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Abstract
Human learning is often structured around examples. Interestingly,
example-based reasoning has also been heavily used in computer-
aided programming. In this article, we describe how techniques in-
spired from example-based program analysis and synthesis can be
used for various tasks in Education including problem generation,
solution generation, and feedback generation. We illustrate this us-
ing recent research results that have been applied to a variety of
STEM subject domains including logic, automata theory, program-
ming, arithmetic, algebra, and geometry. We classify these subject
domains into procedural and conceptual content and highlight some
general technical principles as per this classification. These results
advance the state-of-the-art in intelligent tutoring, and can play a
significant role in enabling personalized and interactive education
in both standard classrooms and MOOCs.

1. Introduction
Human learning and communication is often structured around
examples—be it a student trying to understand or master a cer-
tain concept using examples, or be it a teacher trying to under-
stand a student’s misconceptions or provide feedback using exam-
ple behaviors. Interestingly, example-based reasoning has also been
used in computer-aided programming community for (a) analyzing
programs, including finding bugs using test input generation tech-
niques [4, 34] or proving correctness using inductive reasoning or
random examples [15], and (b) synthesizing programs using input-
output examples or demonstrations [10, 16, 18, 22]. In this article,
we show that such example-based reasoning techniques developed
in the programming languages community can also help automate
several repetitive and structured tasks in Education including prob-
lem generation, solution generation, and feedback generation.

We illustrate these connections by highlighting some recent
work (from across various computer science areas) that has been
applied to a wide variety of STEM subject domains including
logic [1], automata theory [3], programming [27], arithmetic [5,
6], algebra [26], and geometry [17]. More significantly, we iden-
tify some general principles and methodologies that are applicable
across multiple subject domains. For this purpose, we introduce a
useful generalization of the above-mentioned subject domains into
procedural and conceptual problems.

Procedural vs. Conceptual Problems Procedural problems are
those whose solution requires following a specific procedure that
the student is expected to memorize and apply. Examples of such
procedural problems include: (a) Mathematical procedures [5]
taught in middle-school or high-school curriculum such as addi-
tion, long division, GCD/LCM computation, Gaussian elimination,
and basis transformations. (b) Algorithmic procedures taught in un-
dergraduate computer science curriculum, wherein students are ex-
pected to demonstrate understanding of certain classic algorithms
(on specific inputs), such as breadth-first search, insertion sort, Di-

Procedural Conceptual
Solution Generation Input [6] Inside [1, 17]
Problem Generation Output [5] Input [1, 26], Inside [1, 26]
Feedback Generation Input [6] Output [3], Input [27]

Figure 1. Examples are used in three different ways in computer-
aided educational technologies: as an input (for intent expression),
as an output (to generate the intended artifact), and inside the
underlying algorithm (for inductive reasoning).

jkstra’s shortest-path algorithm, regular expression to automaton
conversion, or even computing tensor/inner product of qubits.

Conceptual problems include all non-procedural problems for
which there is no decision procedure (that the student is expected to
know and apply), but require creative thinking in the form of pattern
matching or making educated guesses. Besides possibly other kinds
of problems, these include:
• Proof problems: E.g., natural deduction proofs [1], proofs of

algebraic theorems [26], proofs of non-regularity of languages.
• Construction problems: E.g., construction of computational ar-

tifacts such as geometric constructions [17], automata [3], algo-
rithmic procedures [27], and bitvector circuits.

Example-based Learning Examples have multi-faceted use in
the educational technologies that we present in this article. Below,
we classify this usage according to interaction with the underlying
technology (Fig. 1).
Input: For several educational tasks, examples act as a natural
means to express intent. In case of solution generation for procedu-
ral problems (§2.1), teachers can demonstrate example traces with
the goal of synthesizing procedures for those problems. In case of
problem generation for conceptual problems (§3.2), teachers can
provide an example problem with the goal of generating similar
problems. In case of feedback generation for procedural problems
(§4.1), teachers can provide examples of buggy traces with the
goal of learning any algorithmic misconceptions that the student
might have. In case of feedback generation for conceptual prob-
lems (§4.2), teachers can provide examples of common local error
corrections with the goal of finding some appropriate combination
of those corrections that can correct a given incorrect attempt. For
these cases, we describe techniques inspired by work in the area of
programming by example (PBE) [10, 16, 18, 22].

Output: For some educational tasks, examples act as the intended
output artifact. In case of problem generation for procedural prob-
lems (§3.1), teachers desire to produce example inputs that exercise
various paths in the given procedure to generate a progression of
problems. In case of feedback generation for conceptual problems
(§4.2), teachers desire to produce counterexamples that expose in-
correct behavior in the student’s solution. For these cases, we de-
scribe techniques inspired from program analysis, and in particular,
test input generation techniques [4, 34], often used for bug finding.
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(a)

 762       1270         1
                  762
                  508        762         1
                                 508
                                 254        508          2
                                                508
                                                     0         254 

(b)

GCF(int array array T , int I1, int I2)
1 Assume T [0, 0], T [1, 0] contain I1, I2 respectively.
2 for (j := 0; T [2j, j] 6= 0; j := j + 1):
3 T [2j, j + 2] := Floor(T [2j, j + 1]÷ T [2j, j]);
4 T [2j + 1, j + 1] := T [2j, j + 2]× T [2j, j];
5 T [2j + 2, j + 1] := T [2j, j + 1]− T [2j + 1, j + 1];
6 T [2j + 2, j + 2] := T [2j, j];
7 return T [2j, j + 1];

Figure 2. Solution Generation for procedural problems [6]. (a) Demonstration of GCF procedure over inputs 762 and 1270 to produce output
254. (b) Procedure GCF synthesized automatically from the demonstration in (a).

Inside: Examples can also be used inside the underlying algo-
rithms for performing inductive reasoning. This happens in case
of both solution generation and problem generation for conceptual
problems (§2.2, §3.2). This style of reasoning is inspired by how
humans often approach problem generation and solving, and the
underlying techniques are inspired by work in the area of establish-
ing program correctness using random examples [15], and program
synthesis using examples [16].

Next, we elaborate on example-based learning technologies
by giving specific instances and highlighting general principles.
This article is organized by the three key tasks in intelligent tu-
toring [33], namely solution generation (§2), problem generation
(§3), and feedback generation (§4). We motivate each of these
inter-related tasks, and give multiple instances of example-based
learning technologies for each task. We also describe some eval-
uation associated with each of these instances. While several of
these instances are in infancy, some of them have been deployed
and evaluated relatively more thoroughly (§3.1, §4.2).

2. Solution Generation
Solution generation is the task of automatically generating solu-
tions given a problem description in some subject domain. This is
important for several reasons. First, it can be used to generate sam-
ple solutions for automatically generated problems. Second, given
a student’s incomplete solution, it can be used to complete the so-
lution, which can be much more illustrative for a student compared
to providing a completely different sample solution. Third, given a
student’s incomplete solution, it can also be used to generate hints
on the next step or an intermediate goal.

2.1 Procedural Problems
Solution generation for procedural problems can be enabled by
writing down the corresponding procedure and executing it for a
given problem. While these procedures can be written manually,
technologies for automatic synthesis of such procedures (from ex-
amples) can enable non-programmers to create customized proce-
dures on-the-fly. The number of such procedures and their stylis-
tic variations in how they are taught is often large and may not be
known in advance to outsource manual creation of such procedures.

Such procedures can be synthesized using PBE technology [10,
16, 22], which has traditionally been applied to end-user applica-
tions. Recently, PBE was used for synthesizing various kinds of
spreadsheet tasks including string transformations and table layout
transformations [18]. We observe that mathematical procedures can
be viewed as spreadsheet procedures that involve both (a) compu-
tation of new values from existing values in spreadsheet cells (as
in string transformations, which produce a new output string from
substrings of input strings), and (b) positioning that value in an
appropriate spreadsheet cell (as in table transformations, which re-
position contents of input spreadsheet table). We have combined
ideas from learning of string and table transformations to learn
mathematical procedures from example traces, wherein a trace is
a sequence of (value, cell) pairs [6]. We use dynamic program-
ming to compute all sub-programs that are consistent with various

sub-traces (in order of increasing length). The underlying algorithm
starts out by computing, for each trace element (v, c), the set of all
program statements (over a teacher-specified set of operators) that
can produce v from previous values in the trace. Fig. 2 illustrates
synthesis of a GCD procedure from an example trace, wherein the
teacher-specified operators include −, ×, ÷, and Floor.

2.2 Conceptual Problems
Solution generation for conceptual problems often requires per-
forming search over the underlying solution space. Following are
two complementary principles, each of which we have found use-
ful across multiple subject domains. They also reflect how humans
themselves might search for such solutions.

S1: Perform reasoning over examples as opposed to abstract
symbolic reasoning. The idea here is to reason about the be-
havior of a solution on some/all examples (i.e., concrete inputs)
instead of performing symbolic reasoning over an abstract input.
This reduces search time by large constant factors because it is
much faster to execute part of a construction/proof on concrete
inputs than to reason symbolically about it.

S2: Reduce solution space to solutions with small length. The
idea here is to extend the solution space with commonly used
macro constructs, wherein each macro construct is a composi-
tion of several basic constructs/steps. This reduces the solution
length making search more feasible in practice.

We next illustrate these principles using multiple subject domains.

Geometry Constructions A geometry construction is a method
for constructing a desired geometric object from other objects by
applying a sequence of ruler and compass constructions (Fig. 3(e)).
Such constructions are an important part of high-school geome-
try. The automated geometric theorem proving community (one of
the successful stories of automated reasoning) has developed tools
(e.g., Geometry Explorer [32] or Geometry Expert [14]) that al-
low students to create geometry constructions and use interactive
provers to prove properties of those constructions. Below, we de-
scribe how to synthesize these constructions in the first place.

Geometry constructions can be regarded as straight-line pro-
grams that manipulate geometry objects (points, lines, and cir-
cles) using ruler/compass operators. Hence, their synthesis can be
phrased as a program synthesis problem [17], wherein the goal is
to synthesize a straight-line program (Fig. 3(d)) that realizes the
relational specification between inputs and outputs (Fig. 3(b)).

The semantics of geometry operations is too complicated for
use of symbolic methods for synthesis, or even, verification. We
observe that ruler/compass operators are analytic functions, which
implies that the validity of a geometry construction can be proba-
bilistically inferred from testing on random examples. This follows
from the following extension of the classical result on polynomial
identity testing [25] to analytic functions.
PROPERTY 1 (Probabilistic Testing of Analytic Functions). Let
f(X) and g(X) be non-identical real-valued analytic functions
over Rn. Let Y ∈ Rn be selected uniformly at random. Then, with
high probability over this random selection, f(Y ) 6= g(Y ).
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Rule Name Premises Conc
Modus Ponens (MP) p→q, p q
Hypo. Syllogism (HS)p→q,q→rp→r
Disj. Syllogism (DS) p∨q, ¬p q
Simplification (Simp) p∧q q

(a)

StepTruth-table Reason
P1 1048575 Premise
P2 4294914867Premise
P3 3722304989Premise
1 16777215 P1, Simp
2 4294923605P2,P3,HS
3 14427970551,2, HS

(c)

(b)

Rule Name Proposition Equivalent Proposition
Distribution p ∨(q ∧r) (p ∨q) ∧(p ∨r)
Double Negation p ¬¬p
Implication p→q ¬p ∨q
Equivalence p ≡q (p→q)∧(q→p)

p ≡q (p ∧q)∨(¬p ∧¬q)

Step Proposition Reason
P1 x1 ∨ (x2 ∧ x3) Premise
P2 x1 → x4 Premise
P3 x4 → x5 Premise
1 (x1∨x2)∧(x1∨x3)P1, Distr.
2 x1 ∨ x2 1, Simp.
3 x1 → x5 P2, P3, HS.
4 x2 ∨ x1 2, Comm.
5 ¬¬x2 ∨ x1 4, Double Neg
6 ¬x2 → x1 5, Implication
7 ¬x2 → x5 6, 3, HS.
8 ¬¬x2 ∨ x5 7, Implication
Concx2 ∨ x5 8, Double Neg

Step Proposition Reason
P1 x1 ≡ x2 Premise
P2 x3 → ¬x2 Premise
P3 (x4 → x5)→ x3 Premise
1 (x1→x2)∧(x2→x1) P1, Equivalence
2 x1 → x2 1, Simp.
3 (x4 → x5)→ ¬x2 P3, P2, HS.
4 ¬¬x2 → ¬(x4→x5)3, Transposition
5 x2 → ¬(x4 → x5) 4, Double Neg
6 x1 → ¬(x4 → x5) 2, 5, HS.
7 x1 → ¬(¬x4 ∨ x5) 6, Implication
8 x1 → (¬¬x4 ∧ ¬x5)7, De Morgan’s
Concx1 → (x4 ∧ ¬x5) 8, Double Neg.

(d) (e)

Figure 4. Solution Generation for natural deduction [1]. (a) Sample inference rules. (b) Sample replacement rules. (c) An abstract proof of
the original problem in Fig. 7(b). The second column lists the 32 bit integer representation of the truth-table (over 5 variables). (d) A natural
deduction proof of the original problem in Fig. 7(b) with inference rule applications shown in bold. (e) Natural deduction proof of a similar
problem from Fig. 7(b) having same inference rule steps.

(a) English
⇓ Description

Construct a triangle given its base L (with end-points
p1,p2), a base angle a,& sum r of the other two sides.

(b) PreCondition r > Length(p1, p2)

⇓ PostCondition
Angle(p, p1, p2) = a ∧
Length(p, p1) + Length(p, p2) = r

(c) Random
⇓ Example

L = Line(p1 = 〈81.62, 99.62〉, p2 = 〈99.62, 83.62〉)
r = 88.07 a = 0.81 radians p = 〈131.72, 103.59〉

(d) Geometry
Program

ConstructTriangle(p1,p2,L,r,a):
L1 := ConstructLineGivenAngleLinePoint(L,a,p1);
C1 := ConstructCircleGivenPointLength(p1,r);
(p3, p4) := LineCircleIntersection(L1,C1);
L2 := PerpendicularBisector2Points(p2,p3);
p := LineLineIntersection(L1,L2); return p;

(e) Geometry
Construction

Figure 3. Solution Generation for geometry constructions [17].

Property 1 follows from the fact that non-zero analytic functions
have isolated zeroes, i.e., for every zero point of an analytic func-
tion, there exists a neighborhood in which the function is non-zero.
Thus, the number of non-zero points of the non-zero analytic func-
tion f(X)− g(X) dominates the number of its zero points. 1

Hence, the problem of synthesizing geometry constructions that
satisfy a symbolic relational specification between inputs/outputs
can be reduced to that of synthesizing constructions that are con-
sistent with randomly chosen input-output examples (Principle S1).
This forms the basis of our synthesis algorithm for geometry con-
structions [17], which involves the following two key steps (also
illustrated in Fig. 3) reflecting the two general principles discussed
above: (i) Generate random input-output examples (Fig. 3(c)) from
the logical description (Fig. 3(b)) of the given problem using off-
the-shelf numerical solvers. The logical description in turn is gen-
erated from the natural language description (Fig. 3(a)) using natu-
ral language translation technology. (ii) Perform brute-force search

1 However, unlike polynomial identity testing theorem [25], which allows
performing modular arithmetic over numbers selected from a finite inte-
ger set for efficient evaluation, this result does not provide any constructive
guidance on the size of the selection set and requires precise arithmetic.
We approximate this process by using finite precision floating point arith-
metic and using a threshold for comparing equality—this, in our practical
experiments, did not yield any unsoundness or incompleteness.

over a library of ruler/compass operators to find a construction
(Fig. 3(d)) that transforms the randomly selected input(s) into cor-
responding output(s). The search is performed over an extended
library of ruler/compass operators that includes higher-level prim-
itives such as perpendicular/angular bisectors (Principle S2). This
not only shortens a solution size (allowing for efficient search), but
is also more readable for the student. On our benchmark of 25 prob-
lems [17], use of extended library shortened solutions to 2-13 steps
from 3-45 steps and increased the success rate from 75% to 100%.

Natural Deduction Proofs Natural deduction (taught in introduc-
tory logic courses) is a method for establishing the validity of argu-
ments in propositional logic, where the conclusion of an argument
is derived from the premises through a series of discrete steps. Each
step derives a proposition, which is either a premise or is derived
from preceding propositions by application of some inference rule
(Fig. 4(a)) or replacement rule (Fig. 4(b)) and the last of which is
the conclusion of the argument. Fig. 4(d) shows such a proof. Dit-
marsc [29] presents a survey of proof assistants for teaching natural
deduction (like Pandora [9]), some of which can also solve prob-
lems. We describe a different and a scalable way to solve such prob-
lems that also paves the way for generating fresh problems (§3.2).

While SAT/SMT solving and theorem proving communities [8]
have focused on solving large-sized proof problems in a reason-
able amount of time, our recent approach [1] to generating nat-
ural deduction proofs in real-time leverages the observation that
classroom sized instances are small. Our approach involves the fol-
lowing two aspects reflecting the two general principles discussed
above. (i) We abstract a proposition using its truth-table, which can
be represented using a bitvector representation [20]–this avoids ex-
pensive symbolic reasoning and reduces application of inference
rules to simple bitvector operations (Principle S1). (ii) We break
the proof search into multiple smaller (and hence more efficient)
proof searches (Principle S2). First, we search for an abstract proof
that involves only inference rule applications over truth table repre-
sentation (note that replacement rules are identity operations over
truth table representation). Then, we refine this abstract proof over
truth-table representation to a complete proof over symbolic propo-
sitions by searching for sequences of replacement rules in between
every two neighboring inference rules. Fig. 4(c) gives an example
of an abstract proof, while Fig. 4(d) shows its refinement to a com-
plete proof. Note that the size of an abstract proof and the number
of replacement rules in between any two inference rules is much
smaller than the size of the overall proof. Our methodology solved
84% of 279 problems collected from various textbooks (generating
proofs of ≤ 27 steps), while a baseline algorithm (that used sym-
bolic representation for propositions and performed breadth-first
search for the complete proof) solved 57% of these problems [1].
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(a)

Add(int array A, int array B)
` := Max(Len(A), Len(B));
for i=0 to `-1 . Loop over digits (L)

if (i ≥ Len(A)) t := B[i]; . Different # of digits (D)
else if (i ≥ Len(B)) t := A[i]; . Different # of digits (D)
else t:=A[i]+B[i];
if (C[i] == 1) t:=t+1; . Carry from prev. step (C)
if (t > 9) {R[i]:=t-10; C[i+ 1]:=1;}
else R[i] := t;

if (C[`] == 1) R[`] := 1; . Extra digit in output (E)

(b)

Concept Trace characteristic Example input
Single-digit addition L 3 + 2
Multiple-digit addition LL+ 1234 + 8765
without carry
Single carry L∗(LC)L∗ 1234 + 8757
Two single carries L∗(LC)L+(LC)L∗ 1234 + 8857
Double carry L∗(LCLC)L∗ 1234 + 8667
Triple carry L∗(LCLCLC)L∗ 1234 + 8767
Extra digit in input and L∗CLDCE 9234 + 900
new digit in output

Figure 5. Problem Generation for procedural problems [5]. (a) An addition procedure to add two numbers, instrumented with control
locations on the right side. (b) Various concepts expressed in terms of trace features and corresponding example inputs that satisfy those trace
features. Such example inputs can be generated by test input generation techniques.

3. Problem Generation
Generating fresh problems that have specific solution characteris-
tics (such as a certain difficulty level and that involves using a cer-
tain set of concepts) is a tedious task for the teacher. Automating
this has several benefits. Generating problems that are similar to a
given problem can help avoid copyright issues. It may not be legal
to publish problems from textbooks on course websites. A problem
generation tool can provide instructors with a fresh source of prob-
lems to be used in their assignments or lecture notes. Second, it
can help prevent cheating [23] in classrooms or MOOCs (with un-
synchronized instruction) since each student can be provided with
a different problem of the same difficulty level. Third, when a stu-
dent fails to solve a problem, and ends up looking at the sample so-
lution, then the student may be presented with another similar prac-
tice problem. Generating problems that have a given difficulty level
and that exercise a given set of concepts can help create personal-
ized workflows for students. If a student solves a problem correctly,
then the student may be presented with a problem that is more diffi-
cult than the last problem, or exercises a richer set of concepts. If a
student fails to solve a problem, then the student may be presented
with simpler problems to identify any core concepts the student has
not yet mastered and to reinforce those concepts.

On the other hand, fresh problems create new pedagogical chal-
lenges since teachers may no longer recognize those problems and
students may not be able to discuss those problems with each other
after assignment submission. These challenges may be mitigated by
solution generation (§2) and feedback generation (§4) capabilities.

3.1 Procedural Problems
A procedural problem can be characterized by the trace that it
generates through the corresponding procedure. Various features of
this trace can be used to identify the difficulty level of a procedural
problem and the various concepts that it exercises. For instance,
a trace that executes both sides of a branch (in multiple iterations
through a loop) might exercise more concepts than the one that
simply executes only one side of that branch. A trace that executes
more iterations of a loop might be more difficult than the one that
executes fewer iterations.

The use of a trace-based framework allows for using test input
generation tools [4] for generating problems that have certain trace
features. We have used this methodology to automatically synthe-
size practice problems for elementary and middle school mathe-
matics [5]. Fig. 5 illustrates this in the context of an addition proce-
dure. Note that various addition concepts can be modeled as trace
properties, and in particular, regular expressions over procedure lo-
cations. Furthermore, use of a trace-based framework allows for us-
ing notions of procedure coverage [34] to evaluate the comprehen-
siveness of a certain collection of expert-designed problems and to
fill in any holes. It also allows for defining a partial order over prob-
lems by defining a partial order over corresponding traces based
on trace features such as number of times a loop was executed, or

whether or not the exceptional case of a conditional branch was ex-
ecuted, and the set of n-grams present in the trace. We used this
partial order to synthesize progressions of problems, and even ana-
lyze and compare existing progressions across various textbooks.

Recently, we used our trace-based framework [5] to synthe-
size a progression of thousands of levels for Refraction, a popular
math puzzle game. We conducted an A/B test with 2,377 players
(on the portal www.newgrounds.com) that showed our synthesized
progression motivated players to play for similar lengths of time
as in case of the original expert-designed progression. The median
player in the synthesized progression group played for 92% as long
as the median player in the expert designed progression group.

Effective progressions are important not just for school-based
learning, but also for usability and learnability within end-user ap-
plications. Many modern user applications have advanced features,
and learning these procedures constitutes a major effort on the part
of the user. Therefore designers have focused their energy on try-
ing to reduce this effort. For example, Dong et.al. created a series
of mini games to teach users advanced image manipulation tasks
in Adobe Photoshop [11]. Our methodology may assist in creating
such tutorials/games by automatically generating progressions of
tasks from procedural specifications of advanced tasks.

3.2 Conceptual Problems
Problem generation for several kinds of conceptual problems can
be likened to discovering new theorems, which ought to be a search
intensive activity that can be aided with domain-specific strategies.
However, there are two general principles that we have found useful
across multiple subject domains.

P1: Example-based template generalization. This involves gener-
alizing a given example problem into a template and searching
for all possible instantiations of that template for valid problems.
Given that the search space might be huge, this methodology is
usually applicable when it is possible to quickly check the va-
lidity of a given candidate problem. This methodology does not
necessarily require access to a solution generation technology,
though presence of a solution generation technology can guar-
antee the difficulty level of the generated problems.

P2: Problem Generation as reverse of Solution Generation. This
applies to only proof problems. The idea here is to perform
a reverse search in the solution search space starting from the
goal and leading up to the premises. This methodology has the
advantage of ensuring that the generated problems have specific
solution characteristics.

We next illustrate these principles using multiple subject domains.

Algebraic Proof Problems Problems that require proving alge-
braic identities (Fig. 6) are common in high-school math curricu-
lum. Generating such problems is a very tedious task for the teacher
since the teacher can’t simply arbitrarily change constants (unlike
in procedural problems) or variables to generate a correct problem.
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Example
Problem
⇓

sinA

1 + cosA
+

1 + cosA

sinA
= 2 cscA

∣∣∣∣∣∣
(x+ y)2 zx zy

zx (y + z)2 xy
yz xy (z + x)2

∣∣∣∣∣∣ = 2xyz(x+ y + z)3

Generalized
Problem
Template
⇓

T1A

1± T2A
+

1± T3A

T4A
= 2 T5A

where Ti ∈ {cos, sin, tan, cot, sec, csc}

∣∣∣∣∣∣
F0(x, y, z) F1(x, y, z) F2(x, y, z)
F3(x, y, z) F4(x, y, z) F5(x, y, z)
F6(x, y, z) F7(x, y, z) F8(x, y, z)

∣∣∣∣∣∣ = c F9(x, y, z)

where Fi(0 ≤ i ≤ 8) and F9 are homogeneous polynomials of de-
grees 2 and 6 respectively, ∀(i, j) ∈ {(4, 0), (8, 4), (5, 1), . . .} : Fi =
Fj [x→y; y→z; z→x], and c ∈ {±1,±2, . . . ,±10}.

New
Similar
Problems

cosA

1− sinA
+

1− sinA

cosA
= 2 tanA

cosA

1 + sinA
+

1 + sinA

cosA
= 2 secA

cotA

1 + cscA
+

1 + cscA

cotA
= 2 secA

tanA

1 + secA
+

1 + secA

tanA
= 2 cscA

sinA

1− cosA
+

1− cosA

sinA
= 2 cotA

∣∣∣∣∣∣
y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣ = 2(xy + yz + zx)3

∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣ = xyz(x+ y + z)3

∣∣∣∣∣∣
yz + y2 xy xy

yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣ = 4x2y2z2

Figure 6. Problem Generation for algebraic proof problems involving identities over analytic functions such as trigonometry and determi-
nants [26]. A given problem is generalized into a template and valid instantiations are found by testing on random values for free variables.

Some replacements for
Premise 3 in Example
Problem in (b):

¬x4

x4 ≡ x5

x4 ≡ x2

x4 → x2

x4 → ¬x1

Premise 1 Premise 2 Premise 3 Conclusion
Example Problem

x1 ∨ (x2 ∧ x3) x1 → x4 x4 → x5 x2 ∨ x5

New Similar Problems
x1 ≡ x2 x3 → ¬x2 (x4→x5)→x3 x1→(x4∧¬x5)

x1 ∧ (x2 → x3) (x1∨x4)→¬x5 x2 ∨ x5 (x1 ∨ x4)→ x3

(x1 ∨ x2)→x3 x3→(x1 ∧ x4) (x1 ∧ x4)→x5 x1→x5

(x1 → x2)→ x3 x3 → ¬x4 x1 ∨ (x5 ∨ x4) x5 ∨ (x2 → x1)
x1 → (x2 ∧ x3) x4 → ¬x2 (x3≡x5)→x4 x1→(x3≡¬x5)

Parameters: # of premises = 3, Size of propositions ≤ 4,
# of variables = 3, # of inference steps = 2,
Inference rules = { DS, HS }

Premise 1 Premise 2 Premise 3 Concl.
(x1 → x3)→ x2 x2 → x3 ¬x3 x1∧¬x3

x3→x1 (x3≡x1)→x2¬x2 x1∧¬x3

(x1≡x3)∨(x1≡x2)(x1≡x2)→x3¬x3 x1≡x3

x1 ≡ ¬x3 x2 ∨ x1 x3→¬x2 x1∧¬x3

x3→x1 x1→(x2∧x3)x3→¬x2 ¬x3

(a) (b) (c)
Figure 7. Various Problem Generation interfaces for natural deduction problems [1]. (a) Proposition replacement. (b) Similar problem
generation. (c) Parameterized problem generation.

Our algebra problem generation methodology (illustrated in
Fig. 6) uses Principle P1 to generate fresh problems that are similar
to a given example problem [26]. First, a given example problem
is generalized into a template that contains a hole for each operator
in the original problem to be replaced by another operator of the
same type signature. The teacher can guide the template general-
ization process by either providing more example problems or by
manually editing the initially generated template. Then, we auto-
matically enumerate all possible instantiations of the template and
check the validity of an instantiation by testing on random inputs.
The probabilistic soundness of such a check follows from Prop-
erty 1. This methodology works for identities over analytic func-
tions, which can involve a variety of common algebraic operators
including trigonometry, integration, differentiation, logarithm, ex-
ponentiation, etc. Note that this methodology would not be feasible
if symbolic reasoning was used (instead of random testing) to check
the validity of a candidate instantiation since it would be too slow
to test out all instantiations in real time (Principle S1 in §2.2).

Natural Deduction Problems Fig. 7 illustrates three different
interfaces to generating new natural deduction problems [1]. The
proposition replacement interface (Fig. 7(a)) finds replacements for
a given premise or the conclusion in a given example problem.
It generates those propositions as replacements that ensure that
the new problem is well-defined, i.e., one whose conclusion is
implied by the premises, but not by any strict subset of those
premises. This interface is based on Principle P1 wherein we check
all possible small-sized propositions as replacements. The validity
of each candidate problem is checked by performing bitvector

operations over bitvector based truth table representation of the
propositions [20] (Principle S1 in §2.2). A candidate problem is
valid if the bitwise-and of the premise bitvectors is bitwise-smaller
than the conclusion bitvector.

The similar problem generation interface finds problems that
have a solution that uses exactly the same sequence of inference
rules as is used by a solution of an example problem. Fig. 7(b)
shows some automatically generated problems given an example
problem. Fig. 4(e) shows a solution for the first new problem in
Fig. 7(b). Observe that this solution uses exactly the same sequence
of inference rules (shown in bold) as the solution for the original
example problem, shown in Fig. 4(d). The parameterized problem
generation interface finds problems that have specific features such
as a given number of premises and variables, maximum size of
propositions, and whose smallest proof involves a given number
of steps and makes use of a given set of rules. Fig. 7(c) shows
some automatically generated problems given some parameters.
Both these interfaces find desired problems by performing a reverse
search in the solution space (Principle P2) that is explored by
the solution generation technology for natural deduction (§2.2).
The similar problem generation interface further uses the solution
template obtained from a solution of the example problem for
search guidance (Principle P1).

4. Feedback Generation
Feedback generation may include several aspects: identifying
whether or not the student’s solution is incorrect, why is it incor-
rect, and where or how can it be fixed. A teacher might even want
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def computeDer iv ( po ly ) :
r e s u l t = [ ]
f o r i in r a n g e ( l e n ( po ly ) ) :

r e s u l t += [ i ∗ po ly [ i ] ]
i f l e n ( po ly ) == 1 :

re turn r e s u l t
# r e t u r n [ 0 ]

e l s e :
re turn r e s u l t [ 1 : ]
# remove t h e l e a d i n g 0

(a)

def computeDer iv ( po ly ) :
d e r i v , z e r o = [ ] , 0
i f ( l e n ( po ly ) == 1 ) :

re turn d e r i v
f o r e in r a n g e ( 0 , l e n ( po ly ) ) :

i f ( po ly [ e ] == 0 ) :
z e r o += 1

e l s e :
d e r i v . append ( po ly [ e ]∗ e )

re turn d e r i v

def computeDer iv ( po ly ) :
i d x = 1
d e r i v = l i s t ( [ ] )
p l e n = l e n ( po ly )
whi le i d x <= p l e n :

c o e f f = po ly . pop ( 1 )
d e r i v += [ c o e f f ∗ i d x ]
i d x = i d x + 1
i f l e n ( po ly ) < 2 :

re turn d e r i v

def computeDer iv ( po ly ) :
l e n g t h = i n t ( l e n ( po ly )−1)
i = l e n g t h
d e r i v = r a n g e ( 1 , l e n g t h )
i f l e n ( po ly ) == 1 :

d e r i v = [ 0 . 0 ]
e l s e :

whi le i >= 0 :
new = po ly [ i ] ∗ i
i −= 1
d e r i v [ i ] = new

re turn d e r i v

x[a] → x[{a+1, a−1, ?a}]
x = n → x = {n+1, n−1, 0}

range(a0, a1)→
range({0, 1, a0−1, a0+1},

{a1+1, a1−1})

The program requires 3 changes:
• In the return statement return deriv in

line 4, replace deriv by [0].
• In the comparison expression

(poly[e] == 0) in line 6, change
(poly[e] == 0) to False.
• In the expression range(0, len(poly))

in line 5, increment 0 by 1.

The program requires 1 change:
• In the function computeD-

eriv, add the base case to re-
turn [0] for len(poly)=1.

The program requires 2 changes:
• In the expression

range(1, length) in line 4, in-
crement length by 1.
• In the comparison expression

(i >= 0) in line 8, change opera-
tor >= to !=.

(b) (c) (d) (e)
Figure 8. Automated Grading of introductory programming problems [27]. (a) depicts a reference implementation (in Python) for the
problem of computing a derivative of a polynomial. (b) describes some rewrite rules that capture common errors. (c), (d), and (e) denote three
different student submissions along with the respective feedback that has been automatically generated.

to generate a hint in order to enable to student to identify and/or fix
mistakes on their own. In examination settings, the teacher would
even like to award a numerical grade.

Automating feedback generation is important for several rea-
sons. It is quite difficult and time-consuming for a human teacher to
identify what mistake a student has made. As a result, teachers of-
ten take several days to return graded assignments back to students.
From the student’s perspective, this is highly undesirable since by
the time they receive their graded assignments, their motivation to
learn from their mistakes might be lost because of the need to page
in the desired context. Furthermore, maintaining grade consistency
across students and graders is a difficult task. The same grader may
award different scores to two very similar solutions, while different
graders may award different scores to the same solution.

4.1 Procedural Problems
Generating feedback for procedural problems is relatively easy
(compared to conceptual problems) since they almost have a unique
solution—the student’s attempt can simply be syntactically com-
pared with the unique solution. While student errors may include
careless mistakes or incorrect fact recall, one common class of mis-
takes that students make in procedural problems is to employ a
wrong algorithm. Van Lehn has identified over 100 bugs that stu-
dents demonstrate in subtraction alone [30]. Ashlock has identified
a set of buggy computational patterns for a variety of algorithms
based on real student data [7]. For instance, following are some
bugs that Ashlock describes for the addition procedure (Fig. 5(a)).
• Add each column and write the sum below each column, even if

it is greater than nine (page 34 in [7]).
• Add each column, from left to right. If the sum is greater than

nine, write the tens digit beneath the column and the ones digit
above the column to the right (page 35 in [7]).

We observe that all such bugs have a clear procedural meaning
and can be captured as a procedure. These buggy procedures can
be automatically synthesized from examples of incorrect student
traces by using the same PBE technology referred to in §2.1. In
fact, each of the 40 bugs that Ashlock describes in [7] is illustrated
using a set of 5-8 example traces, and we were able to synthesize
28 (out of 40) buggy procedures from their example traces [6].

Identifying such buggy procedures has multiple benefits. It can
inform teachers about the misconceptions that a student has. It can

also be used to automatically generate a progression of problems
(as in §3.1) that are specifically tailored to highlighting differences
between the correct procedure and the buggy procedure.

Aleven et.al. [2] also used PBE technology to generalize demon-
strations of correct and incorrect behaviors provided upfront by the
teacher. While their generalization is restricted to loop-free proce-
dures, it allows teachers to add annotations for providing feedback
to students who get stuck or start following a known incorrect path.

4.2 Conceptual Problems
Feedback for proof problems can be generated by checking cor-
rectness of each individual step (assuming that the student is using
a correct proof methodology) and using a solution generation tech-
nology to generate proof completions from the onset of any incor-
rect step [13]. In this section, we focus on feedback generation for
construction problems. Following are two general principles each
of which we have found useful across multiple subject domains.

F1: Edit distance. The idea here is to find the smallest set of edits
to the student’s solution that will transform it into a correct
solution. Such a feedback informs the student about where the
error is in their solution and how can it be fixed. An interesting
twist is to find the smallest set of edits to the problem description
that will transform it into one that corresponds to the student’s
solution—this captures a common mistake of misunderstanding
the problem description. Such a feedback can inform the student
about why their solution is incorrect. The number and type of
edits can be used as a criterion for awarding numerical grades.

F2: Counterexamples. The idea here is to find input examples on
which the student’s solution does not behave correctly. Such a
feedback informs the student about why their solution is incor-
rect. The density of such inputs can be used as a criterion for
awarding grades.

Next, we illustrate these principles using different subject domains.

Introductory Programming Assignments The standard approach
to grading programming assignments has been to examine its be-
havior on a set of test inputs. These test inputs can be manually
written or automatically generated [4]. Douce et.al. [12] present a
survey of various systems developed for automated grading of pro-
gramming assignments. Failing test inputs (i.e., counterexamples)
can provide guidance on why a given solution is incorrect (Princi-
ple F2). However, this alone is not ideal especially for beginners
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Figure 9. Automated Grading of automata problems [3]. The fig-
ure shows several attempts to the problem of constructing an au-
tomata that accepts strings containing the substring “ab” exactly
twice. Also shown is automatically generated feedback & grade.

who find it difficult to map counterexamples to errors in their code.
We describe below an edit distance based technique [27] that pro-
vides guidance on how to fix an incorrect solution (Principle F1).

Consider the problem of computing the derivative of a poly-
nomial whose coefficients are represented as a list of integers.
This problem teaches conditionals and iteration over lists. Fig. 8(a)
shows a reference solution. For this problem, students struggled
with low-level Python semantics issues involving list indexing and
iteration bounds. Students also struggled with conceptual issues
such as missing the corner case of handling lists consisting of sin-
gle element. The teacher leverages this knowledge of common ex-
ample errors to define an edit distance model that consists of a set
of weighted rewrite rules that capture potential corrections (along
with their cost) for mistakes that students might make in their solu-
tions. Fig. 8(b) shows some sample rewrite rules. The first rewrite
rule transforms the index in a list access. The second rule trans-
forms the right hand side of a constant initialization. The third rule
transforms the arguments for the range function.

Fig. 8(c-e) show three student programs, together with the re-
spective feedback generated by our program grading tool [27].
The underlying technique involves exploring the space of all can-
didate programs, based on applying the teacher provided rewrite
rules to the student program, to synthesize a candidate program
that is equivalent to the reference solution and that requires
minimum number of corrections. For this purpose, we leverage
SKETCH [28], a state-of-the-art program synthesizer that employs
a SAT-based algorithm to complete program sketches (programs
with holes) so that they meet a given specification. We evaluated
our tool on thousands of real student attempts (to programming
problems) obtained from the Introduction to Programming course
at MIT (6.00) and MITx (6.00x) [27]. Our tool successfully gener-
ated feedback (of up to 4 corrections) on over 64% of all submitted
solutions that were incorrect in about 10 seconds on average.

Intention-based matching approaches [19] match plans in stu-
dent programs with those in a pre-existing knowledge base to pro-
vide feedback. While our technique does not make any assumption
on the algorithms or plans that students can use, a key limitation
is that it cannot provide feedback on student attempts that have big
conceptual errors, which cannot be fixed by application of local
rewrite rules. Furthermore, our technique is limited to providing
feedback on functional equivalence (as opposed to performance or
design patterns).

Automata Constructions Deterministic finite automaton (DFA)
is a simple but powerful computational model with diverse appli-
cations and hence is a standard part of CS Education. JFLAP [24] is
a widely used system for teaching automata and formal languages.
It allows for constructing, testing, and conversion between compu-
tational models, but does not support grading. We discuss below a
technique for automated grading of automata constructions [3].

Consider the problem of constructing a DFA over alphabet
{a, b} for the regular language: L = {s | s contains the substring
“ab” exactly twice}. Fig. 9 shows five attempts submitted by dif-
ferent students and the respective feedback generated by our au-
tomata grading tool [3]. The underlying technique involves iden-
tifying different kinds of feedback including edit distance over
both solution/problem (Principle F1) and counterexamples (Prin-
ciple F2). Each feedback is associated with a numerical grade. The
feedback that corresponds to the best numerical grade is then re-
ported. The reported feedback for the third attempt is based on
edit distance to a correct solution, and the grade is a function of
the number and kind of edits needed to transform the transform
the automata into a correct one. In contrast, the rest of the incor-
rect attempts have a large edit distance and hence are based on
other kinds of feedback. The second attempt and the last attempt
correspond to a slightly different language description, namely
L′ = {s | s contains the substring “ab” at least twice}, possibly
reflecting the common mistake of misreading the problem descrip-
tion. Hence the reported feedback here is based on edit distance
over problem descriptions, and the associated grade is a function of
the number and kind of edits required. The reported feedback for
the remaining fourth attempt, which does not entertain a small edit
distance, is based on counterexamples. The grade here is a func-
tion of the density of counterexamples with more weightage given
to smaller-sized counterexamples since the student ought to have
checked the correctness of their construction on smaller strings.

To automatically generate the above-mentioned feedback, we
formalize problem descriptions using a logic that we call MOSEL,
which is an extension of the classical monadic-second order logic
(MSO) with some syntactic sugar that allows defining regular lan-
guages in a concise and natural way. In MOSEL, the languages
L and L′ can be described by the formulas |indOf(ab)| = 2
and |indOf(ab)| ≥ 2 resp., where the indOf constructor returns
the set of all indices where the argument string occurs. The au-
tomata grader tool implements synthesis algorithms that translate
MOSEL descriptions into automata and vice versa. The MOSEL-
to-automata synthesizer rewrites MOSEL descriptions into MSO
and then leverages standard techniques to transform an MSO
formula into the corresponding automaton. The automaton-to-
MOSEL synthesizer uses brute-force search to enumerate MOSEL
formulas in order of increasing size to find one that matches a given
automaton. Edit distance is then computed based on notions of au-
tomaton distance or tree distance (in case of problem descriptions),
while counterexamples are computed using automata difference.

We evaluated the automata grader tool on 800+ student attempts
to several problems from an automata course CS373 at UIUC [3].
For each problem we had two instructors and the tool grade each
attempt. For one of these representative problems, we observed
that (i) for 20% attempts, the instructors were incorrect (gave full
marks to an incorrect attempt) or inconsistent (same instructor gave
different marks to syntactically equivalent attempts). (ii) for 25%
attempts, there was at least 3/10 point discrepancy between the tool
and one of the instructors; and in more than 60% of those cases, the
instructor concluded after re-reviewing that the grade of the tool
was more fair. We also observed that there was more agreement
between the tool and any of the instructors than between the two
instructors. The instructors thus concluded that the tool should be
preferred over humans for consistency & scalability.
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The automata grading tool has been deployed online [3]; it pro-
vides live feedback and various kinds of hints. In a recent user study
we observed that these hints were viewed as helpful, increased stu-
dent perseverance, and improved problem completion time.

5. Conclusion
Providing personalized and interactive education (as in 1:1 tutor-
ing) remains an unsolved problem for standard classrooms. The
arrival of MOOCs, while providing a unique opportunity to share
quality instruction with massive number of students, exacerbate this
problem with an even higher student to teacher ratio. Recent ad-
vances in various computer science areas can be brought together
to rethink intelligent tutoring [33], and the phenomenal rise of on-
line education makes this investment very timely.

This article summarizes some recently published work from dif-
ferent computer science areas (Programming languages [17, 27],
Artificial intelligence [1, 3, 26], and Human computer interac-
tion [5]). It also exposes a common thread in this inter-disciplinary
line of work, namely use of examples either as an input to the
underlying algorithms (for intent understanding), as an output of
these algorithms (for generating the intended artifact), or even in-
side these algorithms (for inductive reasoning). We hope that this
illustration shall enable researchers to apply these principles to de-
velop similar techniques for other subject domains. We also hope
that this article shall inform educators about new advances that can
assist with various educational activities and shall allow them to
think more creatively about both curriculum and pedagogical re-
forms. For example, these advances can enable development of
gaming layers that can take computational thinking down to K-12.

This article is focused on a rather technical perspective to
computer-aided Education. While these technologies can help im-
pact education in a positive manner, we ought to devise ways to
quantify its benefits on student learning—this may be critical to
attract funding. Furthermore, this article only discusses logical rea-
soning based techniques. These techniques can be augmented with
complementary techniques that leverage large amounts of student
populations and student data, whose availability has been facilitated
by recent interest in online education platforms like Khan Academy
and MOOCs. For example, we can leverage large amounts of stu-
dent data to collect different correct solutions to a (proof) problem
and use them to generate feedback [13] or to discover effective
learning pathways to guide problem selection. We can leverage
large student populations to crowdsource tasks that are difficult to
automate [31] as is done in peer grading [21]. A synergistic combi-
nation of logical reasoning, machine learning, and crowdsourcing
methods may lead to self-improving and advanced intelligent tu-
toring systems that shall revolutionize education.
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