
It’s Alive!
Continuous Feedback in UI Programming

Sebastian Burckhardt
Manuel Fahndrich
Peli de Halleux
Sean McDirmid
Michal Moskal
Nikolai Tillmann
Microsoft Research

Jun Kato
The University of Tokyo

Live Programming : Archer Analogy
[Hancock, 2003]

• Archer:
aim, shoot, inspect, repeat

• Hose:
aim & watch

• Archer:
aim, shoot, inspect, repeat

• edit, compile, test, repeat

• Hose:
aim & watch

• edit & watch

Live Programming : Archer Analogy
[Hancock, 2003]

Quick Demo:

What is Live Programming?

What is TouchDevelop?

Question:
How to do live programming?

• Target:
Event-driven apps with graphical user interfaces (GUI’s)
• User input events (tap button, edit text, ..)

• I/O events (e.g. asynchronous web requests)

• We can think of code editing as an event
(replace old program with a new one)

• What should we do in this situation?

on code changes,
just replay execution from
beginning

How to do live
programming?

Replay
Based

?

How to do live
programming?

Replay
Based

?

• Inputs?
• Must record or repeat user inputs and I/O

• Divergence?
• Recorded events may no longer make sense after code change

• Side effects?
• Replaying external side effects can have surprising consequences

• Performance?
• Apps with GUIs can run for a long time, replay not efficient

on code changes,
just replay execution from
beginning

How to do live
programming?

Replay
Based

?

• Inputs?
• Must record or repeat user inputs and I/O

• Divergence?
• Recorded events may no longer make sense after code change

• Side effects?
• Replaying external side effects can have surprising consequences

• Performance?
• Apps with GUIs can run for a long time, replay not efficient

Replay is difficult. Worse: it does not always make sense.

on code changes,
just replay execution from
beginning

Widen the Scope.

Question:
How to do live
programming?

Replay
Based

?

Widen the Scope.

Question 2:
How to do live
programming?

Question 1:
How to program event-
driven apps with GUIs?

Replay
Based

Retained
Model-

View

Stateless
Model-

View
?

Widen the Scope.

Question 2:
How to do live
programming?

Question 1:
How to program event-
driven apps with GUIs?

Replay
Based

Retained
Model-

View

Model-
View Based

Stateless
Model-

View

Question 1: How to program GUIs?

• Model-View-Controller:
Well established pattern for interactive applications

• Many variations exist

Model
Data definitions

View
UI Elements

Controller
Event handlers

updateupdate

trigger

Question 1: How to program GUIs?

• Model-View-Controller:
Well established pattern for interactive applications

• Many variations exist. We eliminate controller and
put event handlers into the view.

Model
Data definitions

View
UI Elements
Event Handlers

Question 1: How to program GUIs?

• Model-View-Controller:
Well established pattern for interactive applications

• Many variations exist. We eliminate controller and
put event handlers into the view.

Model
Data definitions

View
UI Elements
Event Handlers

• Key question:
How to define
and maintain
correspondence
between view
and model?

How to program GUIs?

Retained View

• Model: Data definitions that define the model

• View-Construction: Code that defines how to construct
the view for a given model

• View-Update: Code that defines how to update the view
in reaction to model changes

Program =
Model +
View-Construction +
View-Update

How to program GUIs?

Retained View

• Model: Data definitions that define the model

• View-Construction: Code that defines how to construct
the view for a given model

• View-Update: Code that defines how to update the view
in reaction to model changes

Program =
Model +
View-Construction +
View-Update Redundant

Error prone

How to program GUIs?

Retained View Stateless View

• Model: Data definitions that define the model

• View-Construction: Code that defines how to construct
the view for a given model

Program =
Model +
View-Construction +
View-Update

Program =
Model +
View-Construction

Update is simple: throw
away old view, build new
one.

Example.
Very simple app:
list of strings.

User can add entries by hitting
the “add” button.

Program =

Model +

View-Construction

Example

data entries: String Collection

data field : String

Model

View-Construction Example

Execute
view

construction
code

entries = [“entry1”, “entry2”]
field = “entry3”

Model

View = Tree, decorated with
attributes and event handlers

Vert. stack

Hor. stack Hor.stack

label
entry1

label
entry2

add
button

+handler

input
field

How to write view construction code?

Host language for our prototype: TouchDevelop

Host language in the paper: lambda-calculus

Many frameworks are hybrids between a general-purpose
language and a declarative language (e.g. C# + XML).

We would prefer: stay within single host language, but
make code look as declarative as possible.

Idea: extend host language

• Special construct: nested “boxed” statements

boxed {
…. nested code here….

}

• When executing, creates box tree implicitly

• view structure is implied by program structure, no
need for programmer to manipulate collections!

• Code looks similar to declarative code.

Code Example.

data entries: String Collection

data field : String

display
boxed

box → use horizontal layout
for each s in entries do

boxed
labelstyle()
s → post

boxed
box → use horizontal layout
boxed

buttonstyle()
"add" → post to wall
on tapped(() => entries → add(field))

boxed
inputstyle()
box → edit(field, (x) => field := x)

function buttonstyle()
box → set border(colors → foreground, 0.1)
box → set margins(0.5, 0.5, 0.5, 0.5)
box → set padding(0.2, 0.2, 0.2, 0.2)
box → set background(colors → orange)
box → set width(10)

View-Construction Code

Model

No need for separate language or
special collection classes.

• Adapt layout to various conditions – use a
standard conditional

• Repeated elements - use standard loops

• Keep your code organized – use functional
abstraction

• Provide widget collection – write a library

User interface element = just a function.

Question 1:
How to do live programming?

• This is now much easier to get a grasp on.

Question 1:
How to do live programming?

on code changes, migrate model, build fresh view

Answer:

Does Model Migration Work?

• Currently, we do something very simple
• Variables whose types have changed are

removed from model

• Experience: behaves reasonably in
practice w.r.t to typical changes and user
expectations

• More interesting solutions conceivable
for structured data
(cf. schema evolution, dynamic code
updating)

on code changes, migrate model, build fresh view

Valid Concern: Speed?
• Isn’t it too slow to reconstruct the view from scratch

every time?

• In our experience (Browser-based, Javascript):
• Re-executing the compiled display code is no problem for our

apps (never more than 1000 objects on screen)

• However, recreating the DOM tree from scratch is too slow
(browser takes too much time) and has other issues (e.g. lose
focus while typing in a textbox when it is replaced)

• Fix: We implemented optimization that modifies the DOM
tree incrementally when reexecuting the display code.

on code changes, migrate model, build fresh view

Yes, but what does all this mean,
exactly?

• Paper contains a careful formalization of these
concepts!

• Lambda calculus + UI primitives (boxes)

• Operational semantics

• System model for event-handling with page stack,
UI, and code change events

• Type and Effect System

Read/Write Model

Navigation

View Construction

Pure

System
Model

System
Execution
Steps

Two execution modes
with different allowed side effects

Event handler execution

• Can mutate model

• Can push/pop pages

Display code execution

• Can set box attributes

• Can create boxes

System
Model
Visuali-
zation

Need Render
(C,-,S,P(p,v),ɛ)

Ready
(C,B,S,P(p,v),ɛ)

Initial
(C,-,ɛ,ɛ,ɛ)

Active
(C,-,S,P(p,v),Q)

User taps button or
hits back button

Handle events in
queue until queue
empty Build view from

model

Push start page

User changes code

Type & Effect System

• Judgments

• Allows us to tell what kind of function we are
looking at

• Lets us ensure that {event handlers, display
code} only have the allowed side-effects for
the given mode

Practical Experience

• Type/Effect system is sometimes too restrictive.
For example, does not allow this in display code:

var x = new object(); x.field := value;

• More useful in practice: runtime checks that allow
allocating fresh objects in a display heap, and allow
mutation of the display heap

Goals

• Programming Model

• Support succinct programming of
apps with GUIs (graphical user
interfaces)

• Support live editing

• Precise reactive semantics
(user events, code changes)

• Implementation

• Embed into TouchDevelop
(language, runtime, IDE)

• Enforce correct use of feature
(separation of model and view)

Contributions

Live-View Approach

Feature is public
Runs on all devices
touchdevelop.com

Formal System Model

Static Type/Effect System

Language Integration

