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ABSTRACT

In this paper, we introduce a novel statistical language understand-
ing paradigm inspired by the emerging semantic web: Instead of
building models for the target application, we propose relying on
the semantic space already defined and populated in the knowledge
graph for the target domain. As a first step towards this direction, we
present unsupervised methods for training relation detection models
exploiting the semantic knowledge graphs of the semantic web. The
detected relations are used to mine natural language queries against
a back-end knowledge base. For each relation, we leverage the com-
plete set of entities that are connected to each other in the graph with
the specific relation, and search these entity pairs on the web. We use
the snippets that the search engine returns to create natural language
examples that can be used as the training data for each relation. We
further refine the annotations of these examples using the knowledge
graph itself and iterate using a bootstrap approach. Furthermore, we
explot the URLs returned for these pairs by the search engine to mine
additional examples from the search engine query click logs. In our
experiments, we show that, we can achieve relation detection mod-
els that perform about 60% macro F-measure on the relations that
are in the knowledge graph without any manual labeling, resulting
in a comparable performance with supervised training.

Index Terms— semantic web, spoken language understanding,
knowledge graph, search query click logs, multi-class classification

1. INTRODUCTION

Spoken dialog queries to a dialog system may be classified as infor-
mational, transactional, and navigational in a similar way to the tax-
onomy for web search [1]. Informational queries seek an answer to
a question, such as “find the movies of a certain genre and director”,
transactional queries aim to perform an operation, such as “play a
movie”, or “reserve a table at a restaurant”, and navigational queries
aim to navigate in the dialog, such as “go back to the previous re-
sults”. Answers to informational queries are likely to be included
in knowledge repositories, such as the structured semantic knowl-
edge graphs of the emerging semantic web, for example, Freebase1.
Hence the ontology of user intents for informational queries can be
formed based on the semantic web ontologies, such as the ontology
of Freebase or schema.org2. The ontology of user intents for trans-
actional queries are usually defined by dialog system designers and
developers, and are mainly driven by the capabilities of the back-
end applications. For Internet search queries, they can also be mined
from search queries [2]. Navigational intents can usually be shared
across ontologies of similar dialog system applications.

1http://www.freebase.com
2http://www.schema.org

Utterance: find me recent action movies with brad pitt

Intent Find Movie
Release Date recent
Genre action
Actor brad pitt

Table 1. An example utterance with semantic template.

As the ontologies of the semantic web can be used to bootstrap
ontologies for dialog system applications, one can also use the pop-
ulated knowledge in the graph to mine examples that include surface
forms of entities and their relations in natural language. For example,
for a pair of related entities, one can enhance the link of the relation
in the knowledge graph with a set of natural language patterns that
are commonly used to refer to that relation. Such patterns can be
useful to train models for various language processing tasks, such
as spoken language understanding (SLU). SLU in human/machine
spoken dialog systems aims to automatically identify the intent of
the user as expressed in natural language and extract associated ar-
guments or slots [3] towards achieving a goal. The output of an
SLU system is typically normalized and interpreted into a SQL-like
structured query language or third party API. Historically, intent de-
termination has emerged from the call classification systems (such
as the AT&T How May I Help You [4] system) after the success of
the early commercial interactive voice response (IVR) applications
used in call centers. On the other hand, the slot filling task originated
mostly from non-commercial projects such as the DARPA (Defense
Advanced Research Program Agency) sponsored Airline Travel In-
formation System (ATIS) [5] project.

Such semantic template filling based SLU systems with intent
determination and slot filling tasks rely on a semantic space, usu-
ally dictated by the target application. When statistical methods are
employed, in-domain training data is collected and semantically an-
notated for model building and evaluation. An example utterance
with semantic template is shown in Table 1.

In our previous work, we showed the use of web search queries
and search query click logs with the knowledge graph to bootstrap
SLU slot filling models [6]. Furthermore, we used snippets returned
from web search for pairs of related entities to bootstrap intent de-
tection models in order to catch previously unseen in-domain in-
tents [7].

In this work, instead of trying to align our SLU semantic space
with the knowledge graph, we “only” rely on the semantic space dic-
tated in the knowledge graph for informational user requests and aim
to identify knowledge graph relations invoked in user’s utterances.
The invoked relations can then be used to create requests in query
languages (for example, in SPARQL3 Query Language for RDF) to

3http://www.w3.org/TR/rdf-sparql-query/
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the knowledge graph, to create logical forms for natural language
utterances [8], or to constrain slot filling and intent detection for
SLU [3] according to the relations in the knowledge graph invoked
by user’s utterances. While this change is radical from SLU point
of view (and contrary to the existing SLU literature), this actually
is a simpler paradigm to implement, scales to the many knowledge
graph domains and languages naturally, enables a wide variety of un-
supervised SLU training approaches, and, by definition, guarantees
consistency with the back-end information sources, hence results in
more direct SLU interpretation.

In the next section, we will briefly give a very high overview of
the emerging Semantic Web. Then in Section 3, we present the unsu-
pervised relation detection approach. Section 4 presents the exper-
iments in the framework of a conversational understanding system
along with discussion of the results.

2. SEMANTIC WEB

In this study, we assume the knowledge graph defines the seman-
tic space for the SLU model to be built. Such an approach relies
heavily on the extensive complementary literature on the semantic
web [9, 10] and semantic search [11]. In 1997, W3C first defined
the Resource Description Framefork (RDF), a simple yet very pow-
erful triple-based representation for the semantic web. A triple
typically consists of two entities linked by some relation, similar to
the well-known predicate/argument structure. An example would
be directed by(Avatar,James Cameron). As RDFs be-
came more popular, triple stores (referred as knowledge-bases or
knowledge graphs) covering various domains have emerged, such
as Freebase. However, as the goal is to cover the whole web, the
immediate bottleneck was the development of a global ontology that
is supposed to cover all domains. While there are some efforts to
manually build an Ontology of Everything like Cyc [12], the usual
practice has been more suitable for Web 2.0, i.e., anyone can use
defined ontologies to describe their own data and extend or reuse
elements of another ontology [10]. A commonly used ontology is
provided in schema.org, with consensus from academia and major
search companies like Microsoft, Google, and Yahoo. An example
RDF segment pertaining the movie Life is Beautiful is shown in
Figure 2. One can easily see from the graph that this drama movie
was directed by Roberto Benigni in 1997, which is also described by
the following two triples:

Life is Beautiful Director Roberto Benigni
Life is Beautiful Release Date 1997

These semantic ontologies are not only used by search engines,
which try to semantically parse them, but also by the authors of
the in-domain web pages (such as imdb.com) for better visibil-
ity. While the details of the semantic web literature is beyond the
scope of this paper, it is clear that these kinds of semantic ontologies
are very close to the semantic ontologies used in goal-oriented nat-
ural dialog systems and there is a very tight connection between the
predicate/argument relations and intents, as explained below.

3. BOOTSTRAPPING RELATION DETECTION MODELS

For bootstrapping relation detection classification, we mine training
examples by searching entity pairs that are related to each other in
the knowledge graph on the WWW, and further mine related queries
from the search query click logs. We refine the annotations of the

Fig. 1. Mining patterns from the world wide web and the search
query click logs, guided by the knowledge graph.

mined examples via two methods that rely on other related entities
on the knowledge graph and bootstrapping.

As in our earlier work [7], we extract all possible entity pairs in
a given domain that are connected with a specific relation from the
knowledge graph, and mine patterns used in natural language real-
ization of that relation using web search4. We train relation detection
models using the mined patterns. While the patterns are guaranteed
to contain the searched entity pairs, they may also include other en-
tities that are related. In order to refine the annotation of these pat-
terns, we follow two approaches: one of them is based on the knowl-
edge graph, and uses the other relations and entities in the graph to
match the words in the mined pattern. The other one is a bootstrap
method, and iteratively uses the trained model to find more relations
in the mined examples. In addition to patterns mined from search
results, we also enrich our training data by extracting queries that
click on the web sites that contain the entity pairs. Figure 1 shows
an overview of our approach, part of the knowledge graph (KG) and
the mining of related patterns from the world wide web (WWW) and
the search query click logs.

Our approach for mining examples guided by relations in the
knowledge graph is similar to [13], but we directly detect relations
invoked in user utterances, instead of parsing utterances with a com-
binatory categorial grammar [14]. Furthermore, we enhance our data
with web search queries which are inquiring similar information as
dialog system users.

3.1. Relation Detection

Relation detection aims to determine with relations in the part of
knowledge graph related to the utterance domain has been invoked
in the user utterances. For example, figure 2 shows two example ut-
terances that invoke the “Director” relation in the knowledge graph,
and basically request one of the two entities connected with this re-
lation. The queries to the back-end for both user requests contain
the same “Director” relation. Hence, the detection of the relation as
being invoked in the utterance is necessary for formulating the query
to the back-end. The formulation of the complete query to the back-
end requires detection of the invoked entities in the user’s utterance,
in addition to detecting the graph relations that are invoked. While
we treat these as two separate tasks in this work, they can also be
modeled jointly.

4such as with http://www.bing.com

8328



Fig. 2. Knowledge graph, natural language queries and their interpretation according to the knowledge graph.

3.2. Mining Examples from the Web

Assume Sab is the set of all snippets returned for the pair of entities a
and b via web search5. We choose a subset of Sab, Mab, that include
snippets with both entities:

Mab = {s : s ∈ Sab ∧ includes(s, a) ∧ includes(s, b)}

where includes(x, y) is a binary function that has a value of 1 if
string x contains y as a substring. One approach is using the com-
plete strings of the snippets for each relation as training examples.
However, the snippets can be lengthy and contain irrelevant informa-
tion. Hence, as described in detail in [7], we parse the returned snip-
pets with the Berkeley Parser [15], a state-of-the-art parser trained
from a treebank following a latent variable approach by iteratively
splitting non-terminals. Then we convert the output parse trees to de-
pendency parses using the LTH Constituency-to-Dependency Con-
version toolkit6 [16]. We then pick the smallest dependency sub-tree
that includes the two related entities that were searched, and use the
word sequence in that sub-tree. This allows for clipping of irrelevant
parts of the snippets while keeping the words that realize the relation
in the snippet.

3.3. Refining Annotations of Example Snippets
While we require the snippets to include the two entities, and hence
possibly invoke the relation between them, some snippets may in-
voke more than one relation. This may be because some entities
are connected with more than one relation, and some entities are re-
lated to other entities as well. For example, the snippet A Florida
Enchantment is a silent film directed by and starring Sidney Drew
is mined as a training example for the “Director” relation, but it in-
cludes the movie “Cast” and “Genre” relations as well. This is be-
cause A Florida Enchantment is connected to Sidney Drew with more
than one relation (“Director” and “Cast), and the movie is linked to
a genre, which is also invoked in this example. To refine the anno-
tations of such examples that include more than one relation, we use

5In this work, we use Bing search engine and download the top 10 results
for each entity pair

6http://nlp.cs.lth.se/software/treebank converter/

two algorithms: The first one relies on the knowledge base, and re-
trieves all properties of the searched entities. For example, for the
snippets mined for the ”Director” relation in Figure 1, we form a list
of entities and relations, that includes ”Roberto Benigni” as ”Cast”,
”Drama” as ”Genre”, ”1997” as ”Release Year”, and ”Oscar, Best
actor” as ”Award”. These are then searched in the example and if a
matching string is found, then the matching relation is added to the
annotations of this example.

The second refinement approach is a bootstrap method, and
relies on training a relation classifier with the mined data and their
annotations. This classifier is then used to label the examples with
more relations, in a way similar to Yarowsky’s bootstrap algo-
rithm [17]. In this step, only relations, r, with a high probability of
appearance in the utterance, u, are included. Hence we optimize a
threshold t for finding r with P (r|u) according to the classifier on a
development data set.

3.4. Tying Search Logs with the Knowledge Graph
Large-scale search engines such as Bing or Google log more than
100M queries per day. Each query in the log has an associated set
of URLs that are clicked after the users entered the query. This user
click information could be used to find queries that are highly related
to the contents of the clicked URLs, as well as queries that are related
to each other. In our previous work, we showed the use of query click
logs for mining examples and features for the SLU domain detection
task [18, 19].

The search results for the related entity pairs also include URLs
of the snippets that contain the two entities. Hence, we have access
to the set of URLs, Uab, that include the snippets in Mab. Similar
to the previous work, we search the Bing search engine query click
logs for the queries whose users click on the URLs in Uab. For each
URL, we only use the most frequent 10 queries that include one of
the entities of interest. We use these queries with the labels of the
relation as training examples for relation detection.

4. EXPERIMENTS

We treat relation detection as a multi-class, multi-label (i.e. each
utterance can invoke more than one relation) classification problem,
and use icsiboost [20], a Boosting based classifier, with word uni-
grams, bigrams and trigrams as features.
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4.1. Data Sets
For training, we only use the patterns mined in an unsupervised way
from web search and query logs. We use 7 entity pairs from the
knowledge graph for experimenting with examples related to movie
search, hence the relations include: director, star, release date, lan-
guage, genre, country, and rating. We extract snippets related to
each pair from web search results, and filter the snippets further to
include only the ones that include the two entities. After cleaning,
we end up with 178K patterns. The development data set is used to
tune the thresholds for F-measure computation, and contains 1,200
utterances of 20 relations, some of which are not in the data mined
from the knowledge graph, such as movie reviews or duration, and
some utterances are not informational, but include transactional in-
tents (such as “play trailer”). 66% of the development set utterances
contain one of the 7 mined relations. The unseen test set also con-
tain 1,200 examples, and 64% of these examples include one of the
7 relations.

4.2. Evaluation Measures
In the experiments, we report two F-measures on the test set. Tar-
geted Macro-F is the macro-averaged F-measure for the 7 relations
for which we mined data. Micro-F is the relation detection F-
measure on the test set examples, when all the 20 categories in the
data set are considered.

4.3. Results and Discussion
Table 2 shows the results from our experiments. As a baseline when
no labeled training data is available, we assign all utterances only the
majority relation (Majority Class experiment), which is the ”Direc-
tor” relation for the development set. The Full Snippets experiment
uses n-grams of the complete snippet sequence (i.e. all of set Mab),
and the Patterns experiments use the snippets clipped using depen-
dency parses. (1 iter) refers to a single iteration of the bootstrap algo-
rithm, and all models are improved when the bootstrapping method
is applied to refine and extend the labels of training examples. Fur-
ther iterations for bootstrapping are not reported in the table, as they
did not result on any improvement on the development set after the
first pass.

Patterns enriched with KG refers to the first approach of refin-
ing the annotations using the other entities in the knowledge graph.
As seen from the results, all methods show improvement over using
full snippets as the training examples. Refining the annotations with
bootstrap method improves using single relation as the annotation of
the example as well. Marking additional entities on the mined exam-
ples with the KG seems to not help, after examining examples, we
noted that this may be due to the noise introduced, and integrating
it with a classification method that uses context may be helpful to
improve these results further.

Search queries by themselves, even after applying bootstrapping
didn’t result in as good performance as the search snippets. This
may be due to the different nature of the search queries, as often
times search queries only include the entities or exclude function
words that may be related to the relation.

The combination experiments refer to combining the estima-
tion of the ”Patterns from Snippets (1 iter)” model and the ”Search
Queries (1 iter)” model. Upper bound refers to using the correct
relations that were picked by these two models (and hence is a
cheating upper bound to show the room for improvement), and
W-Voting refers to interpolating the decisions from the two models
with weights optimized on the development set.

As seen in these results, by simply using full snippets from
search results, we can obtain significantly better F-measure results

Targeted
Micro-F Macro-F

Majority Class 20.3% 4.2%
Full Snippets 42.5% 55.1%
Patterns from Snippets 44.1% 58.0%
Patterns from Snippets (1 iter) 45.2% 59.6%
Patterns enriched with KG 44.5% 58.0%
Patterns enriched with KG (1 iter) 44.9% 58.9%
Search Queries 31.6% 40.6%
Search Queries (1 iter) 34.7% 43.2%
Combination (Upperbound) 50.2% 62.7%
Combination (W-Voting) 45.5% 59.9%
Supervised 47.6% 59.3%

Table 2. F-measure with each method before and after iteration, and
their combination.

(both micro and macro) than using the majority class. When we
further clip the examples and refine their annotations, we get an ad-
ditional 9% relative boost on targeted macro F-measure and 7% rel-
ative boost on micro F-measure.

The last row of the table shows results with supervised training
using 2,334 examples, manually labeled with one of the 7 relations.
While the micro F-measure is 2.1% better with supervised training
in comparison to the best unsupervised result, macro F-measures
from both methods are about the same, showing comparable perfor-
mances. This is intuitive since the unsupervised learning is pivoted
around the entities and relations of the knowledge graph, providing
guidance for mining data and hence modeling.

5. CONCLUSIONS

We presented an unsupervised relation detection approach that re-
lies on mining the world wide web by searching for pairs of entities
extracted from a knowledge graph that are connected by a specific
type of relation. Performance has enhanced by clipping search snip-
pets to extract patterns that connect the two entities on a dependency
parse tree results and refining the annotations of relations accord-
ing to other related entities on the knowledge graph. We show that
our proposed unsupervised learning method performs comparable
to a supervised training method which uses manually labeled train-
ing examples, requiring design, collection, and annotation of natural
language data,

This approach is easily applicable by using freely available re-
sources such as Freebase and Bing. However, the biggest advantage
is that, such an approach naturally aligns semantic parsing and in-
terpretation with the target knowledge graph, and the whole model
can be built around pivot entities (such as the movie name, as pre-
sented in this study) and the corresponding relations. It scales to
other domains and languages, pushing the burden from natural lan-
guage semantic parsing to knowledge base population, which can
be achieved using available structured knowledge sources such as
IMDB or Wikipedia. Any in-domain data can further be exploited
for better performance using supervised or unsupervised adaptation
methods.

The future work includes extending this approach beyond rela-
tion detection to slot filling and semantic interpretation, closing the
loop in a conversational understanding system, and demonstrating
its use for multi-lingual natural language understanding.
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