TIED-STATE BASED DISCRIMINATIVE TRAINING OF CONTEXT-EXPANDED REGION-DEPENDENT FEATURE TRANSFORMS FOR LVCSR

1. Summary

- Formulate feature transform using a set of context-expanded, region-dependent linear transforms (RDLTs)
- Train RDLTs by a lattice-free, tied-state based maximum mutual information (MMI) criterion
- Leverage both long-span features and contextual weight expansion
- Achieve relative word error reduction of 10% and 6% respectively compared with conventional RDLT baselines

2. CE-RDLT

 Context-expanded region-dependent feature transform

$$\hat{\mathbf{o}}_t = \sum_{m=1}^M \kappa_{m,t} \cdot \mathbf{W}_m \xi_t$$

- $\kappa_{m,t}$: a weight of the m^{th} transform \mathbf{W}_m at time t, which is calculated by using the so-called "acoustic context expansion" in fMPE;
- ξ_t : a long-span feature vector obtained by concatenating several neighboring frames of feature vectors around \mathbf{o}_t , i.e., $\xi_t = \begin{bmatrix} 1 & \mathbf{o}_{t-L}^\top \dots \mathbf{o}_t^\top \dots \mathbf{o}_{t+L}^\top \end{bmatrix}^\top$.

Conventional fMPE, FE-RDLT and WE-RDLT are special cases of CE-RDLT

	fMPE	FE-RDLT	WE-RDLT	CE-RDLT
Bias only / Full transform	Bias	Full	Full	Full
Long-span features		✓		~
Contextual weight expansion	\checkmark		\checkmark	\checkmark

Zhi-Jie Yan, Qiang Huo, Jian Xu, and Yu Zhang Microsoft Research Asia, Beijing, China

3. Training criterion / optimization An MMI criterion formulated on decision-tree tied tri-phone HMM states is used 𝓕(𝔅) = ∑t log p(st) = ∑t log p(ôt) = ∑t log p(ôt) = ∑t log p(ôt) = p(ôt) = p(ot) = p

4. Experimental setups

- Training: 309hr Switchboard-1 conversational telephone speech transcription
- FMPE: 7x50k 39-dimensional bias vectors
- ➢ FE-RDLT: 1k 39x573 RDLTs
- WE-RDLT: 7x1k 39x53 RDLTs
- CE-RDLT: 7x1k 39x573 RDLTs
- Testing: NIST 2000 Hub5

DNN-HMM achieves much lower WER on testing set (17.1%)

Microsoft Research

 Cor latti 	Combined with GMM-HMM training using lattice-free tied-state based MMI							
Trai increase	Training set tied-state classification accuracy increased to 63%							
> No V	No WER reduction on testing set							
 Combined with GMM-HMM training using lattice-based BMMI 								
Discriminative		fMPE	FE-R	FE-RDLT				
Feature 7	Fransform	Lattice	Lattice	Tied-State				
+BMMI HN	AM Training	22.6 (14.7)	22.8 (14.0)	21.5 (18.9)				

Discriminative	WE-RDLT		CE-RDLT	
Feature Transform	Lattice	Tied-State	Lattice	Tied-State
+BMMI HMM Training	21.9 (17.4)	21.3 (19.6)	21.8 (17.7)	20.6 (22.3)

6. Conclusions

- Both the long-span features and the contextual weight expansion are helpful in the proposed context-expanded RDLT (CE-RDLT) feature transform
- The best practice is to train the feature-space CE-RDLTs by using lattice-free, tied-state based discriminative training, while modelspace GMM-HMMs are trained by using a conventional word-lattice based discriminative training method
- Future work: train the output (softmax) layer of a DNN by lattice-based discriminative training, while other layers were trained by lattice-free tied-state based discriminative training