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Abstract—A web application today often utilizes web APIs to
incorporate third-party services into its functionality. Such API
integration, however, is full of security perils: recent studies
show that popular web sites using high-profile web services,
such as PayPal/Amazon checkouts and Facebook/Google single-
sign-on (SSO) services, are riddled with logic flaws, enabling a
malicious party to shop for free or log into a victim’s account.
To address this new threat, techniques need to be developed to
facilitate secure integration of third-party web services.

To answer this urgent call, we present in this paper
InteGuard, the first system that offers security protection
to vulnerable web API integrations. InteGuard operates a
proxy in front of the service integrator’s web site, performing
security checks on a set of invariant relations among the HTTP
messages the integrator receives during a transaction (e.g., a
checkout from a web store or a web SSO). These invariants
link multiple HTTP sessions to a transaction and capture their
security-critical relations. They also characterize transaction-
related communication the proxy cannot directly observe,
which happens between the client and the service provider.
InteGuard includes a suite of novel techniques that automati-
cally extract such invariants from a variety of communication
channels adopted by diverse integrations and achieve effective
false positive control in this process. Our evaluation shows that
InteGuard can defeat complicated exploits on high-profile web
services, with little impact on their normal operations.

I. INTRODUCTION

Recent years have witnessed the growing trend of moving
computing from the desktop to the web, which gives rise to a
huge demand for web applications. To meet such a demand,
web developers increasingly utilize existing web services
(e.g., search, map, payment, authentication, etc.) to rapidly
build up their own applications, through integrating the Ap-
plication Programming Interfaces (APIs) provided by these
services. For example, many web stores (e.g., Buy.com)
call third-party payment APIs provided by cashier services
such as PayPal, Amazon Payments and Google Checkout;
more and more websites include single sign-on (SSO) APIs
of Facebook, Google, Yahoo, Twitter, PayPal and others to
let their customers log in through these identity providers
(IdP). As a result, today’s web applications become increas-
ingly hybrid, with their program logic distributed across
multiple parties, including not only the websites hosting
these applications and their clients but also various third-
party API service providers. Such a development, however,

has made the web applications complicated and error-prone,
as discovered in our recent studies [1], [2].

Logic flaws in web-API integrations. The unique security
challenge such a hybrid web application (i.e., those inte-
grating third-party web services) faces is how to securely
coordinate different parties it involves, including the one that
integrates the API services (called integrator), the provider
of the services and the web clients using the application.
Our prior research shows that this is very difficult to be
done securely: given the diversity in the ways that an API
service is integrated and the partial view the integrator and
the API provider share about each other’s code and runtime
state, logic flaws in API integration are hard to avoid and
can often be easily exploited by a malicious party to cause
miscoordinations and bypass security protection [1]. An ex-
ample is NopCommerce’s integration of Amazon Payments,
in which a shopper is supposed to place an order on the
web store powered by NopCommerce and pay for the order
on Amazon. What has been found is that miscoordination
can be introduced by a malicious shopper who exploits a
logic loophole in the integration to convince the store that
the order has been paid through Amazon and Amazon that
the payment should be made to the shopper’s own Amazon
seller account [1]. As another example, some websites’
integrations of PayPal Access SSO are found to be evadable,
simply by convincing the integrators that a message field
signed by PayPal is a user’s PayPal ID and PayPal that it
should contain the person’s mailing address [2].

The studies we conducted in the past years show that such
logic flaws are pervasive [1]: leading web stores (Buy.com,
JR.com), popular merchant systems (NopCommerce, In-
terspire) and even mainstream payment service providers
(Amazon) all contain loopholes in their integration code
that enable miscreants to shop for free; important websites
integrating SSO mechanisms of Facebook Connect, Google
ID, PayPal Access, etc. are vulnerable to the threat that
allows unauthorized parties to log into victims’ accounts
[2]. The problem cannot be solved by solely relying on
existing techniques like protocol verifications, due to the
diversity in the ways an API service is incorporated and
used by different integrators, and the limited understanding
each party (the integrator, the provider) has about the other’s



behavior (e.g., how the other party verifies a signed message)
and the underlying runtime system (e.g., whether Adobe
Flash allows cross-domain communication [3]). So far, little
has been done to address this emerging security challenge.

Integration protection. Although the above security flaws
can be introduced by all parties involved in an API inte-
gration, prior research [1], [2] shows that the weakest link
remains on the integrator side, whose code appears to be
way more error-prone than that of the provider. Effective
integrator protection, therefore, will significantly mitigate
the threats posed to vulnerable integrations. In our research,
we made the first attempt to find such a solution, with
an aim to develop a generic and automated technique to
protect integrations from exploits. Note that our approach
cannot count on the availability of integration-related source
code, as the integrator does not have provider-side code
and often utilizes off-the-shelf integration solutions such as
software development kit (SDK) released by the provider or
commercial software (e.g., Interspire). The approach is also
expected to work independently of integrations’ semantics
(e.g., payment, SSO), which needs human effort to specify.

An observation we can leverage is that for a specific
integrator-side implementation, its interactions with the ser-
vice provider are rather mechanic: given a small set of
client inputs (e.g., items to be purchased, usernames, etc.),
the HTTP messages to be exchanged during a multi-party
integration-related operation like checkouts or SSO (called a
transaction in the paper) are predictable and the parties in-
volved typically do not perform complicated transformations
on the content of the messages they receive for response
generation. This makes us believe that the invariant relations
among those messages’ parameters can be identified and
utilized to avoid the situation that necessary security checks
fall through the cracks.

Program invariants have been used to detect faulty appli-
cation logics. For example, Waler [4] infers likely invariants
from a web application’s normal operation and analyzes its
source code to find violations. The approach is language-
specific and needs source code, which is often unavail-
able to an integrator-side protection, particularly when it
comes to the provider’s program. Simple traffic invariants
(e.g., session parameters) are employed by BLOCK [5] to
detect the exploits on the websites without proper access-
control protection. Different from such prior work on two-
party web applications, the problem we face, which in-
volves three parties (the integrator, the provider and the
client), is way more complicated, requiring identification
and utilization of new types of invariants that cannot be
handled by those approaches. As an example, consider a
checkout transaction, which involves multiple HTTP ses-
sions between the merchant (the integrator), the shopper
(the client) and PayPal (the provider). Invariant relations
among the content exchanged in different sessions (e.g.,

order ID) need to be found so as to link them to the checkout
and ensure their consistency (e.g., payment matching price)
in the presence of other checkouts and unrelated activities
(e.g., choosing items, etc.). Even more challenging, the
merchant-side protection cannot see the session between the
shopper and PayPal (unlike Waler, which sees the whole
program, and BLOCK, which sees all the traffic), and has
to infer its content from what the merchant sends to the
shopper. This requires extracting the parameters related to
the shopper-PayPal interaction from the merchant-shopper
communication channels, which are very diverse in different
integrations of even the same API (e.g., HTTP redirect, form,
JavaScript, JSON, etc.). Also, the efficacy of this protection
critically depends on effective false positive control of traffic
invariants, which needs a novel solution.

Our work. In this paper, we present a suite of new tech-
niques to address these challenges, making a first step toward
automatic protection of vulnerable web API integrations.
Our approach, called InteGuard, performs security checks
on transaction traffic forwarded by a proxy sitting in front
of the integrator’s website. Such a proxy can simply be a
load balancer operated by most large websites to distribute
web traffic to their clusters. For smaller websites, it can be
run by a trusted intermediary, such as Janrain that integrates
major SSO services to offer its customers convenient access
to them [6]. Attached to the proxy is our InteGuard server,
which inspects invariants within web traffic before it reaches
web servers. The invariants we look at are specified on the
parameters automatically identified through a simple data-
flow analysis that links what the browser can see to the
communication channels the InteGuard server observes, and
extracted from such channels through an in-depth analysis on
related HTTP messages, HTML/XML files, JavaScript code,
etc. From these parameters, invariants are automatically
generated to bind transactions to an integrator, messages to a
transaction and each message within a transaction to its legit-
imate successor. InteGuard achieves effective false-positive
control through strategic selection of normal traffic traces
for invariant generation and carefully-designed differential
analyses on the traces.

We put our design to the test against 11 real-world exploits
reported by prior research [1], [2]. All these exploits work
on subtle logic flaws in popular hybrid web applications,
including leading merchant software integrated with PayPal,
Amazon Payment and Google Checkout, and high-profile
SSO systems supported by Facebook, Google, PayPal, etc.
InteGuard defeated such complicated exploits (see [1], [2])
and worked effectively on different types of hybrid web
application (web stores, SSO) at minimum human inter-
vention, even though our design has not been tied to the
specific features of these applications and rather the way
how web API integrations work (see Section II-A). When
evaluating our approach on 1000 normal transactions with



diverse content through those web applications, we did not
observe any false positives. Also, a performance test on a
prototype we built shows that InteGuard has only a small
impact on the operations of the websites it protects.
Contributions. The paper’s contributions are as follows:
• Toward automated and generic integration protection.
InteGuard is the first approach that offers practical supports
to secure integration of multiple web services. It made a
first step towards automatically protecting different types of
integrations (e.g., payment, SSO). This is achieved through
a suite of novel techniques that comprehensively analyze
the communication observable to the integrator during a
transaction, identify the invariants characterizing the whole
transaction and effectively control false positives.
• Implementation and evaluation. We implemented Inte-
Guard and evaluated it with real exploits, normal transaction
traffic and a performance test, which demonstrates that our
approach indeed offers practical protection.

II. BACKGROUND

A. Web API Integration: How It Works

To incorporate a third-party web service, a hybrid web
application needs to invoke the API functions of the service
with a set of parameters. These parameters include the
description about how the service should be provided and
how its outcomes can be sent back to the integrator. For
example, an integration of Amazon Simple Pay needs to call
the API https://amazon.com/paypipeline, using parameters
such as AccountId, amount, OrderID, returnURL
(a link to an integrator-side function for receiving the return
of the service) and others. This process involves the client
of the web application (Figure 1).

Communication in a transaction. During a transaction,
the client communicates with both the integrator and the
service provider using HTTP request/response pairs (typi-
cally through the HTTPS channels the client establishes with
these parties), which we call HTTP round trip or simply RT.
The servers (the integrator or the provider) can also directly
interact with each other through RTs. In Figure 1, RT1, RT2
and RT3 are client-server RTs and RT4 happens between the
integrator and the provider. Such multi-party HTTP based
communication can become complicated. Specifically, an
integrator can hold an HTTP request from the client and
generate a set of HTTP RTs to query the provider for
the client’s information before sending back the response.
This happens, for example, when a web store asks for a
shopper’s payment information from PayPal. Moreover, a
server often utilizes an HTTP response to the client to trigger
a browser-side request, which invokes a web API on the
same or a different server. An example is the aforementioned
integration of Amazon Simple Pay, which allows a web store
to send a shopper a 302 redirect to call the Amazon API.

Client

Provider Integrator

RT2
RT3

RT1

RT4

Figure 1. A three party communication example described by HTTP round
trips (RTs).

Such server-server indirect communication, i.e., an HTTP
response that causes a browser to generate an HTTP re-
quest, is called browser-relayed message (BRM) in the
prior work [2]. It has been extensively used in web API
integrations to bind the client to a transaction, particularly
in the cases of online shopping checkouts (“who should
pay for the order”) and SSO (“who holds the ID the IdP
vouches for”). This concept can help simplify the description
of complicated transaction communication: for example,
Figure 2 illustrates a BRM view of the communication in
Figure 1; here BRM1 (RT1 response → RT2 request) and
BRM2 (RT2 response → RT3 request) describe the most
important part of the communication through RTs. In the
rest of this paper, we use BRMs or RTs under different
circumstances, for the convenience of presentation.

Client

Provider Integrator

BRM2

BRM1

BRM1= Response of RT1 + Request of RT2
BRM2= Response of RT2 + Request of RT3

Figure 2. The same communication example with client-initiated RTs
simplified as BRMs.

Diversity in integration. Web APIs do not come with a
set of restrictions on how they should be integrated. The
ways they are utilized in web applications are actually quite
diverse. Particularly, the indirect communication between the
integrator and the provider can be performed differently in
different systems: a BRM can be as simple as a 302 redirect
or a meta refresh redirect to conduct an HTTP GET to the
target server, or happen through more complicated channels
such as an HTML form delivered to the client’s browser
to produce an HTTP POST to the server, a script sent to
the browser to generate the form or even a JSON message
acquired by the script from one server for building an HTTP
request to the other server. Moreover, it is completely up to
the integrator how to use the outputs of these APIs. For
example, what comes out of a payment API is just the
information about whether an order is paid or not. How to
act on it (e.g., updating the status of the order, mapping
the order to the items purchased, etc.) is decided by the
integrator’s system. Prior research [1] shows that this part
of integration could introduce serious security problems if

https://amazon.com/paypipeline


it is not well thought out.

B. Integration Logic Flaws and Exploits

Cashier as a Service (CaaS). Prior research found that
online merchants’ integrations of checkout services, called
Cashier-as-a-Service or CaaS, are riddled with logic loop-
holes, which often allows a malicious shopper to shop
for free [1]. As an example, consider the integration of
Amazon Simple Pay within NopCommerce, a leading mer-
chant application [7]. Figure 3 (BRM view of transaction
traffic) and Figure 4 (RT view) illustrate how the integrator
(merchant) works with the client (shopper) and the service
provider (CaaS) through two BRMs (essentially two browser
redirections) after the client places an order to the mer-
chant (referred to as jeff.com) through an HTTP request
(RT1.request in Figure 4). This request triggers BRM1 (a
redirection, RT1.response to RT2.request, from the merchant
to Amazon through the client), which the merchant uses to
call the API https://amazon.com/paypipeline with signed or-
der information, including orderID and the gross amount,
etc. BRM1 also specifies a merchant side API through
its returnURL: jeff.com/finishOrder, which Amazon calls
after the payment is done. As the result of BRM1, the client’s
browser is taken to Amazon’s website, where the shopper
pays according to the order information. Since BRM1 is
signed by Jeff, Amazon transfers the payment from the
shopper’s account to Jeff’s account. Then, Amazon invokes
jeff.com/finishOrder according to returnURL, through a
signed BRM2 (RT2.response to RT3.request) that brings the
browser back to the merchant’s website and also notifies Jeff
of the completion of the payment. The merchant then verifies
Amazon’s signature and sets the order status to “PAID”.

This integration turns out to be vulnerable. Suppose that
a malicious shopper also has a seller account with Amazon
under the name “Mark”. Then what he can do is to pay
Mark (actually, himself) but check out an order from the
merchant Jeff (https://jeff.com). Specifically, when BRM1
goes through the client, the client can simply remove Jeff’s
signature and use Mark’s identity to sign the message. As a
result, from Amazon’s standpoint, the transaction becomes
a purchase the shopper makes from Mark, so the payment
is made to Mark. However, after the payment is complete,
Amazon still redirects the browser to send its signed noti-
fication to Jeff according to returnURL on the BRM1 it
receives. Although this notification is about the shopper’s
payment to Mark, the program logic of finishOrder
(on jeff.com) only checks orderID, which is identical
to Jeff’s pending order. This will cheat the merchant into
believing that his order has been paid. The prior study
shows that the only way for Jeff to realize the problem is to
check payeeEmail, an email address associated with his
Amazon seller account. However, Amazon never states that
this address should be verified in a transaction.

Client
(Shopper)

CaaS
(Amazon Payments)

Merchant “Jeff.com”
(Running NopCommerce)

BRM2 BRM1

BRM1= https://amazon/paypipeline?orderID&gross&returnURL …
               (where returnURL=”jeff.com/finishOrder”)
BRM2= https://jeff.com/finishOrder?payeeEmail&status=PAID&orderID&gross…

Figure 3. BRM based view of NopCommerce’s integration of Amazon
Simple Pay.

Client
(Shopper)

CaaS
(Amazon Payments)

Merchant “Jeff.com”
(Running NopCommerce)

RT1.request = https://Jeff.com/placeOrder.aspx
RT1.response = <form id="SimplePay" name="SimplePay" action="https://amazon/
paypipeline"><input name="amount" value="xx"><input name="AccountId" " 
value="xx"><input name="orderID" value="xx"><input name="returnFlag" 
value="xx"><input name=”returnURL” value=”Jeff.com/finishOrder.aspx”></form>
RT2.request = https://amazon/paypipeline?amount&AccountId&

 orderID&returnURL
RT3.request = https://Jeff.com/finishOrder.aspx?orderID&gross

 &payeeEmail&payMethod&status&certificateUrl

RT2
RT3

RT1

Figure 4. Round-Trip view of the integration of Amazon Simple Pay.

Web SSO. A recent study reveals critical logic flaws in
web SSO systems that integrate the APIs of Facebook,
Google, PayPal and others [2]. An example is illustrated in
Figure 5, which describes the SSO service Google provides
to Smartsheet (smartsheet.com) through Google ID, which
is based on the OpenID standard [8]. During an SSO
transaction, a client who wants to log into smartsh eet.com is
redirected to Google through BRM1, which invokes an API
with a set of parameters. Among them, openid.ext1.re
quired is a list that contains a set of identity informa-
tion of the user delegated by the client Smartsheet asks
Google to vouch for. The list includes the user’s first, last
names and most importantly her email address. After the
user logs in her Google account, Google uses BRM2 to
reply to Smartsheet with signed parameters, as recorded
in its openid.signed list. Smartsheet verifies Google’s
signatures on these parameters before signing the client in.

A logic flaw in this SSO integration is that the
integrator does not verify the consistency between
openid.ext1.required (BRM1), i.e., the list of
items it asks Google to verify, and openid.signed
(BRM2), i.e., what Google actually signs in its response.
Therefore, a malicious client can change the content of
openid.ext1.required to drop the email in BRM1,
which causes Google to only sign on the user’s name, and
then append the attacker’s (unsigned) email to BRM2. When
this happens, the integrator only verifies the signature on
the user’s first and last names. Once succeeded, it still treats
the email added by the attacker as the user’s identity. This

jeff.com
https://amazon.com/paypipeline
jeff.com/finishOrder
 jeff.com/finishOrder
https://jeff.com
jeff.com
smartsheet.com
smartsh
eet.com


Client

Google
(ID Provider)

Smartsheet.com
(Relying Party)

BRM1

BRM1= https://google.com/accounts/o8/ud?
    openid.ext1.required=‘firstName,lastName,email’& …

BRM2= https://returnURL?openid.signed=‘firstName,lastName,email’
              &openid.firstName=’Alice’&openid.lastName=’Doe’
              &openid.email=’alice@foo.com’&openid.sig=…

BRM2

Figure 5. Integration of Google SSO.

enables the attacker to log into any legitimate user’s account
on the integrator’s website. This flaw actually exists in many
websites and both Google and OpenID foundation published
security advisories on the problem [9], [10].

Another interesting example is OpenID’s type confu-
sion problem. Consider the integration of PayPal Access
in Shopgecko.com as an example [2]. It works just like
what is illustrated by Figure 5, except that now Shopgecko
is the integrator and PayPal is the provider. BRM1
shown in the figure carries openid.ext1 .type.email
(type.email for short), which is actually an OpenID
type [11] that determines the value of openid.ext1
.value.email (value.email) in BRM2: if the con-
tent of type.email in BRM1 is “PayPal ID”, PayPal will
fill in value.email (in BRM2) with a user’s PayPal ID
and sign the field; if type.email is set to other types,
for example, mailing address, the user’s address will be
entered into value.email by PayPal. Shopgecko always
uses PayPal ID in its type.email. However, a malicious
client can change it to the type of mailing address through
BRM1 and log in her PayPal account. As a result, PayPal
fills the adversary’s address (which can be maliciously set to
a victim’s PayPal ID) to value.email in BRM2, while
the integrator still treats the content of value.email as
the victim’s PayPal ID. This allows the attacker to log into
Shopgecko.com as the victim.

C. Adversary Model
The techniques presented in the paper aim at mitigating

the threat to integration related logic flaws, rather than more
generic flaws within web applications. We focus on the
integrator’s front, as its program logic was found to be the
main source of such security flaws [1], [2]. Our study assume
that the service provider is trusted, though it can be misled
by the adversary to behave unexpectedly. We do not trust
the client: it can be fully controlled by the adversary or
under the influence of the malicious dynamic content (e.g.,
JavaScript) running in its browser.

III. DESIGN AND IMPLEMENTATION

A. Overview

Architecture. The architecture of InteGuard is illustrated
in Figure 6. It includes three components, a trace collector

(Section III-B), a security policy generator (Section III-C)
and an ICAP (Internet Content Adaptation Protocol) server
attached to a standard reverse proxy (Section III-D). The
trace collector is used by a human user to perform a few
well-designed tests (4 to 5 transactions), which produce a
set of labeled traces (including the HTTP messages of these
transactions) for invariant identification. This testing process
is designed to generate high-quality traces that help mini-
mize false positives. The collector was implemented in our
research as a Firefox add-on and a component running in the
ICAP server to intercept the direct communication between
the integrator and the provider. The policy generator works
on the traces collected to automatically extract invariants
and construct a finite state machine (FSM) that represents
the security policies for the integration. The ICAP server
inspects HTTP messages received by the integrator’s website
and enforces the security policies. We utilized Squid [12]
and GreasySpoon [13] as our proxy and ICAP servers
respectively, and specified FSM in GreasySpoon script.

Response
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Figure 6. Architecture of InteGuard.

An example. Consider NopCommerce’s integration of Ama-
zon Simple Pay in Figure 3 and Figure 4. Throughout the
rest of the paper, we use this integration as a running
example. To produce its traffic traces, one needs to do
four different purchases through the collector to ensure
the diversity in the contents of the traces collected. More
specifically, these traces are generated using different inputs
the client can set through its merchant and Amazon user
interfaces, such as product name, quantity, etc., and also
cover different integrators, different transactions, different
users, etc. From these traces, the collector then automatically
extracts various types of content parameters, such as the
API name placeOrder, orderID, gross, payeeEmail,
etc., which we call elements. Most important here is to link
the parameters the browser uses to call the Amazon API in
RT2.request (i.e., the client-provider message in Figure 4),
which InteGuard cannot directly observe, to the content of
RT1.response (i.e., the proxy-client message in the figure),
which our ICAP server can see. This is achieved through a
simple data-flow analysis that bridges the content of these

Shopgecko.com
Shopgecko.com


two HTTP messages (see Section III-B). This step involves
automatic parsing and analysis of different channels such
communication goes through, simple redirects or compli-
cated script-based BRMs different integrations adopt. Such
an analysis converts individual traces into a set of vectors,
each of which includes the elements within an HTTP RT.

Over those vectors, the security policy generator performs
a series of differential analyses to identify different types
of invariants, including integrator-specific invariants such
as payeeEmail, transaction-specific invariants such as
orderID that connects multiple messages together and
local invariants such as gross (messages involved in
BRM1 and BRM2 in this case). These invariants ensure
that an inbound message the integrator acts on belongs to
the right transaction performed by a right integrator, and is
exactly the one expected by the current transaction state.
The analysis also fingerprints the beginning and the end of
a transaction. All such invariants are used to build an FSM
that the ICAP server runs to perform security checks on the
traffic it receives. In the rest of the section, we elaborate on
these steps and their related components.

B. Trace Collection and Analysis

Even before invariants can be identified, we need to
come up with nontrivial solutions to a couple of technical
challenges. First, collection of the HTTP traces of normal
transactions is more complicated than it appears to be:
consider that we randomly pick up two checkout transactions
involving the same user; then user-specific information may
end up in the invariant set identified, a false positive we
want to avoid. Second, given that InteGuard only works on
integrator-side traffic and does not know how the integration
works a priori, it becomes challenging to extract the param-
eters for an API to be invoked on the provider side from
the integrator’s response to the client (e.g., RT1.response
in Figure 4), which is part of the BRM (e.g., BRM1 in
Figure 3) triggering that API, simply because the response
can take various forms and these parameters (i.e., elements)
could be hidden deeply within an HTML form, XML data,
JSON parameters or even JavaScript code. Here we explicate
how our trace collector deals with these issues.
Trace collection. To avoid the false positive mentioned
above, we need the content of the HTTP traces used for
invariant detection to be as diverse as possible. To this
end, InteGuard requires four test transactions to be executed
through its collector, i.e., the ICAP server with a trace-
collection module and a browser with a trace-analysis add-
on. Such a small set of traces are found in our research to be
sufficient for capturing security-related traffic invariants in
most integrations because in most cases, the communication
among the client/integrator/service provider during a trans-
action is very mechanic, which does not involve complicated
human interactions and often follows a fixed HTTP traffic
sequence like what happens in a network protocol. There

are exceptions, though: occasionally, an integration may
include human interactions in the middle of a transaction.
For example, a variation of PayPal Express lets the user first
register a transaction token from PayPal and then go back to
the web store’s site to enter shipping and billing addresses
before she can finalize the transaction. To avoid the noise
introduced by such interactions to a transaction, our current
treatment is asking the party who produces those test traces
to label human interactions (through our browser add-on)
so as to avoid generating some invariants (actually, the call-
sequence invariant, see Section III-C) that could cause false
positive.

Note that this trace collection process is the only step in
our system that needs human intervention: a human user can
use the browser to perform these transactions, e.g., checking
out items from a web store through PayPal, and let the
collector record the traces. It is possible to automate the
step using web-testing tools such as Apache JMeter [14]
once transaction parameters are set, which we will study in
the follow-up research.

Specifically, before the collection, the integrator is sup-
posed to open two accounts with the service provider1,
which gives it two different identities. Under each of them, a
group of two transactions are carried out. In one transaction,
we avoid the same content for two “attributes of interest”
when possible: for example, the shipping and billing ad-
dresses need to be different. Within one group (associated
with the same account), the values of such attributes on
one transaction are set differently from those of the other
transaction. These attributes are the inputs to the transactions
and can be acquired from the user interfaces of the integrator
and the provider websites. More specifically, for a CaaS in-
tegration, a user is supposed to give her username for login,
choose items from the integrator and go to the provider to
pay. Therefore, the parameters she set during this process,
such as her account information and the name/price/quantity
of the commodity, can be such attributes of interest. For
an SSO integration, on the list is just the username of the
individual who wants to log in. Note that a list of such
attributes is the only semantic information InteGuard needs.

For two corresponding transactions in different groups,
we take the same values for their attributes of interest.
Specifically, Transaction 1 in Group 1 shares the same
parameters with Transaction 1 in Group 2, and the same
happens to Transaction 2 in each group. This ensures that the
only difference between the corresponding transactions in
the two groups is the integrator’s identity. Figure 7 illustrates
the subset of the four traces collected for analyzing our
running example in Figure 4. These traces can be leveraged
by a suite of differential analyses for false positive control

1This can be done within the development environments some
providers offer. An example is PayPal’s Sandbox [15], which allows
one to have many free accounts.



(Section III-C). The complete traces for the integration and
some other examples are available at [16].

RT1.request: /placeOrder.aspx
RT1.response: amount=19.98&AccountId=MULW
            &OrderID=0520&returnURL=finishOrder.aspx&returnFlag=1
RT3.request: /finishOrder.aspx?orderID=0520&gross=19.98
            &payeeEmail=jeff@email.com&payMethod=creditCard

  &status=1&certificateUrl=sandbox.amazon/Cert?Id=3kvr

T2

T1

RT1.request: /placeOrder.aspx
RT1.response: amount=9.99&AccountId=LKED
            &OrderID=0521&returnURL=finishOrder.aspx&returnFlag=1
RT3.request: /finishOrder.aspx?orderID=0521&gross=9.99
            &payeeEmail=alice@email.com&payMethod=creditCard

  &status=1&certificateUrl=sandbox.amazon/Cert?Id=bhk9

T1'

RT1.request: /placeOrder.aspx
RT1.response: amount=19.98&AccountId=LKED
            &OrderID=0522&returnURL=finishOrder.aspx&returnFlag=1
RT3.request: /finishOrder.aspx?orderID=0522&gross=19.98
            &payeeEmail=alice@email.com&payMethod=creditCard

  &status=1&certificateUrl=sandbox.amazon/Cert?Id=bhk9

T2'

RT1.request: /placeOrder.aspx
RT1.response: amount=9.99&AccountId=MULW
            &OrderID=0519&returnURL=finishOrder.aspx&returnFlag=1
RT3.request: /finishOrder.aspx?orderID=0519&gross=9.99
            &payeeEmail=jeff@email.com&payMethod=creditCard

  &status=1&certificateUrl=sandbox.amazon/Cert?Id=3kvr

In
te
grato

r1
In
te
grato

r2

Figure 7. Part of the traces for the running example. T1 and T2 are
in Group 1 (Integrator 1), and T ′

1 and T ′
2 in Group 2 (Integrator

2). These traces are simplified. The complete ones are here [16]

When a client wants to stop a transaction in the mid-
dle, for most integrations, it just needs to browse away
from transaction-related pages or simply close related win-
dows/tabs. On the other hand, some integrations do provide
links that let the client terminate ongoing transactions. An
example is NopCommerce’s integration with PayPal Pay-
ments Standard. In this case, we collect an additional “abort”
trace for a transaction that utilizes the same set of parameters
as Transaction 1 in Group 1, except that it is terminated by
the client on the provider side (the only place throughout
a transaction where the client’s inputs are expected) before
the transaction runs to completion.
Element extraction. When processing a test transaction,
the collector also performs a preliminary analysis on HTTP
messages2 to extract the parameters of web API calls and
key elements from the responses of the calls. This operation
converts a raw HTTP trace to the form that the policy genera-
tor can work on. Specifically, a trace T the collector outputs
comprises a sequence of vector Vj=1,···. Each vector de-
scribes an HTTP round-trip (i.e., its request/response pair):
Vj = (f,m, d, e1, · · · , en), where f is the API function (if
any) invoked, m is the HTTP method (e.g., GET, POST)
used, d is the initiator-server pair for this RT, and ek=1,··· ,n
is an element extracted from the RT. Such an element is
represented by a triplet (t, p, v), with t specifying the type of
the channel that transports the element (e.g., HTTP redirect,

2Note that different from prior research on reverse engineering
of malware protocols [17], InteGuard is meant to work on the
HTTP protocol and typical web content (e.g., HTML) utilized by
legitimate web services, whose formats are quite standard.

HTML form, JavaScript, etc.), p describing the position of
the element in a message and v denoting the value of the
element. For example, consider an integration that utilizes an
HTTP 302 redirect to Amazon.com/paypipeline?orderID=
123&amount= 12&· · · . The elements here include (302,
orderID, 123) and (302, amount, 12), as the names of
the elements (orderID, amount) can be used to directly
locate them in a 302 redirect.

The elements of interest often appear on the request part
of an HTTP RT, as parameters for a web API call. These
elements are well formulated in the standard URL format3

(see the above example), and can be easily extracted. This
also happens to the HTTP 302 redirects (within HTTP
responses) used for the indirect communication between the
integrator and the server (e.g., the BRM above). However,
other BRM channels are more complicated: particularly, the
response from the integrator to the client can include meta
refresh redirect, HTML form (see Figure 4 RT1.response),
JavaScript and JSON etc., as long as such content generates
an HTTP request to call the provider-side API. Even though
the request’s parameters can be easily identified, the ICAP
server cannot see it directly and instead needs to work on
the diverse content within the response (from the integrator)
that generates the request. Therefore, the challenge becomes
how to automatically locate elements in such content.

Our solution is to perform a simple data-flow analysis
on a BRM within the browser, which links the content of
an HTTP response (e.g., RT1.response in Figure 4) to that
of the HTTP request (e.g., RT2.request) the response causes
the browser to produce. Our browser add-on first extracts the
API parameters from the request and then tries to find the
sources of these parameters in the response. This requires
parsing the response content into a structure like HTML
DOM tree or Abstract Syntax Tree (AST) for JavaScript,
and matching the parameters to the values of the elements
within the structure. Once succeeded, the collector records
the type of the structure and element positions, which are
used by the ICAP server during its runtime to locate these
elements from the integrator’s response for security checks.
Here we elaborate how our collector identifies and processes
different types of BRM channels.
• Simple URL redirection. Standard HTTP 3xx redirection
can be directly identified from the header of an HTTP
response. The elements involved are within the URL in
the Location field, and can be extracted according to its
standard format. Redirections can also go through HTTP
refresh, which can be determined from the HTTP refresh
tag the response carries. The target URL here can be found
from the Refresh field. A little more complicated is

3For a POST request, the URL can be included in its content with
its Content-Type set to x-www-form-urlencoded. Occasionally,
other formats can be used, which are also well defined through
Content-Type.

Amazon.com/paypipeline?orderID=123&amount=
Amazon.com/paypipeline?orderID=123&amount=


meta refresh, whose tag (meta http-equiv) and redirect
target URL are embedded in the HTML header of the
response content. To locate the URL, we can parse the
HTML header. A more efficient alternative our collector uses
is simply searching the content for the string that contains
the HTTP path/application name of the URL used in the
HTTP request to the provider, which is observed by our
add-on. The string is then parsed to extract elements.

• HTML form. HTML form is another common channel
for transporting BRMs. Specifically, the integrator includes
a form in its response to the client. The client’s browser
parses the form, which generates an HTTP request (typically
a POST) to invoke a provider API. To work on this channel,
our collector parses the HTML content carried by a response
into a DOM tree (using Mozilla’s HTMLParser) to inspect
its form object. What it does is to extract individual form
elements (using getElementsByTagName) and save the
DOM path (form attributes → input tag attributes) of the
tags whose values match the parameters in the request part
of the BRM. This path, which includes form attributes (id,
name, action) and the input tag’s name attribute, are used
by a Java HTML parser to locate the elements within the
ICAP server during its operation.

An example in Figure 8 shows that the HTML form sent
to the client via RT1.response in Figure 4 is converted into
elements using the API parameters of RT2.request.

• JavaScript and JSON. Even more complicated is the
JavaScript-based BRM channel: the integrator dispatches a
script to the client’s browser, which creates a POST to invoke
the server’s API. The challenge is that the elements of inter-
est here are hidden inside the JavaScript code. Theoretically,
identifying the sources of the response’s URL parameters
requires a thorough analysis on the script’s information
flows, which is hard. Practically, however, these scripts are
typically simple and carry these elements in their constants.
This allows us to locate them by parsing the script (within
the <script> and </script> tags on an HTML page)
into an AST (using the SpiderMonkey engine) to inspect
its constants and record the program positions of those
matching the parameters. Note that we do not even need to
fully parse the script code, particularly the library functions
it calls, as all we need here is just finding out those constants,
which are almost always within the script tags on an HTML
page.

Another BRM channel is JSON. A script running in
the client’s browser can get a JSON message from the
integrator (Content-Type: application/json) and build a
response from the message. Our browser add-on runs a
JSON parser [18] to process the content of such a response
and uses field names to locate relevant elements.

• Other channels. XML can also be used in BRMs or
Round Trips generated by direct communication between
the integrator and the service provider to transfer elements

HTML form generating the request:
<form id= “simplepay” name="SimplePay" method="POST" 
action="https://amazon/paypipeline">
<input name="AccountId" value="MULW">
<input name="amount" value="9.99">
<input name="orderID" value="0519">...</form>

BRM redirection to provider API:
POST https://amazonpaypipeline?
accountId=MULW&amount=9.99&orderID=0519 &...

Extracted DOM path:
AccountId:  form[id,name,action]->inputTag[AccountId]
Amount:  form[id,name,action]->inputTag[amount]
orderID:  form[id,name,action]->inputTag[orderID]

Trace parameters in the response

Extract a DOM path for each parameter

Figure 8. DOM path of HTML form elements extraction.

of interests. Our collector can identify the channel from the
HTTP Header Content-Type and then parse the content
to identify these elements. For example, Interspire’s integra-
tion of Google Checkout uses an XML-based redirection
as its BRM. Moreover, the message directly exchanged
between a web store using this integration and Google is
also in an XML format.

Occasionally, elements of interest are communicated
in a customized format. For example, the content of
openid.ext1.required used by Google ID (see
Section II-B) is formulated in a nonstandard way:
(email,firstname,lastname,language). To ex-
tract these elements, the collector analyzes over-length pa-
rameters it finds, which in our prototype are those in-
cluding more than 15 characters, and further partitions the
parameters using common delimiters such as comma and
period. What can also happen, though very rarely, is that a
parameter is encoded, which in all the cases we encountered
is through Base64. Our approach detects the presence of
encoding when an over-length parameter is found to contain
no delimiters. In this case, we try to decode it using common
schemes, Base64 in particular, and declare a success when
delimiters show up and elements extracted are included in
some invariants. When this attempt fails, human intervention
is needed to supply our system with the format information,
which the provider must well specify to make integration
possible. Actually, this never happened during our study on
real-world integrations (Section IV-B).

C. Invariant Analysis

Invariant detection. A critical step to secure an integration
is to identify the invariant relations among the messages
produced by its normal operations. We expect that such
invariants can help us unambiguously determine whether
an inbound message is a legitimate one, belonging to one
of the integrator’s ongoing transactions. To this end, our
approach is designed to detect four types of invariants:



local invariants for checking the validity of a transaction
message given prior messages in the same transaction,
transaction-specific invariants for connecting a message to
a transaction, integrator-specific invariants for detecting the
messages unrelated to the integrator under protection, and
the other invariants for characterizing the service provider
and determining when a transaction starts and when it ends.
These invariants are identified by running a set of differential
analyses on the four traces collected, as elaborated below.

• Local invariants. Given a trace, a local element invariant
L is a set of elements, each from a different RT of a trans-
action, with the following property: for any two elements
e, e′ ∈ L and their value attribute v (denoted by e.v), we
have e.v = e′.v, that is, they all have the same value. For
example, the amount element extracted from RT1.response
in Figure 7 (the item’s price) matches the gross element
of RT3.request. Such an invariant relation should always be
kept throughout a transaction to ensure the consistency in
its execution.

To detect all such invariants on a trace T1, the policy
generator inspects each RT V in the transaction and com-
pares the value of its element e (i.e., e ∈ V ) with all the
elements in the RT’s predecessors, until one of them V ′ is
found to include an element e′ such that e′.v = e.v. When
this happens, we first check whether e′ is already in a local
invariant set: if so, e is added to that set; otherwise, a new
set is created to contain e′ and e. In our running example
in Figure 7, InteGuard compares the value of gross in RT3
(RT3.gross.v) with those of the elements in RT1, which
reveals the invariant RT3.gross.v = RT1.amount.v. Note
that for local invariants, we just look at the relations between
elements, instead of their specific values (the content of
amount.v for example). After generating all the invariants
for T1, our approach further compares them with those
detected from T2, the other trace in the same group, to update
the content of individual invariant sets: for any invariant L
of T1, we update it as L← L∩L′ if L∩L′ 6= φ, where L′ is
an invariant for T2; L is dropped if such L′ cannot be found.
Intuitively, only the relations held in both traces (whose
input parameters for “attributes of interest” are completely
different) are considered to be true invariants. This treatment
helps reduce false positives. Another false-positive control
we took is to drop all detected invariants associated with
the elements whose values are below three bytes, such as
returnFlag in RT1.response (Figure 7).

Another local invariant InteGuard utilizes is the sequence
of web APIs invoked during a transaction and the features
of their responses. Different from the call sequence of a
desktop program, which has long been used for anomaly
detection [19], [20], a web API sequence includes the func-
tions on both the integrator and the provider sides. Therefore,
a call in the sequence is described not only by its API name
but also by its domain. For example, in our running example

(Figure 7), the calls the integrator can observe are (https://
jeff.com/placeOrder.aspx, https://jeff.com/finishOrder.aspx).
Also used in the sequence are the API parameters and
HTTP response status code (e.g., 302, 200, etc.) of the call’s
response. This invariant works particularly well on web API
integration, as it operates pretty mechanically: for legitimate
transactions completed through the same integration, their
API call sequences never change.

• Transaction-specific invariants. A real-world integrator
works concurrently on multiple transactions. Also, the traffic
it generates can be mixed with that produced by other activ-
ities unrelated to any transaction. As an example, consider
a web store: at any given moment, it may process many
checkout transactions and also serve the shoppers who are
just browsing its web pages and choosing commodities. A
challenge here is how to determine whether an inbound
HTTP message is related to checkout, and if so, which
transaction it belongs to. Our approach addresses this issue
by identifying the invariants specific to a transaction.

Actually, whether an inbound HTTP request is related to
a transaction can be easily determined by looking at the
API function it calls: if the API is transaction-related (like
https://jeff.com/placeOrder.aspx), as indicated by the web
API sequence discussed above, then the message belongs to
some transaction. Finding out which transaction it should go
to is not hard either when the message comes from the client,
whose session ID serves as a transaction-specific invariant.
What gives us trouble is the messages exchanged directly
between the integrator and the provider, which do not share
the session ID with the RTs from the client, even when they
are actually within the same transaction.

To link such messages to their transactions, we resort to
a subset of local element invariants. The idea is to find
those local invariants that uniquely identify a transaction.
Denote a trace T ’s element e by T.e. Given all four test
traces (T1, T2) from Group 1 and (T ′1, T

′
2) from Group

2, a local invariant L is also transaction-specific if for
any e ∈ L, T1.e.v 6= T2.e.v 6= T ′1.e.v 6= T ′2.e.v. In
other words, every element in this invariant has a different
value in all four test transactions. Such an invariant can
be used to identify the transaction a message is associated
with, because of the following reasoning. T1 and T ′1 share
transaction parameters except integrator identity. Therefore,
the invariant with different values in these traces should
be related to either integrators or their transactions. The
former is ruled out by the comparison between T1 and T2,
which share the integrator. Then, we can conclude that what
are left must be specific to transactions. Examples of such
invariants include order/transaction ID. To the integrator,
such invariants appear on both the messages from client and
those from the provider, and thus can be used together to
link these messages to a specific transaction.

• Integrator-specific invariants. With the extensive use of

https://jeff.com/placeOrder.aspx
https://jeff.com/placeOrder.aspx
https://jeff.com/finishOrder.aspx
https://jeff.com/placeOrder.aspx


open redirects such as returnURL in Figure 3, the in-
tegrator needs to know whether it is the right recipient
of an inbound message. Our solution, again, is a simple
differential analysis that compares different test traces col-
lected. Specifically, given an element e, it is integrator-
specific if the following two conditions are met: for the
four test traces (T1, T2) and (T ′1, T

′
2), (1) T1.e.v = T2.e.v

and T ′1.e.v = T ′2.e.v, and (2) T1.e.v 6= T ′1.e.v. Since T1/T ′1
(and also T2/T ′2) come from the transactions that differ only
in the integrator’s identity, the elements that hold the same
values (see (1)) within the same group, that is, associated
with the same integrator, and different values in different
groups (see (2)) should be identity-related. An example is
payee in our running example (Figure 7). This approach
automatically removes the invariants related to transactions,
which must have different values for the transactions from
the same integrator, and also suppresses other false positives
caused by the parameters missed on the list of attributes of
interest: for example, elements appended by the provider
to the message the client sends to the integrator, such as
payMethod, will not be picked out for integrator identifi-
cation, when it holds the same value creditCard on all
four traces. The invariants identified in this way are used
by the ICAP server to catch the transaction messages the
integrator is not supposed to receive.

S0
payeeEmail=jeff@email.com?

S1.gross=S0.amount?

Yes No

Ɛ Sv

S1

placeOrder finishOrder

abortAPI

Figure 9. FSM policies for NopCommerce’s integration of Amazon
Simple Pay. Inside the rectangle box are the security checks
performed in State S1. The FSM is triggered by the function call
PlaceOrder (RT1.request in the running example)

• Other invariants. Since an API integration is only part of
a hybrid web application (e.g., the checkout integration in
a web-store system), we need to find out when InteGuard’s
protection should be activated and when it should be turned
off during the application’s operation. In practice, the start
of a transaction can always be identified from the first API
call the application makes to the service provider’s website,
which always goes through an HTTP response to the client
(i.e, a BRM). When this happen, the ICAP server also picks
up the HTTP request, which is temporarily buffered, as part
of the transaction traffic.

The completion of a transaction can be identified from
the API sequence of the integration. In the case that a client
aborts a transaction through the links provided by the inte-
gration, we can compare the abort trace with its counterpart
in Group 1 to identify their difference in API sequences and
parameters, which serves as an invariant for determining a

normal termination of a transaction. When the client simply
browses away from transaction-related web pages or closes
related windows/tabs, we have to resort to other information
to find out what has happened. Particularly, the client in
the middle of a transaction is not supposed to alter the
state of the integrator through the request unrelated to the
transaction. Such an attempt is detected by our approach
from a POST request (unrelated to any transaction) produced
by the client whose session ID is associated with an ongoing
transaction. This combination, i.e., non-transaction POST
and transaction-related session ID, serves as an invariant that
InteGuard uses to detect the end of a transaction.

Finally, we also need to consider the invariants that
characterize the service provider. What is used in our system
for this purpose are the provider’s domain names: if a
provider-domain element appears on a given RT across all
the traces collected, InteGuard picks it up and treat it as a
provider-related invariant.

Security policy generation. Using the invariants detected,
our approach further builds a set of security polices for
integration protection. These policies include a global policy
utilized by the ICAP server to quickly filter incoming
messages before an in-depth invariant check happens. Such
a policy requires the server to first look at a message’s URL:
when transaction-related APIs are not found there and the
message also does not meet the termination condition stated
above, it is ignored.

After a message passes the global policy check, its con-
tent is further inspected using different types of invariants.
Security policies built upon these invariants are organized
as an FSM for each integration. Specifically, such an FSM
can be described by a tuple (S,Σ+,Σ−, δ, S+, δ+, S−, δ−).
Here, S is a set of states, each of which contains a set
of local invariants (including transaction-specific ones) and
integrator-specific invariants to be checked at the state. These
states include an initial state s0, where a transaction starts,
a transaction completion state ν and an error state ε. At
ε, InteGuard can accommodate customized polices, ranging
from raising an alarm to stopping the whole transaction.
Σ+ is a set of transaction-related request messages, which
are paired with their corresponding responses in Σ−. Each
request/response pair, i.e., a round-trip, triggers a state
transition, according to the function δ: S×Σ+×Σ− → S∪
S+∪S−, where S+ and S− will be explained later. Actually,
δ models the operations each state performs in response
to an HTTP RT, which includes extracting and checking
its elements according to the invariants, and updating the
content of the invariant set to prepare for the inspection
at the next state. An inconsistency between the value of
any invariant and its corresponding element on the message
constitutes a policy violation, which moves the state to ε.
Also important here is determining whether the messages
are supposed to be received at the current state, based



upon transaction-specific and integrator-specific invariants.
An incoming message not associating with any FSM and
the current integrator will cause the ICAP server to raise
an alarm. As an example, Figure 9 shows the FSM of our
running example (Figure 7): at State S1, a local invariant
S1.gross = S0.amount and an integrator-specific in-
variant payeeEmail =jeff@email.com are verified.

In addition to regular states in S, the FSM also includes
special states in S+ and S−, which work on a single
message (a request or a response) instead of a round trip.
This happens when the integrator receives an HTTP request
from the client and needs to retrieve information from
the service provider (through a few RTs) before sending
back a response. An example is Interspire’s integration
of PayPal Express (Figure 10). A checkout through the
integration requires the merchant to contact PayPal for a
client’s payment information between an RT initiated by
the client. Such an operation is modeled by states in S+,
whose state transitions are governed by a different function
δ+: S+ × Σ+ → S. Invariant checking at such a state
only happens to an HTTP request. After the invariant set
has been updated, the system moves into a new state in S,
which processes the RT (e.g., the one that queries PayPal) it
receives. Following such operations is a state in S−, which
only accepts the response corresponding to a prior pending
request, through the function δ−: S− × Σ− → S. In this
way, the system gets back to a regular state.

S0
+ Transation 

Token?

PayPal
S2

- S3

S4
+

Transation Token?
Receiver=Jeff?

Quantity=S2
-.quantity?

checkout.
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finishorder.request
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-S7

finishorder.
response

OrderID=
S7.OrderID?

updateOrderStatus
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Figure 10. FSM policies for Interspire’s integration of PayPal Express.

To build such an FSM, the policy generator goes through
a RT sequence recorded in the trace: starting from the first
one, each RT results in a state that records the invariants
expected from the next RT. The special states are detected
from the order in which a request, its response and the RTs
in-between are observed by the collector. At these states,
transitions are triggered by a single message. All the states
except S0 are connected to ε, the error state, when they
receive messages that do not meet any one of the invariants
expected at these states.

D. Online Protection

Server configuration. The Squid proxy utilized by Inte-
Guard holds the integrator’s domain name. The client that

accesses a hybrid web application in the domain sends
HTTP requests to the proxy, which rewrites their URLs to
forward the request (through the ICAP server) to an internal
website that provides the real service. In this way, the web
traffic produced by the application always goes through the
proxy. This configuration, however, could cause problems
for some integrations, particularly when a service provider’s
signature on the integrator’s URL needs to be verified by
the website. The trouble here is that the website can use a
different domain or a sub-domain than that of the proxy.
This causes the verification to fail when the commercial
off-the-shelf application is used and change of its code is
not an option. Our solution here is letting the proxy keep
the proxy’s domain within the Host field of the HTTP
messages it forwards to the website. Since the application
gets the domain name (for the signed URL) from that field,
the signature can then be successfully verified.
Policy enforcement. During its runtime, the proxy intercepts
the website’s HTTP traffic and then passes the messages
to the ICAP server, which was built upon a GreasySpoon
service in our prototype. On messages related to ongoing
transactions, the ICAP server performs the global-policy
check, extracts elements of interests from the messages
and checks their compliance with security policies. Element
extraction here was implemented using Java SDKs and the
compliance check is performed by a GreasySpoon script that
takes the descriptions of FSMs as its input. The state of a
transaction can be kept in memory or a database associated
with the ICAP server, in the same way that a web store
handles pending orders. Such policies can be adjusted when
false positives are discovered during InteGuard’s operation.

IV. EVALUATION

We performed a thorough evaluation of our InteGuard
prototype to understand its effectiveness in protecting vul-
nerable integrations, the false positives its incurs and its
performance impacts. Our study shows that our approach
indeed achieves practical integration protection: it defeated
complicated exploits on subtle logic flaws within real-
world integrations, at a zero false-positive rate and small
performance overhead. Here we elaborate this study.

A. Experiment Settings

Integrations. We used the hybrid web applications with
known integration vulnerabilities in our study. These web
applications include leading merchant systems and popular
web services, all integrated with the APIs provided by well-
regarded payment or SSO service providers. More specifi-
cally, we tested our techniques over 6 vulnerable checkout
integrations within Interspire (Starter Edition 5.5.4) and
NopCommerce (1.60), involving PayPal, Amazon Payments
and Google Checkout, as reported in our prior research [1],
as well as 5 recently discovered faulty SSO integrations [2],
involving popular websites such as sears.com, janrain.com,

jeff@email.com
sears.com
janrain.com


Table I
EFFECTIVENESS EVALUATION

No. Application Service Integrated Invariant Type Invariant Violated Detected
1 NopCommerce Paypal Web Payment Std Local paymentAmount == transactionAmount Yes
2 NopCommerce Amazon Simple Pay Integrator-Specific recipientEmail == constant value Yes
3 NopCommerce Amazon Simple Pay Integrator-Specific certificateUrl domain == provider domain Yes
4 Interspire Paypal Web Payment Std Transaction-specific transactionId == custemField Yes
5 Interspire Paypal Express Local signedOrderId == id Yes
6 Interspire Google Checkout Web API Sequence API seqence Yes
7 Smartsheet.com Google ID Local signedList == signedList Yes
8 Janrain Google ID Local discoverytoken == discoverytoken Yes
9 Sears.com Facebook SSO Integrator-Specific returnURL == constant value Yes(simulated)
10 Shopgecko.com Paypal Access Local openid.type == type.value Yes
11 FarmVille Facebook SSO N/A N/A No

etc., and famous IdPs like Google, Facebook and PayPal.
The details of these integrations are presented in Table I.

Our evaluation also utilized carefully-crafted exploits on
11 logic flaws within these integrations, as reported in our
prior work [1], [2]. Since all vulnerable SSO integrations
were already fixed, we had to work on the traces recorded
from our prior attacks.

System settings. Our proxy and ICAP server were installed
on a system with QuadCore i5-2400 3.10GHz CPU and
8 GB memory. The ICAP server was running inside a
Java Virtual Machine with 5 GB memory. The system was
equipped with Linux 2.6.32. The web server that powered
merchant applications was on a system with Core 2 1.83GHz
CPU and 4 GB memory. Its operating system was Windows
Server 2008 R2.

B. Effectiveness

Our evaluation was performed on all vulnerable integra-
tions reported in two recent papers [1], [2], except those in
the following categories: (1) proprietary web services with
direct integrator-to-provider communication, (2) provider-
side flaws, (3) non-transaction flaws and (4) response failure.
For (1), we did not have access to the merchant applications
used by Buy.com and JR.com, and their communication with
CaaS providers, which makes it impossible to build their
FSM policies. An example for (2) is the Flash cross-domain
problem in Facebook Access [2]. The flaw was introduced
by Facebook, allowing the adversary to steal the integrator’s
secret access token even without interacting with it at all.
In (3) is Freelancer.com, whose flaw needs to be exploited
before an SSO transaction happens [2]. A case in (4) is the
Facebook integration within zoho.com: apparently, it detects
invariant violations but takes a problematic response (redi-
recting a client to a suspicious web site) that leaks out the
client’s login credential through a referral header [2]. Note
that the flaws in (2), (3) and (4) seem to be less pervasive
than the vulnerabilities caused by the integrator’s failure in
ensuring security-critical invariants during a transaction (all
CaaS flaws discovered [1] and 5 in 8 SSO flaws [2]), which
our approach is designed to fix.

We installed Interspire 5.5.4 and NopCommerce 1.60 on
our local system and generated the security policies (built
upon all types of invariants) for their integrations using the
traces collected from normal checkout transactions. The list
of attributes of interest used for generating those traces
includes a shopper’ user account with the merchant, the
name/price/quantity of the commodity she chooses, delivery
method and the shopper’s account with the CaaS providers
(Amazon, PayPal and Google). Note that we did not mean
to make the list complete, in order to understand the false
positives our approach could cause when the diversity of
the traces is limited. The traces for SSO integrations were
gathered from real login processes performed on their web
sites, using different user accounts on both the integrator
and the service provider sides (attributes of interest). These
traces were sufficient for constructing security policies, as
SSO logins do not have direct integrator-to-provider com-
munication. The problem is that we could not change these
real web sites’ accounts with their SSO providers and thus
all four traces we collected came from the same integrator.
As a result, the FSMs generated for their integrations only
included local and transaction-specific invariants.

Results. We ran all the exploits reported in the prior
research and a new one we discovered on Interpire and
NopCommerce, and found that InteGuard defeated all of
them. For SSO integrations, we replayed 5 attack traces [2]
against our prototype, which caught 3 of them. The cases our
approach missed include the Facebook Access integrations
in sears.com and Farmville’s integration of Facebook Legacy
Canvas Auth [21]. The problem with sears.com is related
with an integrator-specific invariant, which we did not get
the traces to detect. However, we manually analyzed the
traces we had and found that once we can test its integration
system using a different integrator identity (its domain name
in this case), our prototype can generate the right invariant to
defeat the exploit. The logic flaw in FarmVille’s integration,
apparently, is caused by its failing to verify Facebook’s
signature [2]. The invariant relation between a signature and
the signed content cannot be checked without semantic in-
formation like signing algorithms, key, etc., which invariant-
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based approaches cannot handle. Fortunately, such a type of
flaws is rare: this is the only documented case in which
signature verification is completely missing.

Table I elaborates the outcomes of the effectiveness eval-
uation. Here we describe some examples. The details of the
rest of the exploits can be found in [1], [2].

CaaS integrations. For NopCommerce’s integration of
Amazon Simple Pay, as described in Section II-B, our pro-
totype identified payeeEmail in BRM2 as an integrator-
specific invariant. This invariant was used by InteGuard to
detect the exploit that causes Amazon to send the notifica-
tion for Mark’s transaction to Jeff (see Section II-B): the
payeeEmail field in BRM2 was found to be inconsistent
with the invariant, which should be Jeff’s email.

As another example, consider Interspire’s integration of
PayPal Express, as illustrated in Figure 11. After a client
initiates a checkout transaction through an HTTP request,
the integrator first uses RT1 to acquire a transaction token
(token) from PayPal, and then uses BRM1 to take the
client to PayPal to pay for the order generated for the
transaction, using the token as the transaction’s identifier.
After the payment is done, PayPal uses BRM2 to bring the
client back to the integrator and call the merchant’s API
finishOrder. The API performs RT3 to get the payment
details from the PayPal and then redirects the client to
call another merchant’s API updateOrderStatus with
signed orderID. That API sets the status of that order to
“PAID”.

Client

CaaS
(PaypalExpress)

Merchant
(Running Interspire)

BRM2 BRM1

RT1

RT3

BRM3

BRM1= https://www.paypal.com/payForOrder?token&...
BRM2= https://store.com/finishOrder?token&...
BRM3= https://store.com/updateOrderStatus?orderID&...

Figure 11. Interspire’s integration of PayPal Express.

A logic flaw revealed by our prior research [1] is that a
malicious client can replace the order ID in one transaction
with that in a different transaction in the BRM that calls
updateOrderStatus. The function will stamp the sec-
ond order as “PAID”, even when it is not, as long as the first
one is paid. As a result, a shopper can pay for a cheap order
(the first one) and get an expensive item from another order
(the second one). A new finding we made in our study is that
the token of an unpaid transaction can also be swaped with
that of a paid transaction. When this happens, the integration
code mistakenly associates the paid transaction token with
the unpaid order and therefore allows the malicious shopper
to get one item at another item’s (lower) price.

Both exploits were defeated by InteGuard, which iden-
tified both token and orderID as local invariants. The

attack messages for supplanting these elements bear a ses-
sion ID, also a transaction-specific invariant, matching that
of one transaction but token or orderID violates the local
invariant of it. This makes the system raise an alarm.
SSO integrations. Our approach also caught both ex-
ploits described in Section II-B. For the Google ID in-
tegration in smartsheet.com, InteGuard parsed the con-
tent of openid.ext1.required (integrator’s response
in BRM1) and openid.signed (Google’s response in
BRM2). The elements extracted from the first list should
match these on the second list, which was detected as a set of
local invariants. During the attack, one of such invariants was
found to be violated: that is, the email element on the first
list, which smartsheet.com asked Google to check, could not
be found on the second list, which was Google’s response.
This revealed the malicious attempt made by the client. Sim-
ilarly, for the PayPal Access integration in Shopgecko.com,
a local element invariant found was that type.email
in BRM1 (Shopgecko’s request to PayPal) should match
the content of the same field in BRM2 (PayPal’s reply to
Shopgecko). This invariant was found to be broken during
the attack, in which the client changed the field in BRM1
to the type of mailing address, thus causing inconsistency
with what the proxy saw in the response part of the BRM,
i.e., the type of PayPal ID.

C. False Positives

We studied the level of false positives the invariants
identified by InteGuard could incur. For each CaaS inte-
gration, we conducted 100 to 300 checkouts through their
PayPal, Amazon and Google service providers to “buy”
commodities from our web stores powered by Interspire
and NopCommerce. To make our experiments as realistic as
possible, we had 5 to 20 different users4 check out different
items simultaneously from our stores. These users’ profile
information (names, address, and others) was set differently.
During our experiments, they randomly chose commodities
with parameters of individual items (e.g., quantities, sizes of
shoes, disk space, etc.) randomly set according to the con-
straints imposed by user interfaces. Those checkouts were
paid at PayPal, Amazon and Google. Also, we simulated
random user behavior, such as clicking on “Back” button,
leaving merchant or CaaS websites and later returning
through old URLs, randomly crawling URLs on merchant
web pages during transactions, etc., in an attempt to generate
noise traffic to confuse InteGuard. For each SSO integration,
we conducted 20 logins to their corresponding websites
through their Facebook, Google and PayPal IdPs. Each of

420 user accounts were opened for the study through PayPal,
Amazon and Google’s Sandbox development environment [15],
[22], [23] and used for evaluating the integrations except Inter-
spire’s PayPal Payments Standard with Instant Payment Notifica-
tion (IPN), which is not well supported here by Sandbox. We had
to evaluate this integration using 5 real accounts.

smartsheet.com
smartsheet.com
Shopgecko.com


Table II
PERFORMANCE EVALUATION

BRM 32 Users (Delay in ms) 256 Users (Delay in ms)

Channels W/O
InteGuard

W/
InteGuard

Overhead
(%)

W/O
InteGuard

W/
InteGuard

Overhead
(%)

HTML Form(Interspire) 4331 4475 3.32% 19985 20305 1.60%
HTTP 3XX(NopCommerce) 684 687 0.44% 1093 1101 0.73%

JavaScript(Synthesized) 1322 1352 2.27% 9585 9658 0.76%
JSON(Synthesized) 473 475 0.42% 3967 4001 0.86%

Meta Refresh(Synthesized) 4848 4904 1.16% 26061 26920 3.30%

these logins involved a different user with different profile.
The HTTP traces recorded from the SSO transactions were
replayed to our prototype.

Throughout 1,000 real transactions (100 SSO logins and
900 checkouts), InteGuard did not trigger any false alarms.
We believe that this zero-false-positive result comes from
the nature of web API integrations. In addition to the in-
formation for identifying transactions and integrators, other
variations in the traffic produced by these integrations across
different transactions mainly come from user inputs. In our
running example, what causes the dynamics over the same
integrator’s different transactions is amount, which changes
with different items a shopper chooses (for more compli-
cated examples, see the traces here [16]); other elements
like orderID, AccountId, payeeEmail always stick
to transactions or integrators. As a result, a small set of
traces generated using different user inputs (attributes of
interest), different transactions and different integrators can
be sufficiently diverse for avoiding false invariants.

D. Performance

We also put our technique to a test to understand its
performance impact, which mainly comes from parsing
different types of web content to extract elements. In our
study, we selected representative integrations from different
content categories, including HTTP 302 redirection, HTML
form, meta refresh, JavaScript and JSON. The details of
these integrations are listed in Table II. In real world, JSON
and meta refresh are used in Buy.com and Janrain.com
respectively. Also, Amazon SDK includes the support for
JavaScript-based BRM. We synthesized the integrations in
these categories, as we did not have access to real-world
websites’ integration code.

We ran Apache JMeter [14] to generate test traffic.
Specifically, we first recorded the HTTP trace of a manual
checkout process for each integration, and then used JMeter
to replay the trace, with its parameters dynamically updated
by scripts. In this way, we generated workload for our
prototype that protects each of these integrations under
the scenarios of 32 concurrent checkout transactions and
256 concurrent checkouts, through 5 user accounts on the
CaaS sides. Note that 256 is Apache’s default setting of
maximum number of concurrent connections [24]. In our
experiment, all except 5 of these transactions did not run

to completion, as PayPal and other CaaS providers do not
handle two orders from the same user at the same time.
Nevertheless, these transactions forced our system to parse
their web content for invoking provider APIs and perform
initial invariant checks, which constitutes the major portion
of the transaction workload. The average time of a RT in
these transactions (including the 5 completed ones) was
recorded and compared with the delay observed from a
baseline setting that only involved a standard web proxy
without any InteGuard components (which are in the ICAP
server). We did not take the proxy out of the baseline because
it does nothing but forward traffic to the ICAP server, and for
the commercial websites capable of handling a large number
of transactions, they need a load balancer that plays the same
role as the proxy here to distribute web traffic to the servers
in their web farms.

The experimental results are presented in Table II, which
shows that the overhead incurred by InteGuard are negligible
(no more than 3.32%) even in the presence of 256 con-
current transactions. Although the ICAP server undertook
the tasks such as parsing JavaScript, HTML pages, etc.,
such web content was typically small in an integration-
related transaction (e.g., a few hundred bytes of JavaScript
code, see Page 7) and did not add much to the overall
performance overhead. Our FSM polices did not bring in
much memory burden either: the memory consumption of
the ICAP server stayed constant (about 1250MB) when
the number of the concurrent transactions grew from 32
to 256; also, the presence and the absence of the FSM
policies only changed the memory usage marginally (about
150 MB out of the 1250 MB memory consumed by the
ICAP server even without the FSM policies). Note that this
level of workload (256 concurrent connections) already hit
the performance limit of a single Apache server the merchant
store ran upon (a server farm is needed for a big store to
process tens of thousands of transactions), but not that of
the ICAP server operating InteGuard. Actually, we found
that in some cases, the delay caused by our security check
was so small that it was completely overshadowed by the
variations in network communication latency, forcing us to
repeat experiments 10 to 30 times to get an averaged result.
This gives us reason to believe that with a proper level of
hardware support, InteGuard should be able to handle a large
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number of transactions a big web store receives.

V. DISCUSSION

Our simple invariant identification technique turns out to
be very effective (Section IV), because web APIs (payment,
SSO) often have a relatively small set of input parameters,
most of which are expected to be set by the user, and can
therefore be retrieved from user interfaces and covered by
the list of attributes of interest. This helps achieve diversity
in the inputs and reduces false positives. Also, the integrator
and the provider typically do not perform complicated
transformations on their inputs to produce responses. As a
result, most invariants (e.g., orderID, price, etc.) are rather
simple (exact match) and can be found from web traffic.
On the other hand, our design cannot handle complicated
invariant relations, such as that between signed content and
its signature (Section IV-B). New approaches that address
this problem should be developed to improve our techniques.
Also, although InteGuard is for exploit prevention, the
invariants produced thereby can help with vulnerabilities de-
tection within an integration5. These directions are definitely
worth further research effort.

In our evaluation study, we did not observe any false
alarms. This, however, does not mean that our approach
is completely immune to false positives. Actually, although
the parameters of transactions set by the service provider
for a specific integration are largely stable, some of them
could change over a relatively long period of time. When
this happens, InteGuard will falsely report a foul play on a
legitimate transaction. A better understanding of this issue
and development of effective mitigation when necessary
need to be studied in the follow-up research.

Our performance evaluation (Section IV-D) provides pre-
liminary evidence that InteGuard works efficiently under
heavy workload. On the other hand, further studies are
still necessary to understand how our approach performs
in the presence of an even larger number of transactions.
In this case, we need to move our system onto a server
farm, for example, those deployed on public commercial
clouds like Amazon EC2, under different load balancing
strategies. Also, the policy checking step indeed introduces
some additional states for each transaction, which theoret-
ically make the system more vulnerable to a distributed
denial of service (DDoS) attack. On the other hand, the
problem exists in any corporate networks that utilize ICAP
and other content inspection tools for the purposes such as
malware detection, and our preliminary results show that our
approach only increases CPU/memory overheads marginally
compared with those of the ICAP server itself. This indicates
that use of InteGuard should not raise such a DDoS risk

5A caveat here is that violation of those invariants may not
directly lead to an exploit, which needs semantic information to
identify.

significantly, though further studies are still needed to better
understand the issue.

Finally, InteGuard is designed for protecting multi-party
web applications in the absence of their source code and
semantics (particularly the necessary conditions for an SSO
or payment transaction to succeed, which needs to be
manually specified). When such information is accessible,
techniques for code analysis and vulnerability detection can
be built here. We are happy to see that progress has been
made on this direction, with recent work [25] that extracts
specifications from the implementation of web applications
for detection of their security flaws.

VI. RELATED WORK

Techniques for avoiding web-service logic flaws or de-
tecting exploits of such flaws have become a new line of
research in web security in recent years. Swift [26] and
Ripley [27] are compiler techniques to help web devel-
opers securely split or duplicate a web program’s logic
between the client (which is assumed to be untrusted)
and the server (which is trusted). The goal is to make
sure that either security-critical logic is performed on the
server or security-critical results produced by the client
are re-examined on the server. In addition to these secure-
by-construction approaches, effort has also been made to
address logic flaws within existing web applications. Most
prior research in this area focuses on automated analy-
sis of a web application’s source code. Examples include
Swaddler [28], MiMoSA [29], Waler [4], RoleCast [30], the
study on Execution After Redirect [31], SAFERPHP [32],
WAPTEC [33], a role-based static analysis proposed in [34],
APP LogGIC [35] and recently Fix-Me-Up [36]. Partic-
ularly, Waler [4] utilizes Daikon [37] to generate likely-
invariants of web programs and then runs model checking
to identify program paths that could lead to violation of
these invariants. Attempts have also been made to detect
logic flaws in the absence of source code. A prominent
example is NoTamper [38], a black-box technique that
automatically generates inputs to test the server-side logic
of a web application. The idea is to detect the existence of
the input the server-side program accepts while the client-
side validation logic does not. Most related to our work
is BLOCK [5], which also extracts invariants from web
traffic and works within a proxy. BLOCK leverages simple
invariants such as session ID and the order of calls to detect
three types of exploits: skipping the authentication step,
manipulating HTTP parameters, and altering the normal
work-flow expected by the server. It does not include a false
positive control.

More generally, there is a line of research on web applica-
tion firewall [39], [40] that controls the erroneous behavior
of the application under protection and prevents exploitation
of its vulnerabilities. This firewall framework, at the high
level, can accommodate the new techniques for defending



against the attacks on logic flaws, such as NoTamper,
BLOCK and our approach. On the other hand, the detailed
designs of these defense engines are nontrivial, which are
based upon the unique features of the applications and the
types of the flaws in concern. Particularly, InteGuard works
on multi-party web applications, a research perspective that
has never been explored before.

As mentioned above, all prior work focus on conven-
tional two-party web applications (including a client-side
component and a server-side component), while InteGuard is
designed to secure the integration of multiple web services:
a client needs to interact with at least an integrator and
a service provider during a web application’s operation.
This computing paradigm is complicated and error-prone,
as discovered in our recent studies [1], [2], which brings in
new security challenges: particularly, our approach needs to
identify the communication among these three parties that
belongs to the same transaction and ensure the consistency in
the content of the messages exchanged directly or indirectly
between them, when the interactions between the client and
the service provider are not observable to our proxy.

VII. CONCLUSION

In this paper, we present InteGuard, the first proposal that
protects vulnerable integrations of third-party web services.
InteGuard uses a set of traffic invariants to check the HTTP
messages during a transaction to detect exploit attempts
on its logic flaws. These invariants are acquired through
a suite of new techniques designed to address the unique
challenges service integrations pose. Our evaluation shows
that InteGuard defeated real exploits on the subtle logic flaws
within leading web services at a small performance expense.

We plan to make available the source code of InteGuard
in the near future and further improve its design. More
generally, InteGuard is just a first step toward secure web
service integration, offering only limited protection: for
example, it does not protect provider-side flaws. Given the
importance of the problem, we expect further effort to be
made in this direction.
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