
Minimization of Symbolic Automata⋆

Margus Veanes

Microsoft Research
margus@microsoft.com

Abstract. Symbolic automata theory lifts classical automata theory to
rich alphabet theories. It does so by replacing an explicit alphabet with
an alphabet described implicitly by a Boolean algebra. We study here
one of the core problems, minimization, of automata. We introduce a
new minimization algorithm for symbolic automata that takes advantage
of state-of-the-art constraint solving techniques for automata analysis
that are both expressive and efficient, even for very large and infinite
alphabets.

1 Introduction

Classical automata theory makes two basic assumptions: there is a finite state

space; and there is a finite alphabet. The topic of this paper is along the line
of work that challenges the second assumption. One of the major drawbacks of
classical finite state automata is that they do not scale well for large (or infinite)
alphabets, although there are some recent developments that work around this
problem by using partial representations of DFAs [1, 18, 17]. Our interest in this
topic originated from regular expression analysis in modern programming lan-
guages [21] where the standard alphabet size is 216. In this context, Symbolic
Finite Automata or SFAs were introduced, as an extension of classical finite
state automata that addresses the alphabet problem by allowing transitions to
be labeled with predicates defined in a separate alphabet theory. This separa-
tion of concerns, between on one hand the finite state graph and on the other
hand the alphabet theory, raised many fundamental questions about if and how
classical algorithms and techniques can be lifted to the symbolic case and what
is the price and what is the payoff in doing so [8].

The main contribution of this paper is a new minimization algorithm for
SFAs. We start by looking at generalizations of the classical minimization algo-
rithms of DFAs by Moore and Hopcroft, calledMinSFAMoore andMinSFAHopcroft,
respectively. We then introduce the new algorithm, called MinSFA, and prove
its correctness. The complexities of the classical DFA minimization algorithms
depend linearly on the size k of the alphabet. A central question is: How is k
reflected in the symbolic versions of the algorithms, because there the character
domain may be infinite?

In Moore’s algorithm k is due to an outer loop over characters that detects
so called distinguishing state pairs. In MinSFAMoore that loop corresponds to

⋆ Microsoft Research Technical Report MSR-TR-2013-48

a satisfiability check. In Hopcroft’s algorithm, k is due to an outer loop over
characters that are used to split state equivalence classes in the style of divide-
&-conquer. In MinSFAHopcroft the same loop translates into a loop iterating
over all minterms (satisfiable Boolean combinations of predicates) of the SFA.
The downside of MinSFAHopcroft compared to MinSFAMoore is that, for some
alphabet theories, the number of minterms may be exponential in the number
of predicates in the SFA. The new algorithm MinSFA does not rely on minterm
construction, and thus avoids the potential exponential factor, while maintain-
ing the divide-&-conquer style of MinSFAHopcroft. A core difference between
the symbolic algorithms is how the alphabet theory is being used in each case.
In particular, MinSFAHopcroft needs an efficient implementation of predicate re-

finement, not needed in MinSFAMoore or MinSFA. In MinSFAHopcroft we use a
predicate refinement technique that relies on BDDs for fast lookup of equivalent
predicates. Unlike MinSFAMoore, MinSFA relies fundamentally on complemen-

tation of character predicates. Similar tradeoffs do not exist in the case of DFAs
because characters do not have structure in classical automata. We also provide
an evaluation of the algorithms using a sample set of regexes.

2 Effective Boolean algebras and SFAs

An effective Boolean algebra A has components (D, Ψ, [[]],⊥,⊤,∨,∧,¬). D is an
r.e. (recursively enumerable) set of domain elements. Ψ is an r.e. set of predicates
closed under the Boolean connectives and ⊥,⊤ ∈ Ψ. The denotation function

[[]] : Ψ → 2D is r.e. and is such that, [[⊥]] = ∅, [[⊤]] = D, for all ϕ, ψ ∈ Ψ,
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and [[¬ϕ]] = D \ [[ϕ]]. For ϕ ∈ Ψ, we
write IsSat(ϕ) when [[ϕ]] 6= ∅ and say that ϕ is satisfiable. A is decidable if IsSat
is decidable.

The intuition is that such an algebra is represented programmatically as an
API with corresponding methods implementing the Boolean operations and the
denotation function. We are primarily going to use two such effective Boolean
algebras in the examples, but the techniques in the paper are fully generic.

2bvk is the powerset algebra whose domain is the finite set bvk, for some k >
0, consisting of all nonnegative integers less than 2k, or equivalently, all
k-bit bit-vectors. A predicate is represented by a BDD of depth k.1 The
Boolean operations correspond directly to the BDD operations, ⊥ is the
BDD representing the empty set. The denotation [[β]] of a BDD β is the
set of all integers n such that a binary representation of n corresponds to a
solution of β.

SMTσ is the decision procedure for a theory over some sort σ, say integers, such
as the theory of integer linear arithmetic. This algebra can be implemented
through an interface to an SMT solver. Ψ contains in this case the set of
all formulas ϕ(x) in that theory with one fixed free integer variable x. Here

1 The variable order of the BDD is the reverse bit order of the binary representation
of a number, in particular, the most significant bit has the lowest ordinal.

2

[[ϕ]] is the set of all integers n such that ϕ(n) holds. For example, a formula
(x mod k) = 0, say divk, denotes the set of all numbers divisible by k. Then
div2 ∧ div3 denotes the set of numbers divisible by six.

Definition 1. A symbolic finite automaton (SFA) M is a tuple (A, Q, q0, F,∆)
where A is an effective Boolean algebra, called the alphabet, Q is a finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
∆ ⊆ Q× ΨA ×Q is a finite set of moves or transitions.

Elements of DA are called characters and finite sequences of characters, ele-
ments of D∗

A , are called words ; ǫ denotes the empty word. A move ρ = (p, ϕ, q) ∈

∆ is also denoted by p
ϕ
−→M q (or p

ϕ
−→ q when M is clear) where p is the source

state, denoted Src(ρ), q is the target state, denoted Tgt(ρ), and ϕ is the guard

or predicate of the move, denoted Grd(ρ). A move is feasible if its guard is sat-

isfiable. Given a character a ∈ DA, an a-move of M is a move p
ϕ
−→ q such that

a ∈ [[ϕ]], also denoted p
a
−→M q (or p

a
−→ q when M is clear). In the following let

M = (A, Q, q0, F,∆) be an SFA.

Definition 2. A word w = a1a2 · · ·ak ∈ D
∗
A , is accepted at state p ofM , denoted

w ∈ Lp(M), if there exist pi−1
ai−→M pi for 1 ≤ i ≤ k where p0 = p and pk ∈ F .

The language accepted by M is L(M)
def

= Lq0(M).

For q ∈ Q, we use the definitions

−→
∆(q)

def

= {ρ ∈ ∆ | Src(ρ) = q},
←−
∆(q)

def

= {ρ ∈ ∆ | Tgt(ρ) = q}.

The definitions are lifted to sets in the usual manner. The following terminology
is used to characterize various key properties of M . A state p of M is called
partial if there exists a character a such that there is no a-move from p.

– M is deterministic: for all p
ϕ
−→ q, p

ϕ′

−→ q′ ∈ ∆, if IsSat(ϕ ∧ ϕ′) then q = q′.
– M is complete: there are no partial states.

– M is clean: for all p
ϕ
−→ q ∈ ∆, p is reachable from q0 and IsSat(ϕ),

– M is normalized : for all p, q ∈ Q, there is at most one move from p to q.
– M is minimal : M is deterministic, complete, clean, normalized, and for all
p, q ∈ Q, p = q if and only if Lp(M) = Lq(M).2

The special case is when M is deterministic and complete. In this case we
define, for all a ∈ DA and p ∈ Q, the transition function δM : DA × Q → Q as

δM (a, p)
def

= q where q is the state such that p
a
−→M q. Observer that, by using

determinism, if p
ϕ1

−→M q1 and p
ϕ2

−→M q2 and a ∈ [[ϕ1 ∧ ϕ2]] then q1 = q2, and

by completeness, there exists some q and ϕ such that p
ϕ
−→M q and a ∈ [[ϕ]].

Determinization of SFAs is always possible and is studied in [20]. Completion
is straightforward: if M is not complete then add a new state q∅ and the self-

loop q∅
⊤
−→ q∅ and for each state q add the move (q,

∧
ρ∈

−→
∆(q)
¬Grd(ρ), q∅) when

feasible. Observe that completion requires complementation of predicates.

2 It is sometimes convenient to define minimality over incomplete SFAs, in which case
the dead-end state q (q 6= q0 and Lq(M) = ∅) is eliminated if it is present.

3

Normalization is obvious: if there exist states p and q and two distinct tran-

sitions p
ϕ
−→ q and p

ψ
−→ q then replace these transitions with the single transition

p
ϕ∨ψ
−−−→ q. This does clearly not affect Lp(M) for any p.
We always assume that M is clean. Cleaning amounts to running standard

forward reachability that keeps only reachable states, and eliminates infeasible

moves. Observe that having infeasible moves p
⊥
−→ q is semantically useless and

may cause unnecessary state space explosion.
It is important to show that minimality of SFAs is in fact well-defined in the

sense that minimal SFAs are unique up to renaming of states and equivalence of
predicates. To do so we use the following construction.

Assume M = (A, Q, q0, F,∆) to be deterministic and complete. Let ΣA

denote the first-order language that contains the unary relation symbol F̄ and
the unary function symbol ā for each a ∈ DA. We define the ΣA-structure of M ,
denoted by M, to have the universe Q, and the interpretation function:

F̄M def

= F, ∀ā ∈ ΣA, p ∈ Q (āM(p)
def

= δM (a, p)).

Also, let

M(ǫ)
def

= q0,

M(w · a)
def

= δM (a,M(w)) for a ∈ DA and w ∈ D
∗
A .

In other words, M(w) is the state reached in M for the word w ∈ D
∗
A .

Theorem 1. If M and N are minimal SFAs over the same alphabet A such

that L(M) = L(N), then M and N are isomorphic ΣA-structures.

Proof. Assume M and N to be minimal SFAs over A such that L(M) = L(N).
We define ı : M ∼= N as follows:

∀w ∈ D
∗
A(ı(M(w))

def

= N(w)).

To show that ı is well-defined as a function, observe first that all states of M
correspond to some w because M is clean. Second, we prove that for all words
v and w, if M(v) =M(w) then N(v) = N(w). Fix v, w ∈ D

∗
A such that M(v) =

M(w). Then, for all u ∈ D
∗
A ,

u ∈ LN(v)(N) ⇔ v · u ∈ L(N)

(by L(M)=L(N))
⇔ v · u ∈ L(M)

⇔ u ∈ LM(v)(M)

(by M(w)=M(v))
⇔ u ∈ LM(w)(M)

⇔ w · u ∈ L(M)

(by L(M)=L(N))
⇔ w · u ∈ L(N)

⇔ u ∈ LN(w)(N)

4

So LN(v)(N) = LN(w)(N) and thus N(v) = N(w) by minimality of N . So ı is
well-defined as a function. By switching the roles of M and N we also get the
opposite direction. Thus,

(∗) ∀v, w ∈ D
∗
A(M(v) =M(w)⇔ N(v) = N(w))

Next, we show that ı is an isomorphism.
We show that ı is bijective: ı is onto because N is clean, i.e., each state of N

corresponds to N(w) for some word w; ı is into because if M(v) 6= M(w) then,
by (∗), ı(M(v)) = N(v) 6= N(w) = ı(M(w)).

Finally, we need to show that ı is an embedding of M into N, i.e., for all
p ∈ QM , p ∈ F̄M ⇔ ı(p) ∈ F̄N, and for all p ∈ QM and a ∈ DA, ı(ā

M(p)) =
āN(ı(p)). Let p ∈ QM . Let w be any word such that p =M(w). Then

p ∈ F̄M ⇔M(w) ∈ F̄M ⇔ w ∈ L(M)⇔ w ∈ L(N)

⇔ N(w) ∈ F̄N ⇔ ı(M(w)) ∈ F̄N ⇔ ı(p) ∈ F̄N.

and, for any a ∈ DA,

ı(āM(p)) = ı(āM(M(w))) = ı(δM (a,M(w))) = ı(M(w · a)) = N(w · a)

= δN (a,N(w)) = āN(N(w)) = āN(ı(M(w))) = āN(ı(p))

Thus M and N are isomorphic. �

The theorem implies that minimal SFAs are unique up to renaming of states
and up to equivalence of predicates due to normalization. We use the following
definition.

Definition 3. Two states p, q ∈ Q are M -equivalent, p ≡M q, when Lp(M) =
Lq(M).

It is clear that ≡M is an equivalence relation. If ≡ is an equivalence relation over
Q, then for q ∈ Q, q/≡ denotes the equivalence class containing q, for X ⊆ Q,
X/≡ denotes {q/≡ | q ∈ X}, and M/≡ denotes the SFA:

M/≡
def

= (A, Q/≡, q
0
/≡, F/≡, {(p/≡,

∨

(p,ϕ,q)∈∆

ϕ, q/≡) | p, q ∈ Q, ∃ϕ((p, ϕ, q) ∈ ∆)})

Observe that M/≡ is, by construction, normalized. We need the following theo-
rem that shows that minimization of SFAs preserves their intended semantics.

Theorem 2. Let M be a clean, complete and deterministic SFA. Then M/≡M

is minimal and L(M) = L(M/≡M
).

Proof. Let ≡ be ≡M . Clearly, M/≡ is clean and complete because M is clean

and complete. To show determinism, let p
a
−→M/≡

q1 and p
a
−→M/≡

q2. Take

p1, p2 ∈ p, q1 ∈ q1 and q2 ∈ q2 such that p1
a
−→M q1 and p2

a
−→M q2. Since

5

Lp1(M) = Lp2(M) and M is deterministic it follows that Lq1(M) = Lq2(M)
i.e., q1 = q2. Thus,

(∗) ∀a ∈ DA, p ∈ QM (δM/≡
(a, p/≡) = δM (a, p)/≡).

Minimality of M/≡ follows by definition. Next we show by induction over the
length of w that,

(⋆) ∀w ∈ D
∗
A(M(w)/≡ =M/≡(w)).

For w = ǫ we have M(ǫ) = q0M and M/≡(ǫ) = q0M/≡
and q0M/≡

= (q0M)/≡. For

w = v · a where a ∈ DA and v ∈ D
∗
A , we have that

M(v · a)/≡ = δM (a,M(v))/≡
(by (∗))
= δM/≡

(a,M(v)/≡)

(by IH)
= δM/≡

(a,M/≡(v)) =M/≡(v · a).

It follows that, for all words w ∈ D
∗
A , w ∈ L(M) iff M(w) ∈ FM iff M(w)/≡ ∈

FM/≡
iff (by (⋆)) M/≡(w) ∈ FM/≡

iff w ∈ L(M/≡). Thus L(M) = L(M/≡). �

Theorems 1 and 2 are classical theorems lifted to arbitrary (possibly infinite)
alphabets. Theorem 2 implies that SFAs have equivalent minimal forms that,
by Theorem 1 are unique up to relabeling of states and modulo equivalence
of predicates in A, and in particular have minimal number of states because,
trivially, |Q/E | ≤ |Q| for all Q and all equivalence relations E over Q.

3 Moore’s algorithm over symbolic alphabets

Moore’s minimization algorithm [15] of DFAs (also due to Huffman [11]) is also
commonly known as the standard algorithm. The idea can be lifted to SFAs M
as follows. Initially, let E be the binary relation (F × F) ∪ (F c × F c) where

F c
def

= Q \ F . Repeat the following step until E does not change: remove (p, q)
from E if there exist moves (p, ϕ, p′), (q, ψ, q′) ∈ ∆ where (p′, q′) /∈ E and ϕ ∧ ψ
is satisfiable.3 This process clearly terminates. The resulting relation E is the
equivalence relation ≡M and the SFA M/E is therefore minimal. We refer to
this algorithm as MinSFAMoore. Observe that MinSFAMoore checks only satisfi-

ability of conjunctions of conditions and does not depend on the full power of
the alphabet algebra, in particular complementation is not used (if the initial
completion of M is viewed as a separate preprocessing step). The latter is in
contrast to a direct generalization of Hopcroft’s algorithm, discussed next.

3 In a concrete implementation, for representing E, a specific data structure can be
used for marking pairs of inequivalent states, as in the case of DFAs [10, Section 3.4].

6

1 MintermsA(ψ̄)
def

=

2 tree := new Tree(⊤A,null,null);

3 foreach (ψ in ψ̄) tree.Refine(ψ);

4 return Leaves(tree); //return the set of all the leaf predicates

5

6 class Tree

7 Predicate ϕ; Tree left ; Tree right ;

8 Refine(ψ)
def

=

9 if (IsSatA(ϕ ∧A ψ) and IsSatA(ϕ ∧A ¬Aψ)) //refinement wrt ψ is possible

10 if (left = null) //if this node is a leaf then split it into two parts

11 left := new Tree(ϕ ∧A ψ,null,null); //leaf for overlap [[ϕ]] ∩ [[ψ]]

12 right := new Tree(ϕ ∧A ¬Aψ,null,null); //leaf for difference [[ϕ]] \ [[ψ]]

13 else left.Refine(ψ); right.Refine(ψ); //else refine subtrees recursively

Fig. 1. Abstract partition refinement algorithm of ψ̄ ⊆ ΨA modulo A.

4 Hopcroft’s algorithm over symbolic alphabets

Hopcroft’s algorithm [9] for minimizing DFAs is based on partition refinement

of states. The initial partition of the state space is into two parts: final states
and nonfinal states, i.e., P = {F,Q \ F}. Here we assume that the SFA M is
complete and nontrivial, so that both F and Q \F are nonempty. The partition
P induces the equivalence relation ≡P (or ≡ when P is clear) over Q such that
Q/≡ = P . At a high level, P is refined as follows. Suppose there exist parts
P,R ∈ P and a character a ∈ DA such that some a-move from P goes into R and
some a-move from P goes into Rc (Q\R). Then the (a,R)-split of P is {P1, P2}
where P1 (resp. P2) is the set of all p ∈ P from which there is an a-move into
R (resp. Rc); P is replaced in P by P1 and P2. Observe that the (a,R)-split is
well-defined by determinism and completeness of M . The following invariant is
maintained by splitting.

Lemma 1. For all p, q ∈ Q, if p 6≡ q then Lp(M) 6= Lq(M).

The splitting is repeated until no further splits are possible, at which point the
following property holds.

Lemma 2. For all p, q ∈ Q, if p ≡ q then Lp(M) = Lq(M).

In addition to the state partition, in the symbolic case, we also use predi-

cate partition refinement that is a symbolic partition refinement of the alphabet

domain. Predicate partition refinement builds a set of minterms that are mini-
mal satisfiable Boolean combinations of all guards that occur in the SFA. The
algorithm is shown in Figure 1. It uses a binary tree whose leaves define the
partition. Initially the tree is the leaf ⊤. Each time a predicate ψ is used to
refine the tree it may cause splitting of its leaves into finer predicates.

7

1 MinSFAHopcroft(M = (A, Q, q0, F,∆))
def

=

2 P := {F,Q \ F}; //initial partition

3 W := {if (|F | ≤ |Q \ F |) then F else Q \ F};

4 Ψ := MintermsA({Grd(ρ) | ρ ∈ ∆}); //compute the minterms

5 while (W 6= ∅) //iterate over unvisited parts

6 R := choose(W); W := W \ {R};

7 foreach (ψ in Ψ) //iterate over all minterms

8 S := δ
−1(ψ,R); //all states leading into R for given minterm

9 while (exists (P in P) where P ∩ S 6= ∅ and P \ S 6= ∅)

10 〈P ,W 〉 := SplitP,W (P, P ∩ S, P \ S); //split P into two parts

11 return M/≡P
;

12

13 SplitP,W (P, P1, P2)
def

=

14 〈(P \ {P}) ∪ {P1, P2}, //refine P

15 if (P ∈W) then (W \ {P}) ∪ {P1, P2} //add both parts to W

16 else W ∪{if (|P1| ≤ |P2|) then P1 else P2}〉 //add only the smaller part to W

Fig. 2. Hopcroft’s minimization algorithm lifted to deterministic SFAs. M is assumed
to be clean, complete, and nontrivial (F 6= ∅ and Q \ F 6= ∅).

Example 1. Consider the alphabet algebra 2bv7 (ASCII characters). We use stan-
dard regex notation for character classes. Suppose that the following two guards
occur in the given SFA: \w ([[\w]] = [[[a-zA-Z0-9]]]) and \d ([[\d]] = [[[0-9]]]).
Then the value of tree in Minterms2bv7({\w, \d}) in line 4 in Figure 1 is either
the first of the two trees below if \w is selected first in the loop of line 3, or else
the second tree (note that [[\d]] ([[\w]] so [[\d ∧ \w]] = [[\d]]):

⊤
\w

\d \w ∧ ¬\d
¬\w

⊤
\d ¬\d

\w ∧ ¬\d ¬\w

The minterms are the leaves \d, \w ∧ ¬\d and ¬\w. �

Given a predicate ψ ∈ ΨA and a state p ∈ Q, define:

δ(ψ, p)
def

= {Tgt(ρ) | ρ ∈
−→
∆(p), IsSat(Grd(ρ) ∧ ψ)}

δ
−1(ψ, p)

def

= {Src(ρ) | ρ ∈
←−
∆(p), IsSat(Grd(ρ) ∧ ψ)}

δ
−1(ψ, P)

def

=
⋃

p∈P

δ
−1(ψ, p) (for P ⊆ Q)

Let Minterms(M)
def

= MintermsA(
⋃
ρ∈∆Grd(ρ)). The following proposition

implies that all characters that occur in one minterm are indistinguishable.

Proposition 1. For all ψ ∈ Minterms(M) and p ∈ Q, |δ(ψ, p)| = 1.

8

We can therefore treat δ as a function from Minterms × Q to Q and reduce
minimization of the SFA to minimization of the DFA with alphabet Minterms

and transition function δ. In particular, we may use Hopcroft’s algorithm. We
refer to the resulting algorithm by MinSFAHopcroft. Such an algorithm is shown
in Figure 2.

One drawback with MinSFAHopcroft is that, in the worst case, the number
of minterms is exponential in the number of guards occurring the SFA. The
following example illustrates a worst case scenario.

Example 2. Let the character domain be nonnegative integers < 2k. Suppose
βi(x) is a predicate that is true for x iff the i’th bit of the binary representation
of x is 1, e.g. β3(8) is true and β3(7) is false. Predicate β3 can be defined as
¬((x&8) = 0), provided that, besides equality, the bitwise-and operator & is
a built-in function symbol of ΨA (e.g., consider the bitvector theory of an SMT
solver). Similarly, we may also use the algebra 2bvk, where the size of the concrete
BDD representation for βi is linear in k, it has one node that is labeled by i and
whose left child (case bit is 0) is false and whose right child (case bit is 1) is
true. The point is that that predicates are small (essentially constant) in size.
Consider the following SFA Mk with such an alphabet A.

q0 q1 q2 qk-1 qk

p1 p2 pk-1 pk

β0 β1 · · · βk-1

¬β0

β1 · · · βk-1

Then Minterms (Mk) = MintermsA({¬βi, βi}i<k) = {n̂}n<2k has 2k elements.
where [[n̂]] = {n}. For example, suppose k = 3, then [[β2 ∧ ¬β1 ∧ β0]] = {5}. The
minimal automaton is

q0 q1 q2 qk-1 qk⊤ β1 · · · βk-1

The dead-end state q∅ added by completion is implicit in both SFAs. �

5 Minimization without predicate refinement

A fundamental question arises here about the necessity of the predicate partition
refinement step. Example 2 above indicates that avoiding predicate refinement
may provide an exponential reduction in complexity. We introduce a new mini-
mization algorithm MinSFA, that does not require that step. MinSFA is shown
in Figure 3. Theorem 3 is also true for MinSFAMoore and MinSFAHopcroft.

Theorem 3. MinSFA(M) is minimal and L(MinSFA(M)) = L(M).

Proof. We show first that the invariant of Lemma 1 holds. The invariant clearly
holds initially. We show that it is preserved by each split.

First consider the first splitting loop in Figure 3. Fix R ∈ P and let S =
δ
−1(⊤, R), and choose P ∈ P such that P1 = P ∩S 6= ∅ and P2 = P \S 6= ∅. Fix

9

1 MinSFA(M = (A, Q, q0, F,∆))
def

=

2 P := {F,Q \ F}; //initial partition

3 W := {if (|F | ≤ |Q \ F |) then F else Q \ F};

4 while (W 6= ∅) //main loop

5 R := choose(W); W := W \ {R};

6 S := δ
−1(⊤, R); //all states leading into R

7 Γ := {p 7→
∨

(p,ϕ,)∈
←−
∆(R)

ϕ}p∈S ; //maps p to the predicate into R

8 while (exists (P in P) where P ∩ S 6= ∅ and P \ S 6= ∅) //first splitting loop

9 〈P ,W 〉 := SplitP,W (P, P ∩ S, P \ S); //(, R)-split

10 while (exists (P in P) where P ∩ S 6= ∅ and //second splitting loop

11 exists (p1, p2 in P) where IsSat(¬(Γ (p1) ⇔ Γ (p2))))

12 a := choose([[¬(Γ (p1) ⇔ Γ (p2))]]);

13 P1 := {p ∈ P | a ∈ [[Γ (p)]]};

14 〈P ,W 〉 := SplitP,W (P, P1, P \ P1); //(a, R)-split

15 return M/≡P
;

Fig. 3. Minimization of deterministic SFAs. M is assumed to be clean, complete and
nontrivial. SplitP,W is defined in Figure 2.

P

Q

S q1
q′1

q′′2

R

q2
q′2

p1

p′1

p2

p′2

a

b

a
a, b

b

a, b

(a) (, R)-split

P

Q

S q1

R

q2

p1

p2

a, b

a

b

(b) (a, R)-split

Fig. 4. Split cases of P in MinSFA. Suppose for example that DA = {a, b}.

p1 ∈ P1 and p2 ∈ P2. So there is a move p1
ϕ1

−→ q1 for some q1 ∈ R. Let a ∈ [[ϕ1]].

So there is a move p2
ϕ2

−→ q2 where a ∈ [[ϕ2]] for some q2 ∈ Rc because p2 /∈ S and
M is complete. The situation is illustrated in Figure 4(a). By using the invariant,
Lq1(M) 6= Lq2(M), so there is a word w such that w ∈ Lq1(M)⇔ w /∈ Lq2(M).
Thus, by using determinism of M , a · w ∈ Lp1(M) ⇔ a · w /∈ Lp2(M). So
Lp1(M) 6= Lp2(M).

Second, consider the second splitting loop. Fix P and p1, p2 ∈ P that satisfy
the loop condition. All parts in P that intersect with S must be subsets of S
due to the first splitting loop, so P ⊆ S and IsSat(Γ (p1)) and IsSat(Γ (p2))
because M is clean. The condition IsSat(¬(Γ (p1) ⇔ Γ (p2))) means that either
IsSat(Γ (p1) ∧ ¬Γ (p2)) or IsSat(Γ (p2) ∧ ¬Γ (p1)). Assume the former case and
choose a ∈ [[Γ (p1) ∧ ¬Γ (p2)]]. By definition of Γ , we know that there is a move

10

p1
ϕ1

−→ q1 where q1 ∈ R such that a ∈ [[ϕ1]]. Moreover, since a /∈ [[Γ (p2)]],
and Γ (p2) covers all the characters that lead from p2 to R, there must (by

completeness and determinism of M) be a move p2
ϕ2

−→ q2 where q2 ∈ R
c and

a ∈ [[ϕ2]]. See Figure 4(b). It follows as above, by using Lq1(M) 6= Lq2(M), that
Lp1(M) 6= Lp2(M).

Since each step properly refines the partition, Lemma 1 follows.
We now show that Lemma 2 holds. The proof is by way of contradiction.

(*) Assume there exists x, P ∈ P , p1, p2 ∈ P s.t. x ∈ Lp1(M)⇔ x /∈ Lp2(M).

Let w be shortest such x. Since w cannot be ǫ, there exist a and v such that
w = a · v. So there are, by determinism and completeness of M , unique q1 and
q2 such that p1

a
−→ q1 and p2

a
−→ q2. It follows that v ∈ Lq1(M)⇔ v /∈ Lq2(M).

So q1 6≡ q2 or else v satisfies (*) and v is shorter that w.
Consider any fixed computation of MinSFA. It follows from the definition of

SplitP,W , that W is always a subset of P and (due to the first condition of the
update to W) if W ever contains a part containing a state q then W will keep
containing a part that contains q, until such a part is chosen and removed from
W in line 5.

Next, we show that the following W -invariant must hold at all times: for all
R ∈W , q1 ∈ R⇔ q2 ∈ R. Let {ι, ι̂} = {1, 2}. Suppose, by way of contradiction,
that a part R is chosen from W at some point in line 5 such that qι ∈ R and
qι̂ /∈ R. So pι ∈ S, with S as in line 6. There are two cases.

1. If pι̂ /∈ S then pι and pι̂ are split apart in the first splitting loop. This
contradicts that p1 ≡ p2.

2. Assume pι̂ ∈ S and consider the second splitting loop. By choice of the

character a above, we know that there exist moves pι
ϕι
−→ qι and pι̂

ϕι̂−→ qι̂
where a ∈ [[ϕι]] and a ∈ [[ϕι̂]]. It follows that a /∈ [[Γ (pι̂)]] (because M is
deterministic and qι̂ /∈ R) while a ∈ [[Γ (pι)]]. So a ∈ [[Γ (pι)]] \ [[Γ (pι̂)]] or in
other words a ∈ [[Γ (pι) ∧ ¬Γ (pι̂)]] and so IsSat(¬(Γ (pι) ⇔ Γ (pι̂))) holds.
Consequently, pι and pι̂ end up in distinct parts upon termination of the
second splitting loop. This contradicts that p1 ≡ p2.

So initially q1 ∈ F ⇔ q2 ∈ F , or else the initial part of W violates the invariant.
But now consider the point when the part containing both q1 and q2 is split into
two parts containing q1 and q2 respectively. But at this point, at least one of
those parts will be added to W by definition of SplitP,W . Thus, we have reached
the desired contradiction, because the W -invariant is violated at that point.

We have shown that, upon termination of MinSFA(M), ≡P coincides with
≡M . It follows from Theorem 2 that M/≡P

is minimal and accepts L(M). �

Detailed complexity analysis of MinSFA is outside the scope of this paper. It
depends on many factors, most importantly on the representation of predicates
and the complexity of the decision procedure for the alphabet. For an efficient
implementation the complexity also depends on the concrete representation of
P and W that may differ in different programming languages as well as different

11

...

var relevant = new HashSet<Block>(); //blocks intersecting with S
foreach (var q in S) relevant.Add(Blocks[q]);
foreach (var P in relevant) {

var P1 = new Block(S, P); //P1 is intersection of P with S
if (P1.Count < P.Count) { //if P\S is nonempty

foreach (var p in P1) {P.Remove(p); Blocks[p] = P1;} //P becomes P\S,
if (W.Contains(P)) W.Push(P1); //if W contains P then push also P1
else W.Push(P.Count < P1.Count ? P : P1); }} //else push only the smaller part

...

Fig. 5. Concrete C# implementation of the first splitting loop of MinSFA.

platforms. Observe also that each splitting loop body may be executed in parallel
for all P . In our concrete sequential C# implementation of MinSFA, parts are
represented by blocks, that are objects of type Block. Each block contains a
HashSet of states (states are integers). The work set W is a stack of blocks and
the partition P is an array Blocks of blocks indexed by states. The actual C#
implementation corresponding to the first splitting loop is shown in Figure 5.
The second splitting loop is implemented without computing concrete witnesses
a by computing a single (local) minterm, using Gamma, during a linear pass over
nonsingleton blocks P intersecting with S that splits P into P1 and P2. This has
semantically the same effect as the computation of P1 with respect to some a in
line 13, but does not require direct use of the denotation function of A.4

6 Evaluation

As the first experiment we compared the performance of MinSFAHopcroft and
MinSFA over a sample set of 1700 SFAs with the alphabet 2bv16 (of Unicode
characters) constructed from typical regexes (taken from a public website of pop-
ular regexes). In all cases, the number of minterms turned out to be smaller (by a
factor between 2 and 3) than the total number of all predicates, so the exponen-
tial blowup of minterms never occurred. The average ratio of |QM |/|QMinSFA(M)|
was 1.8, the size of QM ranged from a few states to 2000 states with an average
of 35 states. The following is a typical regex from the sample set:

"[NS] \d{1,}(\:[0-5]\d){2}.{0,1}\d{0,},[EW] \d{1,}(\:[0-5]\d){2}.{0,1}\d{0,}"

The generated SFA uses 16 predicates (such as \d and [^NS])5 while there are
only 7 minterms (such as [NS], [0-5] and [:]). (For this regex, the determinized
SFA has 47 states and the minimized SFA has 23 states.)

Since there is no blowup of minterms, is there a performance incentive for
using MinSFA in this context? The total time to minimize all 1700 SFAs in the
sample set took 20 seconds with MinSFAHopcroft and 0.8 seconds with MinSFA,
thus showing a 24x speedup and an average minimization time of 0.5 ms.

4 Although IsSatA(ϕ) is formally defined as [[ϕ]]A 6= ∅, using SMT technology, there
is a difference between satisfiability checking and model generation, the latter is
typically more expensive.

5 We use standard regex character class notation for character predicates.

12

We also compared the running time of the sample set against Hopcroft’s
minimization algorithm in the brics.autmaton library (version 1.11-8) that uses
symbolic integer ranges to represent Unicode characters, but does not implement
them as a Boolean algebra (since ranges are not closed under complement and
union). In order to minimize platform dependencies (brics.autmaton is written
in Java) we serialized the input automata created from the regexes using a
platform independent textual format that guaranteed the exact same semantics
in both tools and we excluded the process overhead times as well as the times to
deserialize the input automata from the serialized representation. With brics

it took 3.2 seconds to minimize all the automata, which is 4x slower that with
MinSFA.

In the second experiment, shown in the chart below, we considered SFAs Mk

from Example 2 ranging from k = 1 to k = 31 over the alphabet SMTbv32 of
32-bit bitvectors with Z3. As expected, here the performance of MinSFAHopcroft

degraded exponentially.

Already for k = 7 the
time to minimize the SFA
using MinSFAHopcroft was 1
second due to minterm gen-
eration, while it was 30ms
with MinSFAMoore and be-
low 1ms with MinSFA. With
MinSFAMoore the time increased from 1ms for k = 1 to 1.4sec with k = 31, while
for MinSFA the time remained below 20ms for all k.

In order to confirm that
our concrete implementation
of MinSFAHopcroft is compa-
rable to similar state-of-the-
art implementations that
use symbolic representations
of alphabets (as in brics)
we ran MinSFAHopcroft for
Mk, for 6 ≤ k ≤ 15, using
the Unicode alphabet algebra 2bv16 and compared with the brics implementa-
tion of Hopcroft’s algorithm. As above, we excluded the time to construct the
SFAsMk, and only measured the time to run the actual minimization algorithm.
The timing behavior is very similar as shown in the chart.

Hopcroft’s algorithm is typically implemented by pairing together characters
with parts in W (see [3, Figure 3]), rather than using the foreach loop in line
7 in Figure 2. Similar construct is used in the case of partial DFAs (see [18,
Figure 1]). However, this is an implementation technique that does not eliminate
the foreach loop but implements it indirectly (often more efficiently) and is
tailored for a concrete alphabet. Moreover, in the case of partial DFAs it avoids
iterating over irrelevant characters that correspond to transitions to the dead-
end state. However, the dominating factor in the above samples is the number

13

of nonoverlapping intervals that are precisely the minterms. Observe that the
predicate β0 requires 2k−1 intervals.

7 Related work

The classical minimization algorithms of DFAs have been studied and analyzed
extensively from various aspects. In particular, the standard algorithm is studied
in [5] where it is shown that, by a clever change of data structures, its complexity
can be reduced from O(kn2) to O(kn logn). The bound O(kn log n) has been
shown to be tight [4, 2]. Brzozowski [6] observed that a DFA can be minimized
by reversing then determinizing then reversing, and finally determinizing again.
Linear time minimization algorithms have been studied for acyclic automata [13,
16]. The book chapter [3] provides an in-depth study of the state-of-the-art in
automata minimization, including the approaches mentioned above and several
other ones. A new approach for minimizing nondeterministic (Buchi) automata
has recently been studied in [14].

In the case of DFAs it matters whether the DFA to be minimized may be
partial (incomplete), because it may be useful to avoid completion of DFAs
with sparse transition graphs. Minimization of partial DFAs is studied in [18,
17, 1]. One direct benefit is that the algorithm complexity depends of the number
of transitions rather than the alphabet size. However, the number of transitions
itself is related to the alphabet size. In contrast, in a normalized SFA the number
of transitions is independent of the alphabet size, it is at most n2 where n is the
number of states. One concrete difference between the minimization algorithms
of complete DFAs versus partial DFAs is that the initial value ofW (in Figure 2)
for the partial case must contain both F and F c [18]. We believe that similar
modifications may be applied to MinSFA, although in the case of SFAs the
benefits of the partial case are less obvious, because, unlike for DFAs, the increase
in the number of transitions in the completed version is at most linear in the
number of states and independent of the alphabet.

The concept of automata with predicates instead of concrete symbols was
first mentioned in [22] and was first discussed in [19] in the context of natural
language processing. A symbolic generalization of Moore’s algorithm was first
discussed in [21]. To the best of our knowledge, no other minimization algorithms
have been studied for SFAs. The MONA implementation [7] provides decision
procedures for monadic second-order logic. It relies on a highly-optimized BDD-
based representation for automata and has seen extensive engineering effort [12].
Therefore the use of BDDs in the context of automata is not new, but is used
here merely as an example of a possible Boolean algebra that seems particularly
well suited for working with Unicode alphabets.

References

1. M.-P. Béal and M. Crochemore. Minimizing incomplete automata. In Finite-State
Methods and Natural Language Processing, 7th International Workshop, pages 9–
16, 2008.

14

2. J. Berstel, L. Boasson, and O. Carton. Hopcroft’s automaton minimization algo-
rithm and Sturmian words. In DMTCS’2008, pages 355–366, 2008.

3. J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Minimization of automata. To
appear in Handbook of Automata, 2011.

4. J. Berstel and O. Carton. On the complexity of Hopcroft’s state minimization
algorithm. In CIAA’2004, volume 3317, pages 35–44, 2004.

5. N. Blum. An 0(n log n) implementation of the standard method for minimizing
n-state finite automata. Information Processing Letters, 57:65–69, 1996.

6. J. A. Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. In Proc. Sympos. Math. Theory of Automata, pages 529–561, New
York, 1963.

7. J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In TACAS ’95,
volume 1019 of LNCS. Springer, 1995.

8. P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for string
analysis. In VMCAI’11, volume 6538 of LNCS, pages 248–262. Springer, 2011.

9. J. Hopcroft. An nlogn algorithm for minimizing states in a finite automaton. In
Z. Kohavi, editor, Theory of machines and computations, Proc. Internat. Sympos.,
Technion, Haifa, 1971, pages 189–196, New York, 1971. Academic Press.

10. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

11. D. Huffman. The synthesis of sequential switching circuits. Journal of the Franklin
Institute, 257(3–4):161–190,275–303, 1954.

12. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets.
International Journal of Foundations of Computer Science, 13(4):571–586, 2002.

13. S. L. Krivol. Algorithms for minimization of finite acyclic automata and pattern
matching in terms. Cybernetics, 27:324–331, 1991.

14. R. Mayr and L. Clemente. Advanced automata minimization. In POPL’13, pages
63–74, 2013.

15. E. F. Moore. Gedanken Experiments on Sequential Machines. In Automata Studies,
pages 129–153. Princeton U., 1956.

16. D. Revuz. Minimisation of acyclic deterministic automata in linear time. Theoret.
Comput. Sci., 92:181–189, 1992.

17. A. Valmari. Fast brief practical DFA minimization. Information Processing Letters,
112:213–217, 2012.

18. A. Valmari and P. Lehtinen. Efficient minimization of DFAs with partial transition
functions. In S. Albers and P. Weil, editors, 25th International Symposium on
Theoretical Aspects of Computer Science (STACS 2008), pages 645–656, Dagstuhl,
2008.

19. G. van Noord and D. Gerdemann. Finite state transducers with predicates and
identities. Grammars, 4(3):263–286, 2001.

20. M. Veanes, N. Bjørner, and L. de Moura. Symbolic automata constraint solving. In
C. Fermüller and A. Voronkov, editors, LPAR-17, volume 6397 of LNCS/ARCoSS,
pages 640–654. Springer, 2010.

21. M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic Regular Expression
Explorer. In ICST’10, pages 498–507. IEEE, 2010.

22. B. W. Watson. Implementing and using finite automata toolkits. In Extended
finite state models of language, pages 19–36, New York, NY, USA, 1999. Cambridge
University Press.

15

