
It’s Not a Bug, It’s a Feature:
How Misclassification Impacts Bug Prediction

Kim Herzig
Saarland University

Saarbrücken, Germany
herzig@cs.uni-saarland.de

Sascha Just
Saarland University

Saarbrücken, Germany
just@st.cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Abstract—In a manual examination of more than 7,000 issue
reports from the bug databases of five open-source projects,
we found 33.8% of all bug reports to be misclassified—that
is, rather than referring to a code fix, they resulted in a new
feature, an update to documentation, or an internal refactoring.
This misclassification introduces bias in bug prediction models,
confusing bugs and features: On average, 39% of files marked
as defective actually never had a bug. We discuss the impact of
this misclassification on earlier studies and recommend manual
data validation for future studies.

Index Terms—Mining software repositories, bug reports, data
quality, noise, bias

I. INTRODUCTION

In empirical software engineering, it has become common-
place to mine data from change and bug databases to detect
where bugs have occurred in the past, or to predict where they
will occur in the future. The accuracy of such measurements
and predictions depends on the quality of the data. Therefore,
mining software archives must take appropriate steps to assure
data quality.

A general challenge in mining is to separate bugs from
non-bugs. In a bug database, the majority of issue reports
are classified as bugs—that is, requests for corrective code
maintenance. However, an issue report may refer to “perfective
and adaptive maintenance, refactoring, discussions, requests
for help, and so on” [1]—that is, activities that are unrelated
to errors in the code, and would therefore be classified in a
non-bug category. If one wants to mine code history to locate
or predict error prone code regions, one would therefore only
consider issue reports classified as bugs. Such filtering needs
nothing more than a simple database query.

However, all this assumes that the category of the issue
report is accurate. In 2008, Antoniol et al. [1] raised the
problem of misclassified issue reports—that is, reports clas-
sified as bugs, but actually referring to non-bug issues. If
such mix-ups (which mostly stem from issue reporters and
developers interpreting “bug” differently) occurred frequently
and systematically they would introduce bias in data mining
models threatening the external validity of any study that
builds on such data: Predicting the most error-prone files, for
instance, may actually yield files most prone to new features.
But how often does such misclassification occur? And does it
actually bias analysis and prediction?

TABLE I
PROJECT DETAILS.

Maintainer Tracker type # reports

HTTPClient APACHE Jira 746
Jackrabbit APACHE Jira 2,402
Lucene-Java APACHE Jira 2,443
Rhino MOZILLA Bugzilla 1,226
Tomcat5 APACHE Bugzilla 584

These are the questions we address in this paper. From
five open source projects (Section II), we manually classified
more than 7,000 issue reports into a fixed set of issue report
categories clearly distinguishing the kind of maintenance work
required to resolve the task (Section III). Our findings indicate
substantial data quality issues:
Issue report classifications are unreliable. In the five bug

databases investigated, more than 40% of issue reports
are inaccurately classified (Section IV)

Every third bug is not a bug. 33.8% of all bug reports do
not refer to corrective code maintenance (Section V).

After discussing the possible sources of these misclassifica-
tions (Section VI), we turn to the consequences. We find that
the validity of studies regarding the distribution and prediction
of bugs in code is threatened:
Files are wrongly marked as fixed. Due to misclassifica-

tions, 39% of files marked as defective actually have
never had a bug (Section VII).

Files are wrongly marked to be error-prone. Between
16% and 40% of the top 10% most defect-prone files
do not belong in this category after reclassification
(Section VIII).

Section IX details studies affected and unaffected by these
issues. After discussing related work (Section X) and threats
to validity (Section XI), we close with conclusion and conse-
quences (Section XII).

II. STUDY SUBJECTS

We conducted our study on five open-source JAVA projects
described in Table I. We aimed to select projects that were
under active development and were developed by teams that
follow strict commit and bug fixing procedures similar to
industry. We also aimed to have a more or less homogeneous

978-1-4673-3074-9/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA392

 Inspection Merged

All issue reports
classified by first
author.

Second author classifies
all reports marked as
misclassified by first
author (without knowing
the new category).

Both authors
compare
classification results
and merge conflicts.

First author

 Inspection

Second author Classification Conflicts

Fig. 1. The manual report inspection process.

data set that eased the manual inspection phase. Projects from
APACHE and MOZILLA seemed to fit our requirements best.
Additionally, we selected the five projects such that we cover at
least two different and popular bug tracking systems: Bugzilla1

and Jira2. Three out of five projects (Lucene-Java, Jackrabbit,
and HTTPClient) use a Jira bug tracker. The remaining two
projects (Rhino, Tomcat5) use a Bugzilla tracker.

For each of the five projects, we selected all issue re-
ports that were marked as being RESOLVED, CLOSED, or
VERIFIED and whose resolution was set to FIXED and
performed a manual inspection on these issues. We disregarded
issues with resolution in progress or not being accepted, as
their features may change in the future.

The number of inspected reports per project can be found
in Table I. In total, we obtained 7,401 closed and fixed issue
reports. 1,810 of these reports originate from the Rhino and
Tomcat5 projects and represent Bugzilla issue reports. The
remaining of the 5,591 reports were filed in a Jira bug tracker.

III. MANUALLY CLASSIFYING BUG REPORTS

To validate the issue categories contained in the project’s
bug databases, we manually inspected all 7,401 issue reports
and checked if the type of each report reflects the mainte-
nance task the developer had to perform in order to fix the
corresponding issue. For our manual inspections, we used
(a) the issue report itself, (b) all the attached comments and
discussions, as well as (c) the code change that was applied
to the source code. We analyzed code changes if and only
if neither the issue report nor its comments clarified the
underlying problem of the reported issue. Each issue report
was then categorized into one of eleven different issue report
categories shown in Table II.

To assign issue reports to one of the categories, we used
a fixed set of rules that describe how to classify issue reports
based on specific issue report properties. If none of these rules
applied, and if inspecting possible attached patches did not
clarify the original problem, we left the original category un-
changed. Hence, we favored possible original misclassification
noise over new misclassification noise introduced by manual

1http://www.bugzilla.org/
2http://www.atlassian.com/JIRA

TABLE II
THE ISSUE REPORT CATEGORIES USED FOR MANUAL CLASSIFICATION.

Category Description

BUG Issue reports documenting corrective maintenance tasks
that require semantic changes to source code.

RFE Issue reports documenting an adaptive maintenance task
whose resolving patch(es) implemented new function-
ality (request for enhancement; feature request).

IMPR Issue reports documenting a perfective maintenance
task whose resolution improved the overall handling or
performance of existing functionality.

DOC Issue reports solved by updating external (e.g. website)
or code documentation (e.g. JavaDoc).

REFAC Issues reports resolved by refactoring source code.
Typically, these reports were filed by developers.

OTHER Any issue report that did not fit into any of the other
categories. This includes: reports requesting a back-
port (BACKPORT), code cleanups (CLEANUP), changes
to specification (rather than documentation or code;
SPEC), general development tasks (TASK), and issues
regarding test cases (TEST). These subcategories are
found in the public dataset accompanying this paper.

misclassification. The rule set used for classification is shown
in Table III. For each category, we also present a typical real
world example.

The manual classification was conducted in three phases as
shown in Figure 1:

1) In the first phase, the first author inspected all 7,401 issue
reports and assigned a report category using the set of
report classification rules.

2) The second author re-classified the set of issue reports
that were considered to be misclassified after phase one.
Again, the second author was using the fixed set of classi-
fication rules and the issue reports only; he had no access
to the classification results of the first phase. Overall,
3,093 misclassification candidates got reinspected.

3) We then compared the classification results from phase
one and phase two to detect classification conflicts—issue
reports that were classified differently by the first and
the second author. This affected 340 of the 3,093 re-
inspected issue reports; the other 94% were independently
classified identically by the first and second author and
thus validated the accuracy and complexness of the rule
set. Each classification conflict finally got resolved by a
joint pair-inspection of both authors, partially inducing
clarification and refinements of the rule set. (Table III
lists the final rule set.)

The first and second phase of the inspection process were
processed by one individual each. This ensures that all is-
sue reports across all projects are treated and categorized
equally. Every issue report reported as misclassified in this
paper was independently verified. We did not double check
whether the first author did oversee misclassified reports. This
implies that the presented misclassification ratios and impact
measurements can be considered as a lower bound. The effort

393

TABLE III
CLASSIFICATION RULES

A report is categorized as BUG (Fix Request) if. . .
1) it reports a NullpointerException (NPE).
2) the discussion concludes that code had to be changed semantically to

perform a corrective maintenance task.
3) it fixes runtime or memory issues cause by defects (e.g endless loops).

Example: Tomcat5 report 281471 is categorized as RFE but reports a bug that causes
a “JasperException for jsp files that are symbolic links”. The underlying issue was
that tomcat used canonical instead of absolute paths. The applied fix touches one line
replacing one method invocation. According to Rule 2, we classified the applied code
change as a corrective maintenance task and thus the issue report as BUG.

A report is categorized as RFE (Feature Request) if. . .
1) it requests to implement a new access/getter method.
2) it requests to add new functionality.
3) it requests to support new object types, specifications, or standards.

Example: Lucene-Java report LUCENE-20742 is categorized as BUG. But the applied
patch and the discussion unveil that a new versioning mechanism had to be implemented.
The first comment by Uwe Schindler makes it explicit: “Here the patch. It uses an
interface containing the needed methods to easyliy [sic] switch between both impl. The
old one was deprecated [...]”. This is reclassified as RFE by Rule 2.

A report is categorized as IMPR (Improvement Request) if. . .
1) it discusses resource issues (time, memory) caused by non optimal

algorithms or garbage collection strategies.
2) it discusses semantics-preserving changes (typos, formatting) to code,

log messages, exception messages, or property fields.
3) it requests more or fewer log messages.
4) it requests changing the content of log messages.
5) it requests changing the type and/or the message of Exceptions to be

thrown.
6) it requests changes supporting new input or output formats (e.g. for

backward compatibility or user satisfaction).
7) it introduces concurrent versions of already existent functionalities.
8) it suggests upgrading or patching third party libraries to overcome issues

caused by third party libraries.
9) it requests changes that correct/synchronize an already implemented

feature according to specification/documentation.
Example: Jackrabbit report JCR-28923 is filed as BUG under the title “Large fetch sizes
have potentially deleterious effects on VM memory requirements when using Oracle”.
The algorithm fetches data from a database with a large amount of columns and rows,
which caused the Oracle driver to allocate a large buffer. The resolution was to develop
a new algorithm consuming less memory. This is an IMPR according to Rule 1 since no
new functionality was implemented and since the program did not contain any defect.

A report is categorized as DOC (Documentation Request) if. . .
1) its discussion unveils that the report was filed due to missing, ambigu-

ous, or outdated documentation.
Example: Tomcat5 bug report 300484 fixes the problem“Setting compressableMimeTypes
is ignored.” by “Docs updated in CVS to reflect correct spelling.” This is a DOC.

A report is categorized as REFAC (Refactoring Request) if. . .
1) it requests to move code into other packages, classes, or methods.
2) it requests to rename variables, methods, classes, packages, or config-

uration options.
Example: Tomcat5 report 282865 is filed as BUG and contains a patch adding a new
interface SSOValve. But in comment 4, Remy Maucherat refuses to apply the patch and
the idea to introduce a new interface. Instead, he commits a patch that refactors class
AuthenticatorBase to allow subclassing. This is a REFAC as per Rule 2.

A report is categorized as OTHER if. . .
1) it reports violations of JAVA contracts without causing failures (e.g.

“equals() but no hashCode()”).
2) complains about compatibility fixes (e.g. “should compile with GCJ”).
3) the task does not require changing source or documentation (like

packaging, configuration, download, etc.)
Example: Lucene-Java report LUCENE-18936 complains that “classes implement
equals() but not hashCode()”. This violated JAVA contracts but does not cause failures.
Lucene-Java report LUCENE-2896 requests “better support gcj compilation”. According
to our rules this is considered to be an compatibility improvement classified as OTHER.

TABLE IV
NOISE RATES FOR ALL PROJECTS AND FOR A COMBINED DATA SET.

Project Noise rate

HTTPClient 47.8%
Jackrabbit 37.6%
Lucene-Java 46.4%
Rhino 43.2%
Tomcat5 41.4%

All projects combined 42.6%

for the 10,884 inspections was 4 minutes per issue report on
average, totaling 725 hours, or 90 working days.

IV. AMOUNT OF DATA NOISE

In this section, we show the amount of data noise and bias
(with respect to issue report types) that is evident in the bug
databases of the five analyzed projects (see Section II). We
start analyzing the issue report data sets by measuring the false
positive rates and slicing individual categories to show how
many issue reports were misclassified and which categories
these misclassified reports belong to. Later, we will discuss
the impact and bias rates for data sets that map issue reports
to code changes and source files. At the end, we will show
how a simple model identifying the most defect-prone files is
impacted by misclassified bug reports.

As overall noise rate we measured the false positive rate.
The false positive rate represents the ratio between misclassi-
fied issue reports and all issue reports in the data set. The noise
rate is independent from individual issue report categories. We
will discuss individual categories in Section V. The higher the
noise rate, the higher the threat that the noise might cause bias
in approaches based on these data sets.

RQ1 Do bug databases contain data noise due to issue report
misclassification, and how much?

Table IV shows the noise rate values for all five projects
and for a combined data set containing the issue reports of
all five projects. The noise rates for all projects lie between
37% and 47% and are surprisingly similar. The overall noise
rate lies at 42.6%—that is, two out of five issue reports are
wrongly typed. This unexpected high ratio raises threats to any
approach based on raw issue report data sets.

Over all five projects researched, we found 42.6% of all
issue reports to be wrongly typed.

The noise rates of the individual report categories and their
variances are shown in Figure 2 as box plot. We excluded the
categories DOC and REFAC from this plot since none of the
analyzed bug tracking systems supported these report types.

1https://issues.apache.org/bugzilla/show bug.cgi?id=28147
2https://issues.apache.org/jira/browse/LUCENE-2074
3https://issues.apache.org/jira/browse/JCR-2892
4https://issues.apache.org/bugzilla/show bug.cgi?id=30048
5https://issues.apache.org/bugzilla/show bug.cgi?id=28286
6https://issues.apache.org/jira/browse/LUCENE-1893
7https://issues.apache.org/jira/browse/LUCENE-289

394

 0

20

40

60

BUG IMPR OTHER RFE

no
is

e
ra

te
 o

ve
r a

ll
pr

oj
ec

ts

Fig. 2. The noise rates split by category over all projects. The categories
DOC and REFAC are not present since none of the bug trackers supports
these categories. The Bugzilla projects are only included in the analysis of
BUG and RFE reports since Bugzilla does not support any of the other issue
report categories.

The boxes representing the categories IMPR and OTHER are
based on the Jira projects only since Bugzilla does not support
these types of reports. The noise rate for BUG reports is stable
across all projects. Although the noise rates for IMPR reports
show more variance all projects show comparable noise rates.
The variance for RFE reports is huge and is partially caused
by the fact that the overall number of RFE reports is low.
Most feature requests have their origin from within the project,
especially in open source projects, and it is questionable if or
how many such feature requests are documented using a bug
tracker.

V. BUGS VS. FEATURES

We have seen that two out of five issue reports are misclas-
sified. And we have seen that there exist misclassified BUG
reports. This is a threat for all empirical studies based on
raw, unchecked bug data sets. To increase the level of detail,
we sliced issue categories to show the percentage of issue
reports that were associated with a category but marked as
misclassified. We also include the individual categories the
reclassified bug reports belong to when using our classification
rule sets shown in Table III.

RQ2 Which percentage of issue reports associated with a
category was marked as misclassified? Which category
do these misclassified reports actually belong to?

Each slice contains the set of all issue reports originally
associated to a given category and shows to which category
the individual issue report actually belong to (Tables V(a)—
V(c)). Thus, each slice table cell contains the percentage of
issue reports originally associated to a given category that were
manually classified into the issue category indicated by the row
name. The lengths of the bars behind the percentage numbers

represent the individual percentage visually. The last row of
each slice states the percentage of reports originally associated
to the corresponding category that were assigned a different
category during manual classification. The values of this last
row correspond to the category boxes in the box plot shown
in Figure 2.

A. Bugs

V(a) contains the noise rate slice for the BUG issue cat-
egory. We already discussed in Section IV that the noise
rate for BUG reports is surprisingly stable across all projects.
Tracking bug reports and their target categories shows that
13% of BUG reports are manually classified into the OTHER
category containing multiple sub-categories (see Section III).
Between 6% and 13% of filed BUG reports are improvement
requests and up to 10% contain documentation issues. The
fraction of bug reports containing feature requests lies between
2% and 7%. The striking number, however, is that on average
33.8% of all issue reports are misclassified.

Every third bug report is no bug report.

The noise rate slice for bug reports is of great importance.
Bug reports are one of the most frequently used instru-
ments to measure code quality when being mapped to code
changes. But feature requests, improvement requests, and even
documentation issues can also be mapped to code changes
implementing a new feature, implementing an improvement,
or fixing code comments. Thus, we cannot rely on natural
filtering mechanisms that rule out misclassified BUG reports
belonging to any report category that will not cause code
changes being applied to source files. Studies that use bug
data sets might be impacted by data noise as shown in V(a).
The noise rates in this section include issue reports that might
not be mapped to code changes or files. We will discuss the
bias caused by bug data noise later in this paper.

B. Feature Requests

The noise rate slice for issues originally categorized as
RFE is interesting because it shows a fundamental difference
between Bugzilla and Jira trackers. As you can see in V(b)
the false positive rates for all three Jira projects lie between
zero and nine percent. The corresponding false positive rates
jump to 57% and 60% for Bugzilla trackers. Interpreting these
values, it seems that issue reports in Bugzilla trackers are less
reliable than Jira reports. This matches the fact that the false
positive rates for BUG reports in V(a) where larger for Bugzilla
trackers, too. By default, Bugzilla trackers support less issue
report types than Jira. This has the consequence that reporters
and developers that file issue tickets not being bug reports use
the only alternative label RFE.

C. Improvement Requests

The last noise rate slice shows how many improvement
requests were differently categorized during manual inspection
(see V(c)). The columns for Bugzilla tracker projects remain
zero since by default Bugzilla trackers do not support these is-
sue categories. For the remaining three projects, between 19%

395

TABLE V
RECLASSIFICATION OF REPORTS

(a) Reports originally filed as BUG

Classified category HTTPClient Jackrabbit Lucene-Java Rhino Tomcat5 combined

BUG 63.5% 75.1% 65.4% 59.2% 61.3% 66.2%
RFE 6.6% 1.9% 4.8% 6.0% 3.1% 3.9%
DOC 8.7% 1.5% 4.8% 0.0% 10.3% 5.1%
IMPR 13.0% 5.9% 7.9% 8.8% 12.0% 9.0%
REFAC 1.7% 0.9% 4.3% 10.2% 0.5% 2.8%
OTHER 6.4% 14.7% 12.7% 15.8% 12.9% 13.0%

Misclassifications 36.5% 24.9% 34.6% 40.8% 38.7% 33.8%

(b) Reports originally filed as RFE

Classified category HTTPClient Jackrabbit Lucene-Java Rhino Tomcat5 combined

BUG 0.0% 0.7% 0.0% 3.6% 8.1% 2.8%
RFE 100.0% 91.3% 97.0% 42.9% 39.6% 72.6%
DOC 0.0% 2.0% 0.0% 0.0% 18.1% 5.3%
IMPR 0.0% 0.7% 0.6% 19.0% 20.8% 8.6%
REFAC 0.0% 0.0% 0.0% 15.5% 3.4% 3.2%
OTHER 0.0% 5.3% 2.4% 19.0% 10.1% 7.5%

Misclassifications 0.0% 8.6% 3.0% 57.1% 60.4% 24.7%

(c) Reports originally filed as IMPR.

Classified category HTTPClient Jackrabbit Lucene-Java Rhino Tomcat5 combined

BUG 2.6% 2.8% 1.8% 0.0% 0.0% 2.3%
RFE 45.3% 18.8% 28.6% 0.0% 0.0% 26.1%
DOC 11.6% 3.7% 7.2% 0.0% 0.0% 6.2%
IMPR 26.7% 45.6% 35.2% 0.0% 0.0% 38.8%
REFAC 4.3% 9.2% 14.2% 0.0% 0.0% 10.9%
OTHER 9.5% 19.8% 13.0% 0.0% 0.0% 29.4%

Misclassifications 73.3% 54.4% 64.8% 0.0% 0.0% 61.2%

and 45% of improvement requests were manually categorized
as RFE issue reports. Only a very marginal low fraction of 2%
were manually classified as bug reports. On average, more than
60% of improvement requests were reclassified during manual
inspection.

VI. SOURCES OF MISCLASSIFICATION

The misclassification ratios presented in the last section shed
a low light on the data quality of bug databases. But why do
bug tracking systems contain so many misclassified reports?
We suspect the main reason to be that users and developers
have different views and insights on bug classification, and that
classification is not rectified once a bug has been resolved.

Bug tracking systems are a communication tools that allow
users to file bug reports that will be fixed by developers. But
users and developers might not share the same perspective
regarding the project internals. In many cases, users have no
project insight and might not have the ability to understand
technical project details. Users tend to consider every problem
as a bug. If the software does not comply with their expec-
tations or with the provided documentation they file a bug
report. It is the reporter who assigns an issue category.

On the other side, the developer is the expert of any
technical detail of the program; she designed and implemented
it. This difference between reporter and resolver already is a

source of uncertainty. In contrast to a reporter, a developer
certainly has the ability to distinguish between different prob-
lems and the required maintenance task to solve the issue.
The developer would be the right person to categorize issue
reports. But this is not how bug trackers work. Of course, the
developer could change the issue category after resolution—
but this happens rarely. In many cases there exists no real
motivation to change the issue category once the cause for a
problem is found and fixed.

We suspect this conceptional problem to explain many
of the misclassification patterns we observed during manual
inspection. It might also explain the high misclassification
noise rates for issue reports originally marked as BUG. Using
their default configuration, many bug tracking systems set the
report type to BUG by default. Combined with the problem of
who assigns the bug report type, we are left with many BUG
reports that should have been filed as improvement request or
even feature request.

The question of whether an issue is a bug or not is a hard
one. And the definition of a bug not only differs between users
and developers but also between developers themselves. In
principal, if an issue bothers the user, the developer should fix
it, whether or not he considers it to be a bug or not. From this
perspective, the issue report category does not matter. But a
data miner building a defect prediction model must distinguish

396

between bugs and non-bugs. Otherwise, the prediction model
would predict changes, not defects.

Thus, for a data miner the question is whether these mis-
classification sources impact issue reports that can actually be
mapped to source code changes. A documentation issue might
require to change the documentation in the source file. So a
data miner would map the report into source code and count
it as a bug fix although the plain source code did not change.

VII. IMPACT ON MAPPING

The issue report misclassification noise presented in Sec-
tions IV and V can impact studies and tools that use these or
similar data sets without validating them. As a first category,
we discuss how misclassified issue reports impact approaches
that map issue reports to source code changes—for instance,
to identify files that had the most bugs in the past.

RQ3 What is the impact of misclassified issue reports when
mapping issue reports to source code changes?

For this purpose, we followed the issue report mapping
strategy described by Zimmermann et al. [2], a mapping
method frequently replicated by studies. Scanning through
commit messages, we detect issue report identifiers using
regular expressions and key words. Once we mapped issue
reports to revision, we can identify the set of issue reports
that caused a change within the source file. Ignoring report
severity we then count the number of distinct issue reports
originally classified as BUG (num original bugs) for each
source file of a given software project. Additionally, we count
the number of distinct issue reports that were classified as BUG
during manual inspection (num classified bugs). We measure
the issue mapping bias using five different bias measurements.
MappingBiasRate: This bias rate expresses the percentage of

false positive original BUG reports that could be mapped
to code files. The mappingBiasRate corresponds to the
false positive rates shown in Figure 2 but is limited to
BUG reports that can be mapped to code changes.

DiffBugNumRate: The diffBugNumRate represents the num-
ber of files for which

num original bugs− num classified bugs 6= 0.

The measure ignores files for which the set of issue
reports differ but not its size. Counting the number of
fixes does not require the individual report to be known.

MissDefectRate: The missDefectRate is defined as

missDefectRate =
numMissDefect

numZeroOriginalDefect

where numMissDefect represents the number of source
files for which no original bug report could be mapped
but that have at least one manually classified bug report
assigned and where numZeroOriginalDefect is the num-
ber of source files having no original bug report assigned.
This measure is important for defect classification models
(distinction between has bug or has no bug).

FalseDefectRate: Analog to missDefectRate, we compute the
falseDefectRate as

falseDefectRate =
numFalseDefect

numOriginalDefect

where numFalseDefect is the number of source files with
at least one original bug report assigned but no manually
classified bug report and where numOriginalDefect is the
total number of source files that got at least one original
bug report assigned.

The values of these bias measures for our five target projects
are shown in Table VI along with an additional column
containing the average bias measures. For all projects, the
number of misclassified BUG reports that can be mapped to
source files (mappingBiasRate) lies above 20%. On average,
every third bug report that can be associated to code changes is
misclassified. This is a threatening high fraction and confirms
that the misclassification noise rates presented in Section IV
also affect issue reports that can be mapped to source code
changes. On average, the mappingBiasRate is only five percent
points below the average false positive rate for bug reports
shown in V(a). The mappingBiasRate is also stable across
different bug tracking systems indicating that bug tracking
systems and their different usage behavior seem to have no
impact on the mapping bias.

The second row of Table VI shows the fraction of files
having a different number of mapped bug reports. The diff-
BugNumRate shows how many files will change their defect-
prone ranking. This value might also have severe consequences
for defect prediction models based on concrete bug count
numbers (see Section VIII). On average 37% of all source files
have biased bug count numbers. For the projects HTTPClient
and Rhino the diffBugNumRate well exceeds the 50% margin.

Row three and row four of Table VI are interesting for
approaches using classification models grouping source files
into two groups of defect-prone and non defect-prone entities.
The fractions of files that were falsely marked as defect free
(missDefectRate) is very low and can be disregarded, except
for Tomcat5. But the fraction of false classified defect-prone
using a threshold of one to distinguish between defect-prone
and non defect-prone entities (falseDefectRate) is significant.
20% to 70% of the original defect-prone marked source
files contained no defect. An average falseDefectRate of 39%
shows that mapping bias is a real threat to any defect prone
classification model.

On average, 39% of all files marked as defective
actually never had a bug.

To give some more details on the differences between
original and classified bug counts (diffBugNumRate), Figure 3
shows stacked bars displaying the distribution of bug count
differences among source files. Each stacked bar contains
intervals reflecting the difference between the number of
original bugs and the number of manual classified bugs
(num original bugs − num classified bugs). A positive difference
indicates that the number of defects fixed in the corresponding

397

TABLE VI
IMPACT OF MISCLASSIFIED ISSUE REPORTS ON MAPPING STRATEGIES AND APPROACHES

Measure HTTPClient Jackrabbit Lucene-Java Rhino Tomcat5 Average

MappingBiasRate 24% 36% 21% 38% 28% 29%
(False positive rate for mappable BUG reports)
DiffBugNumRate 62% 17% 14% 52% 39% 37%
(How many files will change their defect-prone ranking?)
MissDefectRate 1% 0.3% 0.7% 0% 38% 8%
(How many files with no original BUG have at least one classified BUG?)
FalseDefectRate 70% 43% 29% 32% 21% 39%
(How many files with at least one original BUG have no classified BUG?)

0% 25% 50% 75% 100%

HTTPClient

Jackrabbit

Lucene-Java

Rhino

Tomcat

num_original_bugs - num_classified_bugs (per file)

[-5,-1] 0 1 2 [3,5] [6,10] [10,30]

% of files

(stacked bars increasingly ordered by intervals)

Fig. 3. The stacked bars show the diffBugNumRates and their frequencies.
A diffBugNumRate of zero indicates no changes in the number of associated
bugs; a postive diff rate indcates taht too many bug reports were assigned.

source files is actually lower. For files showing a negative
difference more defect fixes could have been found. While
most files show no or only little changes to their bug count
there also exist files for which we registered up to 26 wrongly
counted bugs. The number of files for which more bugs could
have been found is marginal.

VIII. IMPACT ON BUG COUNTS

The results presented in the last section indicate that models
based on noisy bug data sets containing misclassified bug
reports might be severely biased. To verify this threat, we
conducted an experiment that uses a simple quality model that
identifies the most defect-prone source files by counting the
number of distinct bug reports mapped to the corresponding
file. If we can show that such a simple bug count model
is affected, more complex models based on similar count or
classification schemata might be affected too.

RQ4 How does bug mapping bias introduced by misclassified
issue reports impact the TOP 5%, 10%, 15%, 20% of
most defect prone source files?

The experiment to answer RQ4) is visually described in
Figure 4. We duplicate the set of source files and sort
each copy by two different criteria. One set gets sorted in
descending order using the number of original bug reports
(num original bugs). The other set clone gets sorted in de-
scending order using the number of manually classified bug

ORIGINAL RANK CLASSIFIED RANK

TOP X%

Fig. 4. The cutoff difference for the top x%.

reports (num classified bugs). In each set, the most defect-
prone file is the top element. Comparing the top X% of
both file sets (containing the same elements but in potentially
different order) allows us to reason about the impact of
mapping bias on models using bug counts to identify the most
defect-prone entities. Since both cutoffs are equally large (the
number of source files does not change, only their ranks), we
can define the cutoff difference as:

size of cutoff− size of intersection
size of cutoff

.

The result is a number between zero and one where zero
indicates that both cutoffs are identical and where a value of
one implies two cutoffs with an empty intersection. A low
cutoff difference is desirable.

Table VII contains the cutoff differences for all five projects
using the top 5%, 10%, 15%, and 20%. Considering the top
5% cutoff the cutoff differences lie between 11% and 29%
and rise to a range between 16% and 35% for a cutoff size
of 20%. The variance between the different cutoff sizes per
project lies around 15% for HTTPClient and Tomcat5 and 5%
for Lucene-Java and Rhino. The bias measured for all projects
and cutoffs lies well above 10%. The results across all projects
and cutoff sizes show that quality-measuring approaches using
biased bug mappings would report a false positive rate between
16% and 40% for the top 10% most defect-prone files.

When predicting the top 10% most defect-prone files,
16% to 40% of the files do not belong in this category

because of misclassification.

Table VIII shows the Spearman rank correlations for all
source files in the corresponding intersections. These rank

398

TABLE VII
THE CUTOFF DIFFERENCES FOR ALL FIVE PROJECTS.

TOP 5% TOP 10% TOP 15% TOP 20%

HTTPClient 20% 20% 11% 25%
Jackrabbit 29% 40% 29% 35%
Lucene-Java 24% 20% 21% 18%
Rhino 11% 16% 14% 16%
Tomcat5 14% 21% 29% 21%

TABLE VIII
SPEARMAN RANK CORRELATIONS FOR ALL SOURCE FILES REMAINING IN
THE INTERSECTION OF ORIGINAL AND CLASSIFIED MOST DEFECT-PRONE

ENTITIES.

TOP 5% TOP 10% TOP 15% TOP 20%

HTTPClient 1 0.8 0.8 0.7
Jackrabbit 0.2 0.3 0.5 0.6
Lucene-Java 0.4 0.5 0.4 0.2
Rhino −0.1 0.7 0.4 0.4
Tomcat5 0.8 0.5 0.5 0.6

correlations indicate the relative order for files that remain
in the top X% most defect-prone source files. A correlation
value of one means that there exist files that should not belong
to the top cutoff but at least the relative order of the correctly
classified files remains stable. Only the rank correlation values
for HTTPClient remain above 0.7 for all cutoff sizes. For
all other projects, the rank correlations lie below 0.7 (except
Rhino top 10%) and reach correlation values close to zero.

Misclassification also impacts the relative order
of the most defect-prone files.

IX. IMPLICATIONS ON EARLIER STUDIES

The results presented in the previous sections show that mis-
classified issue reports can affect the assessment and prediction
of code quality based on bug data sets. Hence, empirical
studies that use or used bug data sets without validating them
might suffer from bias.

A. Studies Threatened to Be Biased

Mapping bugs to code changes was first introduced by
Fischer et al. [3] and Čubranić et al. [4] who described
procedures to map bug reports to code changes. These two
approaches do not interpret the mapped artifacts and are per
se not threatened; however, any study using one of these
approaches to derived code quality measures is likely to be
threatened if it did not perform additional data validation.

The list of papers affected encompasses published literature
in mining software archives of the past years; as of August
2012, the ACM digital library lists more than 150 published
studies citing these two approaches. Zimmermann et al. [2] is
a particular important case, as a large number of papers built
on the accompanying (now found to be biased) bug data set.
Taking the blame, other typical examples with one of us as
co-authors are: [5], [6], [7], [8], [9].

The threat to validity for all these papers is that the bug
data set they have been evaluated on contains a mix of bugs
and non-bugs. Hence, in their evaluation, they map and predict
non-bugs as well as bugs. Users would be generally interested
in predicting bugs rather than non-bugs, however; and we now
no longer know how these approaches perform and compare
when using a data set consisting only of true bugs. This
threatens their external validity.

The approaches and techniques are still original, present
excellent contributions, and can still provide good results.
It may even be that removing data noise will improve their
results. Assessing such effects for all earlier studies is beyond
the scope of this paper; however, we provide rectified data for
future studies.

How about studies using industrial bug data? In general,
one might hypothesize that industry has stronger process
rules and incentives (speak: measurements and goal metrics)
that encourage accurate issue classification. This could also
explain why predictors such as change bursts [8] or network
metrics [10] work extremely well on industrial data sets, but
poorly on open source data sets. Exploring the quality of such
data sets and differences between industrial and open source
projects again is a topic for future research.

B. Preventing Misclassification Threats

How can we improve the quality of bug datasets?
Test cases. Approaches like iBugs [11] validate bug reports

using test cases to replicate bugs. This straight-forward
filtering mechanism ensures each bug is valid. Conse-
quently, studies relying on the iBugs data sets are not
affected by issues discussed in this paper.

Code history. Kim et al. [12] uses version control history to
verify that applied code changes are actual fixes. This
approach solely relies on code evolution and thus is
not sensitive to bug database issues. Again, this is a
recommended procedure to prevent misclassification.

Automatic classification. Automatic classification models as
described by Antoniol et al. [1] can be used to categorize
issue reports based on the text of the issue report itself
with precision rates between 77% and 82%. Although,
constructing classification training sets requires initial
human effort, such predictors should quickly reduce the
required human interaction.

Rectified Data Sets. Our data sets rectified by manual bug
classification are publicly available (Section XII); we
encourage their use for further research.

We strongly recommend to use additional data (e.g. tests)
or human effort to reduce the high amount of misclassified
issue reports. This means that the contributions of the mining
software archive field can still all be applied; one just needs
a bit of validation in the first place.

X. RELATED WORK

Bug reports are a key factor of software maintenance. Many
mining approaches are based on bug databases in some way,
either as standalone artifact or as a combination between

399

bug reports and code changes. The quality of bug reports is
frequently topic of research studies [13], [14], [15], [16]. Many
of these studies show that bug reports often contain too little or
too incomplete information in order to reproduce and fix them.
It is possible to automatically detect bug report duplicates [17],
[18] that, when combined, might fill information gaps that
prevent bug report fixes. But bug fixes have also been used
to estimate development efforts [19], [20], [21], [22], bug
triage [23], [24] or automatic bug assignment [25], [26].

Combining bug reports with source code changes opens the
possibility to map bug fixes to individual code artifacts. Fischer
et al. [3] and Čubranić and Murphy [27] were among the first
that introduced heuristics that allow mapping bug reports to
applied code changes. But as Mockus [28] and Liebchen and
Shepperd [29] mentioned, data quality in empirical software
engineering can be low and might impact the outcome of many
empirical studies. Liebchen and Shepperd [29] found that only
a tiny fraction of software engineering papers suggest data
quality issues and their possible effect on their analysis results.
Nguyen et al. [30] reported similar issues on commercial
projects that usually follow more strict development guidelines
compared to open source projects.

Recent studies investigates bug and commit bias and their
potential implication for defect prediction models which might
interfere with the results presented in this paper [31], [32],
[33]. Their results showed the presence of systematic data
noise and bias in several open source data sets affecting the
performance of defect prediction models. As a consequence,
strategies to improve mappings between bug reports and code
changes have been proposed. Bird et al. [34] developed a tool
to manually annotate bug reports and code changes to reduce
the overhead of manual data point inspection. Later, Wu et
al. [35] presented an automatic link recovery algorithm that
learns bug report and code change criteria to recover missing
links between bug reports and code changes. Kim et al. [36]
provided guidelines for acceptable noise levels and proposed
a noise detection and elimination algorithm.

In 2008, Antoniol et al. [1] showed that a significant
number of bug reports refer to maintenance tasks that are not
corrective. In other words, a significant number of bug reports
are not documenting software bugs but to other maintenance
tasks. This is in particular important since many of the bias
reducing approaches are seeking for good and correct mapping
strategies but rely on the fact that reported bugs are indeed
documenting corrective maintenance tasks. In this paper, we
want to extend the research initially conducted by Antoniol
et al. [1] by measuring the amount of data noise introduced
by misclassified bug reports. We also extend their work by
showing the possible impact of misclassified bug report types
on bug mapping strategies and machine learning models based
on such noisy data sets—such as defect prediction models.

XI. THREATS TO VALIDITY

Empirical studies like this one have their own threats to
validity. We identified three noteworthy threats:

Manual inspection. First and most noteworthy, the manual
inspection phase is crucial. To counter the threat of us
making classification mistakes, we chose a setup that
ensures that every misclassified bug report is cross-
validated and that classification conflicts have to pass a
third inspection. Still, we cannot rule out that the manual
inspection contains errors. Additionally, we make our
entire dataset available for independent assessment.

Classification rules. Second, the set of classification rules is
only one possibility to classify issue reports. There exists
no clear definition-separating feature and improvement
requests. Using a different classification rule set will
certainly impact the results presented in this paper. We
counter this threat by listing the complete rules verbatim.

Study subjects. Third, the projects and bug tracking sys-
tems investigated might not be representative, threatening
the external validity of our findings. Although Jira and
Bugzilla are popular bug tracking systems, we cannot
ensure that other projects using the same or even other
bug tracking systems contain comparable amount and
distribution of misclassified issue reports.

XII. CONCLUSION AND CONSEQUENCES

Our findings suggest widespread issues with the separation
of bugs and non-bugs in software archives, which can severely
impact the accuracy of tools and studies that leverage such
data. The consequences are straightforward:

• First and foremost, automated quantitative analysis should
always include human qualitative analysis of the input
data—and of the findings. Approaches relying on bug
datasets should be preceded by a careful manual valida-
tion of data quality; at least of a significant sample. Data
quality should be discussed as a threat to validity.

• Bug prediction models trained and evaluated on biased
data sets are threatened to predict changes instead of
bugs. Filtering out non-bugs when estimating code quality
might even improve results.

• The categorization of bug reports is dependent on the per-
spective of the observer. Approaches using bug data sets
should validate whether the perspective of the prediction
model matches the perspective of the bug creator.

Generally, one should always be aware that not all bugs
should be treated equal. Many bugs are of little to no conse-
quence, while a few ones—such as security or privacy issues—
can easily damage the reputation of the entire product or
even threaten the existence of the company. Assessing such
consequences cannot be left to machines alone.

Hence, dealing with bug databases will always require
human effort—an investment that, however, pays off in the
end. Our motivation for this work was to have a well-classified
set of bug reports and features, which we now can leverage
(and share) for future research. In the long run, better data
will lead to better recommendations that will make developers
more conscious of maintaining data quality. Detailed refer-

400

ences, all data sets (original and rectified), all slices and more
information can be found at:

http://www.softevo.org/bugclassify

ACKNOWLEDGMENTS

Juan Pablo Galeotti, Eva May, and Kevin Streit provided
useful feedback. We also thank Brendan Murphy (Microsoft)
and Christian Holler (Mozilla) for insightful discussions and
feedback.

REFERENCES

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement? A text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds. ACM,
2008, pp. 23:304–23:318.

[2] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
Eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering. IEEE Computer Society, 2007,
pp. 9–.

[3] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the International Conference on Software Maintenance. IEEE
Computer Society, 2003, pp. 23–32.

[4] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A
project memory for software development,” IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 446–465, Jun. 2005.

[5] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2005 international workshop on Mining
software repositories. ACM, 2005, pp. 1–5.

[6] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 489–498.

[7] R. Premraj and K. Herzig, “Network versus code metrics to predict
defects: A replication study,” in Proceedings of the 2011 Interna-
tional Symposium on Empirical Software Engineering and Measurement.
IEEE Computer Society, 2011, pp. 215–224.

[8] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change bursts as defect predictors,” in Proceedings of the 2010
IEEE 21st International Symposium on Software Reliability Engineering.
IEEE Computer Society, 2010, pp. 309–318.

[9] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component fail-
ures at design time,” in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering. ACM, 2006, pp. 18–27.

[10] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th international
conference on Software engineering. ACM, 2008, pp. 531–540.

[11] V. Dallmeier and T. Zimmermann, “Extraction of bug localization bench-
marks from history,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. ACM,
2007, pp. 433–436.

[12] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 181–196, Mar. 2008.

[13] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering. ACM, 2007, pp. 34–43.

[14] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and T. Zimmer-
mann, “Quality of bug reports in eclipse,” in Proceedings of the 2007
OOPSLA workshop on eclipse technology eXchange. ACM, 2007, pp.
21–25.

[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, 2008, pp. 308–318.

[16] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1. ACM, 2010, pp. 495–504.

[17] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proceedings of
the 29th international conference on Software Engineering. IEEE
Computer Society, 2007, pp. 499–510.

[18] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[19] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of the Fourth International
Workshop on Mining Software Repositories. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 1–.

[20] J. J. Amor, G. Robles, and J. M. Gonzalez-Barahona, “Effort estimation
by characterizing developer activity,” in Proceedings of the 2006 inter-
national workshop on Economics driven software engineering research.
ACM, 2006, pp. 3–6.

[21] H. Zeng and D. Rine, “Estimation of software defects fix effort using
neural networks,” in Proceedings of the 28th Annual International
Computer Software and Applications Conference - Workshops and Fast
Abstracts - Volume 02. IEEE Computer Society, 2004, pp. 20–21.

[22] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering. ACM, 2010, pp. 52–56.

[23] D. Čubranić, “Automatic bug triage using text categorization,” in In
SEKE 2004: Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering. KSI Press, 2004, pp.
92–97.

[24] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 10:1–10:35, aug 2011.

[25] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

[26] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ““Not
my bug!” and other reasons for software bug report reassignments,”
in Proceedings of the ACM 2011 conference on Computer supported
cooperative work. ACM, 2011, pp. 395–404.

[27] D. Čubranić and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proceedings of the 25th International
Conference on Software Engineering. IEEE Computer Society, 2003,
pp. 408–418.

[28] A. Mockus, “Missing data in software engineering,” Guide to Advanced
Empirical Software Engineering, pp. 185–200, 2008.

[29] G. A. Liebchen and M. Shepperd, “Data sets and data quality in
software engineering,” in Proceedings of the 4th international workshop
on Predictor models in software engineering. ACM, 2008, pp. 39–44.

[30] T. H. D. Nguyen, B. Adams, and A. E. Hassan, “A case study of bias in
bug-fix datasets,” in Proceedings of the 2010 17th Working Conference
on Reverse Engineering. IEEE Computer Society, 2010, pp. 259–268.

[31] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2009, pp. 121–130.

[32] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 97–106.

[33] T. H. Nguyen, B. Adams, and A. E. Hassan, “A Case Study of Bias
in Bug-Fix Datasets,” in 2010 17th Working Conference on Reverse
Engineering. IEEE Computer Society, 2010, pp. 259–268.

[34] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein, “Linkster: en-
abling efficient manual inspection and annotation of mined data,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2010, pp. 369–370.

[35] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering
links between bugs and changes,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011, pp. 15–25.

[36] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proceeding of the 33rd international conference
on Software engineering - ICSE ’11. New York, New York, USA:
ACM Press, 2011, p. 481.

401

