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ABSTRACT

The Spectral Division Method is an analytic approach for sound

field synthesis that determines the loudspeaker driving function in

the wavenumber domain. Compact expressions for the driving func-

tion in time-frequency domain or in time domain can only be deter-

mined for a low number of special cases. Generally, the involved

spatial Fourier transforms have to be evaluated numerically. We

present a detailed description of the computational procedure and

minimize the number of required computations by exploiting the

following two aspects: 1) The interval for the spatial sampling of

the virtual sound field can be selected for each time-frequency bin,

whereby low time-frequency bins can be sampled more coarsely,

and 2) the driving function only needs to be evaluated at the lo-

cations of the loudspeakers of a given array. The inverse spatial

Fourier transform is therefore not required to be evaluated at all ini-

tial spatial sampling points but only at those locations that coincide

with loudspeakers.

Index Terms— Spectral Division Method, loudspeaker array,

spatial Fourier transform

1. INTRODUCTION

A number of approaches for sound field synthesis exist that can be

employed with linear loudspeaker arrays. Examples for analytic ap-

proaches are Wave Field Synthesis (WFS) [1] and the Spectral Divi-

sion Method (SDM) [2]. An example for a numeric approach is [3].

While numeric approaches provide considerable freedom with re-

spect to the properties of the desired sound field to be synthesized

and the loudspeaker properties that can be handled, they are compu-

tationally costly and their properties are not always as predictable

as those of analytic approaches. On the other hand, WFS of simple

virtual sound fields can be implemented very efficiently so that real-

time rendering of a complex scene composed of dozens of virtual

sound sources is straightforward. However, the efficiency of WFS

comes at the price of a number of approximations in the theoretical

derivation.

SDM is computationally more expensive than WFS but pro-

vides a theoretically perfect result on a specific reference line. The

ability of prescribing a virtual sound field on such a reference line

allows for advanced applications such as [4] that are difficult to

implement based on WFS or other approximative methods. It is

less obvious how SDM can be implemented efficiently than it is

for WFS. In this paper, we analyze in detail the computational pro-

cedure, determine appropriate settings for the involved parameters,

and identify redundant and unnecessary computations.

2. SPATIAL FOURIER TRANSFORM

The spatial Fourier transform and its theorems are the building

blocks of SDM presented in Sec. 3. This Section outlines the corre-

sponding fundamentals.

We define the spatial Fourier transform as [5]

S̃(kx, y, z, ω) =

∫

∞

−∞

S(x, ω) eikxx dx (1)

exemplarily for the x-dimension. The corresponding inverse spatial

Fourier transform is

S(x, ω) =
1

2π

∫

∞

−∞

S̃(kx, y, z, ω) e
−ikxx dkx . (2)

The spatial Fourier transform can be defined accordingly for y and

z-dimensions as well. For convenience, we consider a scenario that

employs the spatial Fourier transform exclusively with respect to

the x-dimension. The spatial Fourier transform can be applied to

both the time domain sound field as well as the time-frequency do-

main sound field, which leads to the spatial spectra s̃(kx, y, z, t)

and S̃(kx, y, z, ω), respectively [6].

The kx-domain is also referred to as wavenumber do-

main, space-frequency domain, spatial frequency domain, or kx-

space [7]. The parameter fx, which is related to kx via kx = 2πfx,

may be termed spatial frequency. kx may therefore be interpreted

as spatial radian frequency. In order to emphasize which frequency

we refer to we will speak of time frequency and space frequency,

respectively.

Time-frequency spectra are usually plotted with respect to the

time frequency f rather than with respect to the radian frequency

ω = 2πf . Additionally, only that half of the time-frequency spec-

trum that represents frequencies below half the sampling frequency

is plotted. The other half is redundant because of the inherent sym-

metries of the real and imaginary parts. Such symmetries do not

exist for spatial spectra S̃(kx, y, z, ω) of time-frequency domain

signals S(x, ω) since S(x, ω) is generally complex. Therefore,

both halves of spatial spectra have to be plotted whereby 0 space

frequency is usually put to the center of the corresponding axis.

Plotting spatial spectra with respect to kx or with respect to fx is

common, depending on the context.

3. PROBLEM FORMULATION

The Spectral Division Method (SDM) is an analytic method for

sound field synthesis [2] and is applicable to planar and linear sec-

ondary source distributions. For the case of linear ones, it allows

for prescribing the synthesized sound pressure along a reference
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Figure 1: Illustration of the setup of a linear secondary source sit-

uated along the x-axis. The secondary source distribution is indi-

cated by the grey shading and has infinite extent. The thin dotted

line indicates the reference line (see text).

line that is parallel to the secondary source distribution and pro-

vides a perfect solution for the case of a continuous distribution of

secondary sources of infinite extent. A detailed treatment of the the-

oretic possibilities in this context is beyond the scope of this paper.

We therefore outline the theory only briefly and then concentrate on

its implementation. We assume that the secondary source distribu-

tion is located along the x-axis and that the reference line is located

in the horizontal plane at distance yref, i.e., xref = [x yref 0]
T . We

also assume free-field conditions. Refer to Fig. 1 for an illustration

of the setup.

The sound pressure S(x, ω) evoked by such a continuous sec-

ondary source distribution is given by an integration over the prod-

uct of the driving function D(x0, ω) of the secondary source that

is located at x0 = [x0 0 0]T and its spatio-temporal transfer func-

tion G(x,x0, ω). The integration is performed along the entire sec-

ondary source contour as

S(x, ω) =

∫

∞

−∞

D(x0, ω)G(x− x0, ω) dx0 , (3)

Eq. (3) can be interpreted as a convolution along the x-axis [8] and

the convolution theorem

S̃(kx, y, z, ω) = D̃(kx, ω) · G̃(kx, y, z,x0 = [0 0 0]T , ω) (4)

holds, where G̃(kx, y, z,x0 = [0 0 0]T , ω) denotes the spatio-

temporal transfer function of the secondary source located in the

coordinate origin. The driving function D̃(kx, ω) for the synthesis

of a desired sound field S̃(kx, y = yref, z = 0, ω) on the reference

line xref can then be determined in kx-space as [2]

D̃(kx, ω) =
S̃(kx, y = yref, z = 0, ω)

G̃(kx, y = yref, z = 0,x0 = [0 0 0]T , ω)
, (5)

which can then be transferred to time-frequency domain via (2).

G̃(·) in (5) may not exhibit zeros, which is fulfilled, for example,

for omnidirectional secondary sources.

The driving function D(x, ω) in time-frequency domain can be

derived analytically for special cases of simple scenarios [9]. The

only example available in the literature so far is the case of a vir-

tual plane wave synthesized by a distribution of omni-directional

secondary sources. In this case, S̃(·) and G̃(·) in (5) as well as the

S(x, ω) G(x− [0 0 0]T , ω)

sample on ref. line sample on ref. line
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Figure 2: Block diagram of SDM implementation; FTi: Fourier

transform with respect to the indexed dimension; x0[l]: x-

coordinate of the l-th loudspeaker; IFTi: inverse Fourier transform

with respect to the indexed dimension

inverse spatial Fourier transform (2) of (5) can be determined ana-

lytically. The secondary source driving function D(x, ω) in time-

frequency domain is then given by [2]

D(x, ω) =
4i · e−ikpw,yyref

H
(2)
0 (kpw,yyref)

· e−ikpw,xx . (6)

H
(2)
0 (·) denotes the Hankel function of second kind [7]. kpw,x and

kpw,y are the components of the plane wave’s wave vector in x and

y-direction, respectively. The SDM solution for the considered sce-

nario can therefore be implemented directly by designing a digital

filter whose transfer function is given by (6).

Such an analytic derivation of D(x, ω) is not possible in the

general case of arbitrary source-free virtual sound fields and loud-

speaker radiation properties and the involved transformations have

to be performed numerically. The block diagram in Fig. 2 summa-

rizes the computational procedure. Its components will be analyzed

and discussed in detail in Sec. 4 and 5.

4. FORWARD SPATIAL FOURIER TRANSFORM FOR

ARBITRARY VIRTUAL SOUND FIELDS

A few selected cases of S(x, ω) and G(x,x0 = [0 0 0]T , ω) allow

for their spatial spectra S̃(·) and G̃(·) in (5) to be determined ana-

lytically. The examples available in the literature are S(x, ω) being

either a spherical or a plane wave and G(x,x0 = [0 0 0]T , ω) rep-

resenting a spherical wave originating from the coordinate origin.

In all other cases S̃(·) and G̃(·) have to be determined by numeri-

cally evaluating (1), i.e., by performing a numeric Fourier transform

(also known as discrete Fourier transform (DFT) [8]) along the ref-

erence line xref for each time-frequency bin individually. The fast



Fourier transform (FFT) is a particularly efficient implementation

of the DFT and a number of highly optimized function libraries

such as [10] are available.

Note that the required number of time-frequency bins that is

necessary to represent the driving function with given accuracy de-

pends on the parameters of the considered scenario such as the

length of the considered array. A general rule cannot be established.

In this Section, we discuss what parameters need to be consid-

ered in the discretization of the integral in (1) and outline how the

number of computations can be minimized. We use the case of G(·)
representing a spherical wave originating from the coordinate origin

as an example. The analytical solution for G̃(·) in this case is [2]

G̃(kx, y, z, ω) =














− i
4
H

(2)
0

(

√

(

ω
c

)2
− kx

2
√

y2 + z2
)

for |kx| <
∣

∣

ω
c

∣

∣

1
2π

K0

(

√

kx
2 −

(

ω
c

)2√

y2 + z2
)

for
∣

∣

ω
c

∣

∣ < |kx| .
(7)

K0(·) denotes the zero-th order modified Bessel function of second

kind [7]. Eq. (7) is illustrated in Fig. 4(a). Note that Fig. 4(a) is

symmetric with respect to kx = 0 as it describes a sound field that

is symmetric with respect to the y-z-plane. Such symmetry is not

apparent for non-symmetric fields.

A numeric evaluation of (1) requires discretizing the integral to

be a finite summation. The – preferably constant – interval ∆x at

which the integrand is sampled has to be chosen based on the inte-

grand’s rate of variation, i.e., the Nyquist criterion has to be satisfied

so that no spatial aliasing occurs. For propagating sound fields, the

Nyquist criterion requires just more than two sampling points per

wavelength λ of the highest considered time-frequency [8], i.e.,

∆x < λmin/2 . (8)

Setting ∆x smaller than indicated in (8) yields redundant informa-

tion and therefore causes computational overhead.

A similar criterion does not exist for evanescent sound field

components, which cannot be discretized without spatial aliasing ar-

tifacts [9]. We limit our considerations to propagating virtual fields

in this paper. Evanescent sound fields are to be avoided in most sce-

narios. Firstly, they are conceptually undesired [11] and secondly,

the presence of both propagating and evanescent components in the

desired field requires very high numerical precision. Note that the

synthesis of a propagating field requires triggering G̃(·) in the range

where |kx| <
∣

∣

ω
c

∣

∣ whereas the synthesis of evanescent fields re-

quires triggering G̃(·) in the range where |kx| >
∣

∣

ω
c

∣

∣. The energy

of G̃(·) in these two ranges differs by several orders of magnitude

as evident from Fig. 4(a). The synthesis of purely evanescent fields

is feasible [12]. In order to suppress virtual evanescent components

we set D̃(kx, ω) = 0∀ |kx| >
∣

∣

ω
c

∣

∣ in (5) [9].

We need to spatially sample S(·) and G(·) at identical points

along the reference line in order to be able to compute the ratio

in (5). To minimize computations, we can spatially sample S(·)
and G(·) for each time-frequency bin differently, whereby we set

the sampling interval ∆x just small enough to avoid spatial aliasing.

It is important to note that the driving function D(x, ω) has to

be evaluated at the locations of the loudspeakers of a given array

to determine the loudspeakers’ driving signals. In order to avoid

having to interpolate D(x, ω), the x-values of the sampling points

should be selected such that the x-values of all loudspeaker loca-

tions are covered. Refer to Fig. 3 for an illustration.

x x x x x x x xx

x x x x x x x x

xxx x x x x x x x x x

x

yref

Figure 3: Relation of loudspeaker locations and spatial sampling

points; black line: x-axis; gray line: reference line; black marks:

loudspeaker positions; large gray marks: ’mandatory’ spatial sam-

pling points (i.e., sampling points whose x-values coincide with x-

values of loudspeaker locations); small gray marks: spatial sam-

pling points that might be required at higher frequencies or to have

a wide enough window.

Similar to the sampling frequency in time-domain discretiza-

tion, the spatial sampling frequency kx,s can be established as [8]

kx,s =
2π

∆x
. (9)

kx,s is measured in the unit rad/m as is kx. Fig. 4(b) shows a nu-

merical result for G̃(·) when the sampling interval ∆x = 0.1 m

is too coarse to avoid aliasing at higher frequencies. In the given

case, kx,s and therefore the period of the spectral repetitions is

approx. 63 rad/m, which causes spatial aliasing in the baseband

−kx,s/2 < kx < kx,s/2 at time frequencies higher than 1715 Hz.

We assume throughout this paper that all parameters are set such

that no spatial aliasing occurs.

A numeric evaluation of (1) also requires establishing finite in-

tegration boundaries, which is equivalent to windowing of the con-

sidered sound field with respect to x. For convenience, we use a

rectangular window in this paper. Other types of windows are also

useful [13].

Usually, it will be such that the considered sound field’s ampli-

tude decreases with distance. The wider the analysis window is the

larger is the fraction of the overall energy of the sound field that is

covered by the window. This does not hold for plane waves, how-

ever. Their spatial Fourier transform can be determined analytically

to avoid compromises [9].

Windowing of a sound field has two major implications:

1. The energy of the sound fields spatial spectrum is smeared

along the kx-axis [13].

2. Any sound field exhibits infinite spatial extent under free-

field conditions. The part of the sound field that is beyond

the support of the window is excluded from the analysis.

Obviously, the longer this analysis window is the more accurate will

be the result. Fig. 4(c) and 4(d) depict G̃(·) for different lengths

of the analysis window. As expected, the shorter window causes

a more significant smear of the energy. The smear is most obvi-

ous along the boundary between propagating and evanescent field

components. Note that the slope around |kx = ω/c| is significantly

steeper for the longer window in Fig. 4(c) compared to the short

window in Fig. 4(d). A longer window contains more sampling

points and therefore requires more computations. The required ac-

curacy and therefore the required window length will depend on the

considered scenario. No general guidelines can be given.

In some scenarios it might be desired to combine analytic and

numeric data. An example is the synthesis of a virtual plane or a

virtual spherical wave – whose spatial Fourier transform can be de-

termined analytically – by an array of loudspeakers with complex

radiation properties [14]. In this case, G̃(·) has to be obtained from

measurements. In order to be able to combine the analytic and the
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(b) numeric, ∆x = 0.1 m,
x ∈ [−20, 20] m, spatial aliasing
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(c) numeric, ∆x = 0.04 m,
x ∈ [−20, 20] m
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Figure 4: 20 log10

∣

∣

∣
G̃(·)

∣

∣

∣
for y = 1 m, z = 0; The white lines

indicate kx = ω/c, i.e., the boundary between propagating and

evanescent components. All values are clipped as indicated by the

colorbars.

numeric data it is required that they are both available for the same

values of kx and ω. In other words, the two sets of data have to

represent the same spatial and temporal sampling locations. G(·)
should therefore be measured either continuously [15] or at appro-

priate discrete locations along the intended reference line. Typical

implementations of the DFT compute the corresponding unique dis-

crete values

kx[l] =
l

L
kx,s

∀l = −
L− 1

2
,−

L− 1

2
+ 1, . . . ,

L− 1

2
− 1,

L− 1

2
, (10)

exemplarily of uneven L and assuming that G(·) was measured a

set of L equidistant locations with spacing ∆x [8, 10]. The analytic

expression for S̃(·) can then be evaluated at the according values of

kx[l] as given by (10).

5. INVERSE SPATIAL FOURIER TRANSFORM FOR

ARBITRARY VIRTUAL SOUND FIELDS

Once D̃(kx, ω) is determined, an inverse spatial Fourier trans-

form (2) has to be applied to yield D(x, ω). The latter is then

evaluated at the positions of the loudspeakers of the array under

consideration. This means that although typical implementations of

the DFT give a result for all initial spatial sampling points of the

time-frequency bin under consideration, we only need to compute

D(x, ω) for those sampling points that coincide with loudspeaker

positions (recall Fig. 3). A custom implementation of the DFT

or FFT, respectively, can therefore avoid unnecessary computations.

The energy support of the time-domain representation d(x, t)
of the driving function will usually be preceded by silence of given

duration. This silence is due to the virtual propagation of the virtual

sound field in the virtual space and therefore occurs independent of

the applied method [3, 9]. The silence in d(x, t) can be removed

and replaced by a pure delay to reduce the resulting filter length.

6. CONCLUSIONS

We discussed the computation procedure for determining the loud-

speaker driving function for the Spectral Division Method for arbi-

trary virtual sound fields. The involved spatial Fourier transforms

have to be performed numerically. We presented criteria for select-

ing spatial sampling points of the virtual sound field that avoid spa-

tial aliasing and interpolation of the resulting driving function. We

showed that the virtual sound field can be sampled more coarsely at

lower time frequencies than at higher ones.

We also showed that the final inverse spatial Fourier transform

does not need to be evaluated for all spatial sampling points but

only for those that represent loudspeaker positions. Unnecessary

computations are thereby avoided.
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