for entity-oriented sites, the main
search form is almost always on home pages instead of somewhere
deep in the site. The search form is such an effective informa-
tion retrieval paradigm that websites are only too eager to expose
them. A manual survey suggests that only 1 out of 100 randomly
sampled sites does not have the search form on the home page
(www.arke.nl). This obviates the need to use sophisticated tech-
niques to locate search forms deep in websites (e.g., [4, 5]).

The second observation is that in entity-oriented sites, search
forms predominantly use one main text input fields to accept key-
word queries (a full 93% of sites surveyed have exactly one text
field to accept keyword queries). At the same time, other non-text
input fields exhibit good “default value” behavior (94% of sites out
of the 100 sampled are judged to be able to retrieve entities using
default values without sacrificing coverage).

Since enumerating values combination in multiple input fields

Deep-web sites sample queries from query logs
ebay.com cheap iPhone 4, lenovo x61, ...

bestbuy.com hp touchpad review, price of sony vaio, ...
booking.com where to stay in new york, hyatt seattle review, ...
hotels.com hotels in london, san francisco hostels, ...

barnesandnobel.com star trek books, stephen king insomnia, ...
chegg.com harry potter book 1-7, dark knight returns, ...

Table 2: Example queries from query logs

(e.g., [15, 20]) can lead to an inefficiently large number of tem-
plates and may not scale to the number of websites that we are
interested in crawling, we leverage aforementioned observation to
simplify URL template generation by producing one template for
each search form. Specifically, only the text field is allowed to vary
(represented by a placeholder “{query}”) while others fields will
take on default values, as shown in Table 1. In our experience this
provides a more tractable way to generate templates than the previ-
ous multi-value enumeration approach that works well in practice.
We will not discuss details of template generation any further in the
interest of space.

5. QUERY GENERATION
After obtaining URL templates for each site, the next step is to

fill relevant keyword query into the “{query}” wild-card to produce
final URLs. The challenge here is to come up with queries that
match the semantics of the sites. A dictionary-based brute force
approach that sends every known entity to every site is clearly in-
efficient – crawling queries like "ipad" on tripadvisor.com does not
make sense, and will most likely result in an empty/error page.

We utilize two data sources for query generation: query logs and
knowledge-bases. Our main observation here is that classical tech-
niques in information retrieval and entity extraction are already ef-
fective in generating entity queries.

5.1 Entity extraction from query logs
Query logs refer to keyword queries searched and URLs clicked

on search engines (e.g., Google). Conceptually query logs make a
good candidate for query generation in deep-web crawls — queries
with high number of clicks to a certain site is an indication of the
relevance between the query and the site, submitting such queries
through the site’s search interface for deep-web crawl thus makes
intuitive sense.

We used Google’s query logs with the following normalized form
< keyword_query, url_clicked, num_times_clicked >. To
filter out undesirable queries (e.g., navigational queries), we only
consider queries that are clicked for at least 2 pages in the same
site, for at least 3 times.

Although query logs contain rich information, it is also too noisy
to be used directly for crawling. Specifically, queries in the query
logs tend to contain extraneous tokens in addition to the central
entity of interest. However, it is not uncommon for the search in-
terface on deep-web sites to expect only entity names as queries.
Figure 3 serves as an illustration of this problem. When feeding a
search engine query “HP touchpad reviews” into the search inter-
face on deep-web sites, (in this example, ebay.com), no results are
returned (Figure 3a), while searching using only the entity name
“HP touchpad” retrieves 6617 such products (Figure 3b).

This issue above is not isolated. On the one hand, search en-
gine queries typically contain tokens in addition to entity mentions,
which either specify certain aspects of entities of interest (e.g., “HP
touchpad review”, “price of chrome book spec”), or are simply nat-
ural language fragments (e.g., “where to buy iPad 2”, “where to
stay in new york”). On the other hand, many search interfaces only
expect clean entity queries. This is because a significant portion of

(a) search with “hp touchpad reviews”

(b) search with “hp touchpad”

Figure 3: An example of Keyword-And based search interface

entity sites employ the simple Keyword-And mechanism, where all
tokens in the query have to be matched in a tuple before the tuple
can be returned (thus the no match problem in Figure 3b). Even if
the other conceptual alternative, Keyword-Or is used, the presence
of extraneous tokens can promote spurious matches and lead to less
desirable crawls.

We reduce the aforementioned problem to entity extraction from
query logs. Or to view it the other way, we clean the search engine
queries by removing tokens that are not entity related (e.g., remov-
ing “reviews” from “HP touchpad reviews”, or “where to stay in”
from “where to stay in new york”, etc.).

In the absence of a comprehensive entity dictionary, it is hard
to tell if a token belongs to (ever-growing) entity names and their
name variations, abbreviations or even typos. At the same time, the
diverse nature of the query logs makes it all the more valuable, for
it captures a wide variety of entities and their name variations.

Inspired by an influential work on entity extraction from query
logs [18], we first identify common patterns in query logs that are
clearly not entity related (e.g., “reviews”, “specs”, “where to stay
in” etc.) by leveraging known entities. Query logs can then be
“cleaned” to extract entities by removing such patterns.

Specifically, we first obtained a dump of the Freebase data [6]
— a manually curated repository with about 22M entities. We then
find the maximum-length subsequence in each search engine query
that matches Freebase entities as an entity mention. The remaining
tokens are treated as entity-irrelevant prefix/suffix. We aggregate
distinct prefix/suffix across the query logs to obtain common pat-
terns ordered by their frequency of occurrences. The most frequent
patterns are likely to be irrelevant to entities and need to be cleaned.

EXAMPLE 1. Table 2 illustrates the sample queries with men-
tions of Freebase entity names underlined. Observe that this entity
recognition this way is not perfect. For example, the query “where
to stay in new york” for booking.com has two matches with Free-
base entities, the match of “where to” to a musical release with
that name, and the match of “new york” as city name. Since both
matches are of length two, we obtain the false suffix “stay in new
york” (with an empty prefix) and the correct prefix “where to stay
in” (with an empty suffix), respectively. However, when all the pre-
fix/suffix in the query logs are aggregated, the correct prefix “where

Deep-web sites sample queries from query logs
ebay.com iPhone 4, lenovo, ...

bestbuy.com hp touchpad, sony vaio, ...
booking.com where to, new york, hyatt, seattle, review, ...
hotels.com hotels, london, san francisco, ...

barnesandnobel.com star trek, stephen king, ...
chegg.com harry potter, dark knight, ...

Table 3: Example entities extracted for each deep-web site

to stay in” occurs much more frequently and should clearly stand
out as a entity irrelevant pattern.

Another potential problem is that Freebase may not contain all
possible entities. For example in the query “hyatt seattle review”
for booking.com, the first two tokens “hyatt seattle” refer to the
Hyatt hotel in Seattle, which however is absent in Freebase. Using
Freebase entities “hyatt” (a hotel company), and “seattle” (a loca-
tion) will be recognized separately. However, with prefixes/suffixes
aggregation, the suffix “review” is so frequent across the query logs
such that it will be recognized as an entity-irrelevant pattern. This
can be used to clean the query to produce entity “hyatt seattle”.

Our experiments using Google’s query log (to be discussed in
Section 8) will show that this simple approach of entity extraction
by pattern aggregation is effective in producing entity queries.

5.2 Entity expansion using knowledge-bases
While query logs provide a good set of initial seed entities, its

coverage for each site depends on the site’s popularity as well as
the item’s popularity (recall that the number of clicks is used to
predict the relevance between the query and the site). Even for
highly popular sites, there is a long tail of less popular items which
may not be captured by query logs.

On the other hand, we observe that there exists manually curated
entity repositories (e.g., Freebase), that maintain entities in certain
domains with very high coverage. For example. Freebase contains
comprehensive lists of city names, books, car models, movies, etc.
Such categories, if matched appropriately with relevant deep-web
sites, can be used to greatly improve crawl coverage. For exam-
ple, names of all locations/cities can be used to crawl travel sites
(e.g., tripadvisor.com, booking.com), housing sites (e.g., apartmen-
thomeliving.com, zillow.com); names of all known books can be
useful on book retailers (amazon.com, barnesandnoble.com), book
rental sites (chegg.com, bookrenter.com), so on and so forth. In
this section, we consider the problem of expanding the initial set of
entities using Freebase.

Recall that we can already extract Freebase entities from the
query logs for each site. Table 3, for example, contains lists of
entities extracted from the sample queries in Table 2. Thus, for
each site, we need to bootstrap from these seed entities to expand
to Freebase entity “types” that are relevant to each site’s semantics.

We borrow classical techniques from information retrieval: if
we view the multi-set of Freebase entity mentions for each site as a
document, and the list of entities in each Freebase type as a query,
then the classical term-frequency, inverse document frequency (TF-
IDF) ranking can be applied.

For each Freebase type, we use TF-IDF to produce a ranked list
of deep-web sites by their similarity scores. We then “threshold”
the sorted list using a relative score. That is, we include all sites
with scores above a fixed percentage, τ , of the highest similarity
score in the same Freebase type as matches. Empirically results in
Section 8 show that setting τ = 0.5 achieves good results and is
used in our system. This approach is significantly more effective
than other alternatives like Cosine or Jaccard Similarity [21], with
precision reaching 0.9 for τ = 0.5.

6. EMPTY PAGE FILTERING
Once the final URLs are generated, pages can be crawled in a

fairly standard manner. The next important issue that arises is to
filter empty pages with no entity in them, in order to avoid pollut-
ing downstream pipelines. However, different sites can display dis-
parate error messages, from textual messages (e.g., “sorry, no items
is found”, “0 item matches your search”, etc.), to image-based er-
ror messages. While such messages are easily comprehensible for
humans, it is difficult to detect automatically across all different
sites. The presence of dynamically generated ads content further
complicates the problem of detecting empty pages.

We develop a page-level filtering approach that filters out crawled
pages that fail to retrieve any entities. Our main observation is that
empty pages from the same site are typically extremely similar to
each other, while empty pages from different sites are normally
very different. Ideally we should obtain “sample” empty pages for
each deep-web site, with which newly crawled pages can be com-
pared. To do so, we generate a set of “background queries”, that are
long strings of arbitrary characters that lack any semantic meanings
(e.g., “zzzzzzzzzzzzz”, or “xyzxyzxyzxyz”). Such queries, when
searched on deep-web sites, will almost certainly generate empty
pages. In practice, we generate N (10 in our experiments) such
background queries in order to be robust against the rare case where
a bad “background query” accidentally matches some records and
produces a non-empty page. We then crawl and store the corre-
sponding “background pages” as the reference set of empty pages.
At crawl time, each newly crawled page is compared with back-
ground pages to determine if the new page is actually empty.

Our content comparison mechanism uses a signature based page
summarization techniques also used in [15]. The signature is es-
sentially a set of tokens that are descriptive of the page content, but
also robust against minor differences in page content (e.g., dynam-
ically generated advertisements). 1 We then calculate the Jaccard
Similarity between the signature of the newly crawled page and the
“background pages”, as defined below.

DEFINITION 1. [21] Let Sp1 and Sp2 be the sets of tokens rep-
resenting the signature of the crawled page p1 and p2. The Jaccard
Similarity between Sp1 and Sp2 , denoted SimJac (Sp1 , Sp2), is
defined as SimJac (Sp1 , Sp2)=

Sp1∩Sp2
Sp1∪Sp2

The similarity scores are averaged over the set ofN “background
pages”, and if the average score is above certain threshold θ, we
label the newly crawled page as empty. As we will show in ex-
periments, this approach is very effective in detecting empty pages
across different websites (with an overall precision of 0.89 and a
recall of 0.9).

7. SECOND-LEVEL CRAWL

7.1 The motivation for second level crawl
We observe that the first set of pages crawled using URL tem-

plates often contain URLs that link to additional deep-web con-
tents. In this work, we refer to the first set of pages obtained
through URL templates as “first-level pages” (because they are one
click away from the homepage), and those pages that are linked
from first-level pages as “second-level pages” (and the correspond-
ing URLs “second-level URLs”). There are at least a few common
cases in which crawling second-level pages can be useful.

1 Our signatures are generated using a proprietary method also used in [15],
the details of which is beyond the scope of this paper. In principle well-
known content summarization techniques like [7, 16] can be used in place.

(a) “Related queries” on first-level pages

(b) Disambiguation pages (c) Faceted search

Figure 4: Examples for which second-level crawl is desirable

In the first category, when a query is searched, an additional
set queries relevant to the original query are displayed. This is
known as query expansion [19], which aims to help users to refor-
mulate their queries. Figure 4a is a screen-shot of such an example.
When the original query “iphone 4” is searched, the returned page
displays queries related to the original query, like “iphone 3gs”,
“iphone 4 case”, etc. Since these queries are maintained and sug-
gested by individual sites, they can in most cases lead to valid deep-
web content, thus improving content coverage.

Figure 4b shows another scenario for second-level crawl. In
this example, when the query “san francisco” is searched, a dis-
ambiguation page is returned containing multiple cities with that
name. Following second-level URLs on the disambiguation page
is needed in order to expose rich deep-web content (lists of hotels
in this case).

Second-level crawls are also desirable for sites that employ the
“faceted search/browsing” paradigm [11]. In faceted search, re-
turned entities are presented in a multi-dimensional, faceted man-
ner. In the example shown in Figure 4c when “camera” is searched,
a “multi-faceted” entity classification is returned along with a large
set of results, to allow users to drill-down using additional criteria
(e.g., category, brand, price etc.). Conceptually, this is equivalent to
adding an additional predicate to the original entity retrieval query,
which amounts to a new query. Accordingly, such URLs are also
desirable for further crawling.

We also note that crawling second-level URLs using our sim-
plified URL template with default values can achieve similar ef-
fects as exhaustively template generation by enumerating all pos-
sible values combinations (Section 4). In this example website in
Figure 4c where query “camera” is searched with default category
“All-categories”, the second-level URL for category “Electronics”
actually corresponds to searching “camera” with sub-category “Elec-
tronics” selected.

Furthermore, while the previous multi-field enumeration approach
would search for a query with all value combination e.g., searching
for “camera” with the (inconsistent) sub-categories “pets” or “fur-
nitures” that would lead to empty pages, our approach is data driven
— typically faceted search links are exposed only when there exists
deep-web content matching the searching criteria (category “pets”
will not display when “camera” is searched). As a result, our ap-
proach is more likely to retrieve content successfully.

www.buy.com/sr/searchresults.aspx?qu=gps&sort=4&from=7&mfgid=-652&page=1
www.buy.com/sr/searchresults.aspx?qu=gps&sort=5&from=7&mfgid=-652&page=1

...
www.buy.com/sr/searchresults.aspx?qu=gps&sort=4&from=8&mfgid=-652&page=1
www.buy.com/sr/searchresults.aspx?qu=gps&sort=4&from=9&mfgid=-652&page=1

...
www.buy.com/sr/searchresults.aspx?qu=gps&sort=4&from=7&mfgid=-652&page=2
www.buy.com/sr/searchresults.aspx?qu=gps&sort=4&from=7&mfgid=-652&page=3

...
www.buy.com/sr/searchresults.aspx?qu=gps&sort=4&from=7&mfgid=-1755&page=1
www.buy.com/sr/searchresults.aspx?qu=gps&sort=5&from=7&mfgid=-1755&page=1

...
www.buy.com/sr/searchresults.aspx?qu=tv&sort=4&from=7&mfgid=-1001&page=1
www.buy.com/sr/searchresults.aspx?qu=tv&sort=5&from=7&mfgid=-1001&page=1

...

Table 4: Duplicate cluster of second-level URLs

7.2 URL extraction and filtering
While some second-level URLs are desirable, not all second-

level URLs should be crawled for efficiency as well as quality rea-
sons. First, there are on average a few dozens second-level URLs
for each first-level page crawled. Crawling all these second-level
URLs becomes very costly at large scale. Furthermore, a signifi-
cant portion of these second-level URLs are in fact entirely irrele-
vant with no deep-web content (many URLs are static and naviga-
tional, for example browsing URLs, login URLs, etc.), which need
to be filtered out.

We filter URLs by using keyword-query arguments. Keyword-
query argument is the URL argument immediately prior to the “{query}”
wild-card in URL templates. For example, in Table 1, “_nkw=”
is the keyword-query argument for ebay.com. Similarly we have
“search_by=” for chegg.com, and “keyword=” for beso.com. The
presence of the keyword-query argument in a given domain is in
general indicative that the page is dynamically generated with key-
word predicates and is thus likely to be deep-web related. We
observe that filtering URLs by keyword-query arguments signifi-
cantly reduces the number of URLs — typically by a factor of 3-5
— while still preserves desirable second-level URLs that lead to
deep-web content.

7.3 URL deduplication
We observe that after URL filtering, there are groups of URLs

that are different in their text string but really lead to similar or
nearly identical deep-web content. In this section we propose to
deduplicate second-level URLs to further reduce the number of
URLs that need to be crawled.

To take a closer look at second-level URLs, we use URLs ex-
tracted from buy.com in Table 4 as an example to illustrate. Dy-
namical URLs generated by deep-web form submission generally
follow the W3C URI recommendations [1], where the part of URL
string after “?” is the so-called query string, and each component
separated by “&” (or “;”) is a query segment that consists of a pair
of argument and value connected by an “=”.

The observation here is that each query segment typically corre-
sponds to a query predicate. Take the first URL in Table 4 as an
example, the query segment “qu=gps” indicates that returned enti-
ties should contain the keyword “gps”. “Sort=4” specifies that the
list of entities should be sorted by price from low to high (where
4 is an internal encoding for that sorting criterion); “from=7” is an
internal tracking parameter to record which URL was clicked that
leads to this page; “mfgid=-652” is a predicate that selects man-
ufacturer Garmin (where -652 is again an internal encoding), and
finally “page=1” retrieves the first page of matching entities (typi-
cally each page only presents a limited number of entities, thus not
all results can be displayed on one page). While the exact URL
encodings of query strings vary wildly from site to site, such map-

Figure 5: Second-level URLs from different sorting criteria

pings from query segments to logical query predicates generally
exist across different sites.

In this particular example, if this URL query string is to be writ-
ten in SQL, it would correspond to the query below:
SELECT * FROM db
WHERE description LIKE ‘%gps%’
AND manufacturer = ‘Garmin’
ORDER BY price DESC
LIMIT 20; -- number of entities per page

The second URL in Table 4 differs from the first one in the seg-
ment “sort=5”, which sorts entities by release date. They actually
correspond to different sorting tabs in the result page, as illustrated
in Figure 5, and there exist many additional sorting criteria, each of
which corresponds to a second-level URL.

Recall that we aim to recover a representative content coverage
of each site — obtaining exhaustive coverage for a large number of
site is unrealistic and also unnecessary. With that in mind, we only
need to crawl one of these two example URLs (and other similar
URLs with different sorting criteria) discussed above by “dedupli-
cating” them — after all, crawling entities with similar properties
but different sorting criteria only produce marginal benefit.

Similarly, the third and fourth URL in Table 4 differ from the first
URL in the segment “from=”. This is only for internal tracking
purposes so that source of the click can be identified. While the
URL strings are different in the “from=” part, the content they lead
to are identical and thus also need to be deduplicated.

Lastly, the fifth and sixth URL in the Table differ from the first
URL in the “page=” segment. This is to retrieve different portion
of the result set as the number of entities presented on each page
tends to be limited. Again with the goal of recovering represen-
tative content coverage, we would want to avoid iterating over the
complete result set by crawling all results that span different pages
with the use of URL deduplication.

Given this requirement, existing content-based URL deduplica-
tion (e.g., [2, 8, 13]) is clearly insufficient. To see why this is the
case, consider the first and second URL in Table 4 that retrieves the
same result set but use different sorting criteria. Since the result set
can span multiple pages, a different sorting order can produce a to-
tally different result page. Existing techniques that analyze content
similarity will not be able to recognize the semantic similarity be-
tween these two pages. Similarly content based deduplication will
treat the fifth and sixth URL as distinct pages instead of semantic
duplicates, thus wasting significant crawling bandwidth. In this pa-
per we propose an approach that analyzes URL argument patterns
and deduplicates URLs even before any pages are crawled.

7.3.1 Pre-crawl URL deduplication
In this work we propose to analyze the patterns of second-level

URLs before they are crawled, and use a new definition to capture
both content similarity as well as the similarity in the semantics of
queries that are used to retrieve deep-web content.

First, we categorize query segments into three groups, (1) se-
lection segments are query segments that correspond to selection
predicates and can affect the set of result entities (e.g., “qu=gps”
and “mfgid=-652” in the example URLs discussed above, which
are essentially predicates in the where clause of the SQL query);
(2) presentation segments are query segments that do not change
the result set, but only affect how the set of entities are presented
(e.g., “sort=4” or “page=1” in the example URL); and lastly, (3)

content irrelevant segments are query segments that have no im-
mediate impact on the result entities (e.g., the tracking segment
“from=7”).

We then define two URLs as semantic duplicates if the corre-
sponding selection queries have the same set of selection segments.
More specifically, if queries corresponding to two URL strings re-
turn the same set of entities, then irrespective of how the entities
are sorted or what portion of result set are presented, the two URLs
are considered to be duplicates to each other. We can alternatively
state that two URLs are considered as semantic duplicates if they
differ only in content irrelevant segments or presentation segments.

While the reason of disregarding “content irrelevant segments”
are straightforward, the rationale behind ignoring presentation seg-
ments goes back to our goal of obtaining “representative coverage”
for each site. Exhaustively crawling the complete result set in dif-
ferent sorting orders provides marginal benefits; crawling one page
for each distinct set of selection predicates is deemed sufficient.

EXAMPLE 2. We use example URLs in Table 4 to illustrate our
definition of semantic duplicates. The first group of URLs all corre-
spond to the same selection predicates (i.e., “qu=gps” and “mfgid=-
652”) but differ only in content irrelevant segments (“from=”),
or presentation segments (“sort=”, “page=”). Crawling any one
URL from this group will provide representative coverage.

On the other hand, URLs from the first group and second group
differ in selection segment “mfgid=?”, where “mfgid=-652” rep-
resents “Garmin” while “mfgid=-1755” is for “Tomtom”. The se-
lection queries would retrieve two different sets of entities, thus
should not be considered as semantic duplicates.

It can be seen that our semantics-based URL deduplication is a
more general notion that goes beyond simply content-based simi-
larity. Our approach is not based on any content analysis. Rather, it
hinges on the correct identification of the categories of query seg-
ments by URL pattern analysis.

On the high level, our approach is based on two key observations.
First, search result pages in the same site are likely to be generated
from the same template and are thus highly homogeneous. That is,
for the same site, the structure, layout and content of result pages
share much similarity (which include deep-web URLs embedded
in result pages that we are interested in).

Second, given page homogeneity, we observe that almost all
result pages in the same site share certain presentation logics or
other content-irrelevant functionalities. In the example of URLs
extracted from buy.com we discussed above, almost all result pages
can sort entities by price, or advance to the second page of entities
in the result set. Each page also implements the site-specific click-
tracking functionality. These presentation logics translates to the
same presentation segments (“sort=4” and “page=2”), and content-
irrelevant segments (“from=7”), respectively, which can be found
in almost every result page.

With these observations, we propose to take all URLs embed-
ded in a result page as a unit of analysis. We then aggregate the
frequency of query segments and identify segments that commonly
occur across many different pages in the same site. The fact that
these query segments in almost all pages indicates that they are
not specific to the input keyword query, and are thus likely to be
either presentational (sorting, page number, etc.), or content irrele-
vant (internal tracking, etc.).

On the other hand, selection segments, like manufacturer name
(“mfgid=-652” for “Garmin”) in the previous example, are much
more sensitive to the input queries. Only when queries related
to GPS are searched, will the segment representing manufacturer
“Garmin” (“mfgid=-652”) appear. Pages crawled for other entities

(e.g., laptops or cameras or furnitures) are likely to contain a dif-
ferent set of query segments for manufacturers. A specific query
segment (argument/value pair) is likely to exist on some, but not all
crawled pages.

To capture this intuition we define a notion of prevalence at the
query segment (argument/value pair) level and also at the argument
level.

DEFINITION 2. LetPs be the set of search result pages from the
same site s, and p ∈ Ps be one such page. Further denote D(p)
as the set of query segments (argument-value pairs) in second-level
URLs extracted from p, and D(Ps) = ∪p∈PsD(p) as the union of
all possible segments.

The prevalence of an argument-value pair (a, v), denoted as
r(a, v), is r(a, v) = |{p|p∈Ps,(a,v)∈D(p)}|

|Ps| .
The prevalence of an argument a, denoted as r(a), is the average

prevalence value of argument-value pairs with the same argument
a, or r(a) =

∑
(a,v)∈D(Ps) r(a,v)

|{(a,v)|(a,v)∈D(Ps)}| .

Intuitively, the prevalence of an argument-value pair specifies the
ratio of pages from site s that contain the argument-value pair in the
second-level URLs. For example if the URL with the argument-
value pair “sort=4” that sorts items by price exist in 90 out of 100
result pages from buy.com, its prevalence is 0.9. The prevalence
of an argument is just the average over all possible values of this
argument (the prevalence of argument “sort=”, for example, is aver-
aged from “sort=1”, “sort=2”, etc.). The average prevalence score
at argument level is a more robust indicator of the prevalence of an
argument.

Since query segments with arguments that have a high preva-
lence score tend to be either content irrelevant, or presentational,
we set a threshold score θ, such that any argument with prevalence
higher than θ are considered to be semantically-irrelevant (for ex-
ample if “sort=” has a high enough prevalence score, all URLs that
differ only in query segments “sort=?” can be deduplicated, be-
cause crawling the same set of entities with all possible sorting or-
ders are deemed as unnecessary). On the other hand, if an query
segment’s argument has prevalence lower than θ it is assumed to be
a selection segment, which is relevant to the result set of entities.

After identifying semantically-irrelevant arguments, second-level
URLs from the same site can then be partitioned by disregarding
these irrelevant arguments into different buckets, as in Table 4.
URLs in the same bucket are treated as semantic duplicates, and
only one URL in the same partition needs to be crawled2.

To sum up, our deduplication algorithm takes second-level URLs
on the same result page as a unit of analysis instead of analyz-
ing URLs individually. This has the advantage of providing more
context for analysis and producing robust prediction through ag-
gregation. Note that our analysis is possible because result pages
returned from the search interface tend to be homogeneous. Web
pages in general are much more heterogeneous and this page-oriented
URL deduplication may not work well in a general web crawl set-
ting.

8. EXPERIMENTS
In this section, we will discuss key experimental results for the

query generation, empty page filtering, and URL deduplication, re-
spectively.

Query extraction from query logs. Recall that in Section 5.1,
we first identify frequent patterns that are likely to be entity irrele-
2Note that we pick one random URL to crawl rather than removing irrel-
evant query segments, because there are cases in which removing query
segments breaks the URL and lead to error pages.

(a) Impact of removing top patterns (b) Top pattern precision

Figure 6: Removing top patterns

vant using pattern aggregation, which are then used to extract enti-
ties from query logs.

In this experiment, we used 6 month’s worth Google’s query
logs, and entities in Freebase as seed entities. In order to evaluate
whether patterns produced by our approach is truly entity-irrelevant
or not, we asked a domain expert to manually label top 200 patterns,
as correct predictions (irrelevant to entities) or incorrect predictions
(relevant to entities), by looking at 5 sample queries with and with-
out each pattern. We do not observe much ambiguities since only
top patterns were labeled.

Table 5 lists the top 10 most frequent prefix and suffix patterns
we produced. The presence of preposition in the prefix is also good
indication that the prefix is not relevant to any entity so such pat-
terns is also aggregated in the second column. In this table, patterns
that are relevant to entities (and are thus mislabeled) are underlined.
It is clear from the table that most patterns found this way are in-
deed not related to entity mentions. Removing such patterns allows
us to obtain a cleaner set of entity names ranging from song/album
names (“lyrics”, “lyrics to”, etc.), location/attraction names (“pic-
tures of”, “map of”, “where to stay in” etc.), to various product
names (“review”, “price of”, etc.).

Top prefix Top prefix with prep. Top suffix
how lyrics to lyrics

watch pictures of download
samsung list of wiki
download map of torrent

is history of online
which lyrics for video
free pics of review
the lyrics of mediafire
best facts about pictures

Table 5: Top 10 common patterns

In Figure 6a we summarize the precision for top 10, 20, 50, 100
and 200 patterns. Not surprisingly, the precision decreases as more
number of patterns are included.

Figure 6b shows the percentage of queries in the query logs that
contain top patterns, thus illustrating the impact of query cleaning
using top patterns. At top 200 about 19% of the queries will be
cleaned using our approach. The total number of distinct queries
also reduces by 12%, for after cleaning some queries become du-
plicate with existing ones. This reduces the number of unnecessary
crawls, and also improves the quality of the resulting pages (when
extraneous information like “review”, “price of” is included spu-
rious matches are promoted and the search results are less clean
accordingly).

Entity expansion using Freebase. In Section 5.2, we discussed
entity expansion using Freebase using extracted seed entities. At

(a) Num. of matched pairs (b) Precision of matched pairs

Figure 7: Effects of different score threshold

the highest level Freebase data are grouped into “domains”, or cat-
egories of relevant topics, like automotive, book, computers, etc.,
in the first column in Table 6. Within each domain, there is a list
of “types,” each of which consists of manually curated entities with
names and relationships. For example, the domain film contains
types including film (list of film names), actor (list of actor names)
and performance (which actor performed in which film relation).

Domain name Top types # of types # of instances
Automotive trim_level, model_year 30 78,684

Book book_edition, book, isbn 20 10,776,904
Computer software, software_comparability 31 27,166
Digicam digital_camera, camera_iso 18 6,049

Film film, performance, actor 51 1,703,255
Food nutrition_fact, food, beer 40 66,194

Location location, geocode, mailing_address 167 4,150,084
Music track, release, artist, album 63 10,863,265

TV tv_series_episode, tv_program 41 1,728,083
Wine wine, grape_variety_composition 11 16,125

Table 6: Freebase domains used for query expansion

Domain:type name matched deep-web sites
Automotive:model_year stratmosphere.com, ebay.com

Book:book_edition christianbook.com, netflix.com, barnesandnoble.com
Computer:software booksprice.com

Digicam:digital_camera rozetka.com.ua, price.ua
Food:food fibergourmet.com, tablespoon.com

Location:location tripadvisor.com, hotels.com, apartmenthomeliving.com
Music:track netflix.com, play.com, musicload.de

TV:tv_series_episode netflix.com, cafepress.com
Wine:wine wineenthusiast.com

Table 7: Sample Freebase matches (incorrect ones are underlined)

Since not all Freebase domains are equally applicable for deep-
web crawl purposes (e.g., chemistry ontology), for human evalua-
tion purposes we only focus on the 5 largest Freebase types in 10
widely applicable domains listed in Table 6. We also restrict our
attention in 100 high-traffic online retailers that we are most inter-
ested in. We asked a domain expert to manually label, for each pair
of <website, Freebase type> result, whether the matching is cor-
rect. That is, whether entities in the Freebase type can be used to
retrieve valid product entities from the matching website. In order
not to overestimate the matching precision, we intentionally ignore
matches for general-purpose sites that span multiple product cate-
gories (ebay.com, nextag.com, etc.), by considering such matches
as neither correct nor incorrect.

Figure 7a shows the total number of matched Freebase-type / site
pairs and Figure 7b illustrates the matching precision. As we can
see, while the number of matched pairs increases as the threshold
decreases, there is a significant drop in matching precision when

(a) Vary score threshold (b) Using different sites

Figure 8: Precision/recall of empty page filtering. (8a): Each dot in
the graph represents precision/recall of a different score threshold;
(8b): Each dot represents results from a different website.

threshold decreases from 0.5 to 0.3. Empirically a threshold of 0.5
is used in our system.

Table 7 illustrates example matches between Freebase types and
deep-web sites. Top 3 matches of the largest type in each Freebase
domain are listed (in some cases only 1 or 2 matches are above the
relative threshold). Overall this produces good quality matches to
Freebase types, which in turn greatly improves crawling coverage.

Empty page filtering. To evaluate the effectiveness of our empty
page filtering approach (Section 6), we randomly selected 10 deep-
web sites from a list of high-traffic sites (namely, booking.com,
cdiscount.com, ebay.com, ebay.com.uk, marksandspencer.com, nord-
strom.com, overstock.com, screwfix.com, sephora.com, tripadvi-
sor.com), and manually identified their respective error messages
(e.g., "Your search returned 0 items" is the error message used by
ebay.com). This manual approach, while accurate, does not scale
to a large number of websites. It does, however, enables us to build
the ground truth — any page crawled from the site with that par-
ticular message is regarded as an empty page (negative instances),
and pages without such message are treated as non-empty pages
(positive instances). We can then evaluate the precision and recall
of our algorithm, where precision and recall are defined as
precision = |{pages predicted as non-empty}|∩|{pages that are non-empty}|

|{pages predicted as non-empty}|

recall = |{pages predicted as non-empty}|∩|{pages that are non-empty}|
{|pages that are non-empty|}

Figure 8a shows the precision/recall graph of empty page filter-
ing when varying the threshold score θ from 0.4 to 0.95. We ob-
serve that setting threshold to a low value, say 0.4, achieves high
precision (predicted non-empty pages are indeed non-empty) at the
cost of significantly reducing recall to around only 0.6 (many non-
empty pages are mistakenly labeled as empty because of the low
threshold). At threshold 0.85 the precision and recall are 0.89 and
0.9, respectively, which is a good empirical setting that we used in
our system.

Figure 8b plots the precision/recall of individual deep-web site
for empty page filtering. Other than a cluster of points at the upper-
right corner, representing sites with almost perfect precision/recall,
there is only one site with relative low precision and another one
with relative low recall.

URL deduplication. To understand the effectiveness of our se-
mantic URL deduplication technique (Section 7.3), we used the
same set of 10 entity sites used in empty page filtering, and manu-
ally label all URL arguments above the threshold 0.01 as either se-
mantically relevant or irrelevant for deduplication purposes. Note
that we cannot afford to inspect all possible arguments, because
websites can typically use a very large number of arguments in
URLs. For example, we found 1471 different arguments from over-
stock.com, 1243 from ebay.co.uk, etc. Furthermore, ascertaining
semantic relevance of arguments that appear very infrequently can

(a) Argument level results (b) URL level recall

Figure 9: Precision/recall of URL deduplication. (9a): Each dot
represents argument precision/recall at different prevalence value;
(9b): Each dot represents lost URL at different prevalence value.

Figure 10: Reduction ratio of URL deduplication

be increasingly hard. As a result we only evaluate arguments with
prevalence score of at least 0.01, and identified a total of 152 argu-
ments that are semantically relevant.

Figure 9a shows the precision/recall of URL deduplication at the
argument level. Each data point corresponds to a threshold at a dif-
ferent value that ranges from 0.01 to 0.5. Recall that our prevalence
based algorithm predicts an argument as irrelevant if its prevalence
score is over the threshold. This predication is deemed correct if
the argument is manually labeled as irrelevant (because it is pre-
sentational or content-irrelevant). At threshold 0.1, our approach
has a precision of 98% and recall of 94%, respectively, which is a
good empirical value we use for our crawl system.

The second experiment in Figure 9b shows the recall at URL
level. An argument mistakenly predicted as irrelevant by our algo-
rithm will cause URLs with that argument to be incorrectly dedupli-
cated. In this experiment, in addition to using all arguments manu-
ally labeled as relevant in the ground truth, we treat unlabeled argu-
ments with prevalence lower than 0.1 as relevant (which we cannot
manually verify however due to the sheer size of such infrequent
arguments). We then evaluate the percentage of URLs mistakenly
deduplicated (percentage of the loss in content that should have
been crawled) due to the mis-prediction. The graph shows that at
0.1 level, only 0.7% of URLs are incorrectly deduplicated.

Finally, Figure 10 compares the reduction ratio of second-level
URLs between our approach and the simpler approach of using
URL filtering only (which filters out static URLs and URLs with-
out the keyword-query segment, e.g., _nkw= for ebay.com). As
can be seen, URL filtering alone accounts for a reduction ratio of
3.6. Our approach of using semantic URL deduplication on top of
URL filtering achieves a roughly 10 fold reduction in the number of
URLs, which is 2.3 to 3.4 times more reduction than using URL fil-
tering alone, depending on the prevalence threshold. This amounts
to significant saving given that the number of second-level URLs
extracted from results pages are on the order of billions.

9. CONCLUSION
In this work we develop a prototype system that focuses on crawl-

ing entity-oriented deep-web sites. We leverage characteristics of
these entity sites, and propose optimized techniques that improve
the efficiency and effectiveness of the crawl system.

While these techniques are shown to be useful, our experience
points to a few areas that warrant future studies. For example, in
the template generation, our parsing approach only handles HTML
“GET” forms but not “POST” forms or javascript forms, which re-
duces site coverage. In query generation, although Freebase-based
entity expansion is useful, certain sites with low traffic or diverse
traffic do not get matched with Freebase types effectively using
query logs alone. Utilizing additional signals (e.g., entities boot-
strapped from crawled pages) for entity expansion is an interesting
area. Efficiently enumerate entity query for search forms with mul-
tiple input fields is another interesting challenge.

Given the ubiquity of entity-oriented deep-web sites and the va-
riety of uses that entity-oriented content can enable, we believe
entity-oriented crawl is a useful research effort, and we hope our
initial efforts in this area can serve as a springboard for future re-
search.

10. REFERENCES
[1] HTML 4.01 Specification, W3C recommendations.

http://www.w3.org/addressing/url/4_uri_recommentations.html.
[2] Z. Bar-yossef, I. Keidar, and U. Schonfeld. Do not crawl in the dust: different

urls with similar text. In Proceedings of WWW, 2006.
[3] L. Barbosa and J. Freire. Siphoning hidden-web data through keyword-based

interfaces. In Proceedings of SBBD, 2004.
[4] L. Barbosa and J. Freire. Searching for hidden web databases. In Proceedings of

WebDB, 2005.
[5] L. Barbosa and J. Freire. An adaptive crawler for locating hidden-web entry

points. In Proceedings of WWW, 2007.
[6] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a

collaboratively created graph database for structuring human knowledge. In
Proceedings of SIGMOD, 2008.

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. In Proceedings of WWW, 1997.

[8] A. Dasgupta, R. Kumar, and A. Sasturkar. De-duping urls via rewrite rules. In
Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, Proceedings of KDD, 2008.

[9] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in query. In
Proceedings of SIGIR, Proceedings of SIGIR, 2009.

[10] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the deep web.
Commun. ACM, 50, 2007.

[11] M. A. Hearst. UIs for faceted navigation recent advances and remaining open
problems. In Proceedings of HCIR, 2008.

[12] A. Jain and M. Pennacchiotti. Open entity extraction from web search query
logs. In Proceedings of ICCL, 2010.

[13] H. S. Koppula, K. P. Leela, A. Agarwal, K. P. Chitrapura, S. Garg, and
A. Sasturkar. Learning url patterns for webpage de-duplication. In Proceedings
of WSDM, 2010.

[14] J. Madhavan, S. R. Jeffery, S. Cohen, X. luna Dong, D. Ko, C. Yu, and
A. Halevy. Web-scale data integration: You can only afford to pay as you go. In
Proceedings of CIDR, 2007.

[15] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy.
Google’s deep web crawl. In Proceedings of VLDB, 2008.

[16] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates for web
crawling. In Proceedings of WWW, 2007.

[17] A. Ntoulas. Downloading textual hidden web content through keyword queries.
In JCDL, 2005.

[18] M. Paşca. Weakly-supervised discovery of named entities using web search
queries. In Proceedings of CIKM, 2007.

[19] Y. Qiu and H.-P. Frei. Concept based query expansion. In Proceedings of
SIGIR, 1993.

[20] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. Technical report,
Stanford, 2000.

[21] P.-N. Tan and V. Kumar. Introduction to Data Mining.
[22] Y. Wang, J. Lu, and J. Chen. Crawling deep web using a new set covering

algorithm. In Proceedings of ADMA, 2009.
[23] P. Wu, J.-R. Wen, H. Liu, and W.-Y. Ma. Query selection techniques for

efficient crawling of structured web sources. In Proceedings of ICDE, 2006.

	Introduction
	System overview
	Related work
	URL template generation
	Query generation
	Entity extraction from query logs
	Entity expansion using knowledge-bases

	Empty page filtering
	Second-level Crawl
	The motivation for second level crawl
	URL extraction and filtering
	URL deduplication
	Pre-crawl URL deduplication

	Experiments
	Conclusion
	References

