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Abstract
The continuous shift towards data-driven approaches to busi-
ness, and a growing attention to improving return on in-
vestments (ROI) for cluster infrastructures is generating new
challenges for big-data frameworks. Systems originally de-
signed for big batch jobs now handle an increasingly com-
plex mix of computations. Moreover, they are expected to
guarantee stringent SLAs for production jobs and minimize
latency for best-effort jobs.

In this paper, we introduce reservation-based scheduling,
a new approach to this problem. We develop our solution
around four key contributions: 1) we propose a reservation
definition language (RDL) that allows users to declaratively
reserve access to cluster resources, 2) we formalize planning
of current and future cluster resources as a Mixed-Integer
Linear Programming (MILP) problem, and propose scalable
heuristics, 3) we adaptively distribute resources between
production jobs and best-effort jobs, and 4) we integrate all
of this in a scalable system named Rayon, that builds upon
Hadoop / YARN.

We evaluate Rayon on a 256-node cluster against work-
loads derived from Microsoft, Yahoo!, Facebook, and Cloud-
era’s clusters. To enable practical use of Rayon, we open-
sourced our implementation as part of Apache Hadoop 2.6.

1. Introduction
Scale-out computing has enjoyed a surge in interest and
adoption following its success at large web companies such
as Facebook, Google, LinkedIn, Microsoft, Quantcast, and
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Yahoo! [32]. As these architectures and tools become ubiq-
uitous, maximizing cluster utilization and, thus, the return
on investment (ROI) is increasingly important.

Characterizing a “typical” workload is nuanced, but the
hundreds of thousands of daily jobs run at these sites [36, 40]
can be coarsely classifed in two groups:
1. Production jobs: These are workflows submitted peri-

odically by automated systems [27, 38] to process data
feeds, refresh models, and publish insights. Production
jobs are often large and long-running, consuming tens of
TBs of data and running for hours. These (DAGs of) jobs
are central to the business, and come with strict service
level agreements (SLA) (i.e., completion deadlines).

2. Best-effort jobs: These are ad-hoc, exploratory computa-
tions submitted by data scientists and engineers engaged
in testing/debugging ideas. They are typically numerous,
but smaller in size. Due to their interactive nature, best-
effort jobs do not have explicit SLAs, but are sensitive to
completion latency.
The mix of jobs from these categories is cluster depen-

dent. Production jobs can be as few as 5% of all jobs. How-
ever, in all but dedicated test clusters [11, 12, 14, 40], they
consume over 90% of the resources. While numerically few,
these jobs are business-critical, and missing SLAs can have
substantial financial impact.

Currently deployed big-data systems [2, 24, 40] focus
on maximizing cluster throughput while enforcing sharing
policies based on snapshots of priority, fairness, and capac-
ity. Prioritizing production jobs improves their chance to
meet SLAs at the expense of best-effort jobs’ latency. Sym-
metrically, prioritizing best-effort jobs can improve their la-
tency, but it endangers production jobs’ SLAs. In either case,
unnecessary head-of-line blocking prevents all such time-
agnostic mechanisms from simultaneously satisfying the de-
mands of both types of jobs. In particular, no promises can
be made on jobs’ allocations over time.

Interviewing cluster operators, we gather that the above
limitations are coped with today by over-provisioning their
clusters (detrimental to ROI), or by means of labor-intensive
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Figure 1. Effectiveness of reservation-based scheduling (A
production job P with time-varying resource needs, and four
best-effort jobs B1..4)

workarounds. These include manually timing job submis-
sions, and ensuring production jobs’ SLAs by dedicating
personnel to monitor and kill best-effort jobs if resources
become too scarce. This state of affairs is taxing for large
organizations, and unaffordable for smaller ones. It is also
highly unsatisfactory for use in a public-cloud or shared ser-
vice [25, 34], where scale and the contractual relationship
between users and operators exacerbate these problems.

To make matters worse, the days of siloed clusters run-
ning a single application framework, such as MapReduce [17],
are long gone. Modern big-data clusters typically run a di-
verse mix of applications [2, 24, 36, 40]. This introduces
new scheduling challenges such as supporting gang (all or
nothing) semantics, and inter-job dependencies.

In this paper we propose reservation-based scheduling,
a novel approach that delivers time-predictable resource al-
locations to: 1) meet production job SLAs, 2) minimize best-
effort job latency, and 3) achieve high-cluster utilization.

Contributions Our effort builds upon ideas from extensive
prior work on big-data frameworks, HPC infrastructures,
and scheduling theory, [2, 4, 19, 20, 24, 28, 30, 36, 37, 39–
42], but provides a unique combination of features includ-
ing support for a rich constraint language, scalable planning
algorithms, and adaptive scheduling mechanisms. We inte-
grated all of this in a complete architecture and robust imple-
mentation that is released as part of Apache Hadoop. To the
best of our knowledge, our system, Rayon, is the first big-
data framework to support completion SLAs, low latency,
and high-cluster utilization for diverse workloads at scale.

Our effort is organized around four key contributions
(visualized in Figure 2):

1. Reservation: this is the process of determining a job’s re-
source needs and temporal requirements, and translating
the job’s completion SLA into a service level objective
(SLO) over predictable resource allocations. This is done
ahead of job’s execution and it is akin to a reservation of
resources, aimed at ensuring a predictable and timely ex-
ecution. To this end, we propose a Reservation Definition
Language (RDL), that can express in a declaratively fash-
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ion a rich class of constraints, including deadlines, mal-
leable and gang parallelism requirements, and inter-job
dependencies—see Section 2.

2. Planning: RDL provides a uniform and abstract repre-
sentation of all the jobs’ needs. Reservation requests
are received by the system ahead of a job’s submission.
We leverage this information to perform online admis-
sion control, accepting all jobs that can fit in the clus-
ter agenda—the Plan—and rejecting the ones we cannot
satisfy. In Section 3, we formalize Planning as a Mixed-
Integer Linear Programming (MILP) problem, and pro-
pose robust and scalable greedy algorithms.

3. Adaptive Scheduling: this dynamically assigns cluster re-
sources to: 1) production jobs, based on their alloca-
tion in the plan, and 2) best-effort jobs submitted on
the fly to minimize their latency. In this phase, we dy-
namically adapt to the evolving conditions of a highly-
utilized, large cluster, compensating for faults, mispre-
dictions, and other system imperfections—see Section 4.

4. Rayon: Our final contribution is to integrate the above
ideas in a complete architecture. We instantiate our de-
sign in a YARN-based system [40]. Over the past year we
have polished our system and open-sourced it as a feature
in Apache Hadoop 2.6—Section 4.2. We validate Rayon
on a 256-node cluster, running jobs derived from Mi-
crosoft clusters, and workloads derived from clusters of
Cloudera customers, Facebook, and Yahoo!—Section 5.

By introducing the notion of reservation, we arm Rayon
with substantially more information to handle jobs with
SLAs. We illustrate this pictorially in Figure 1, where we
delay P , meet its SLA, and improve B1, B3, B3’s laten-
cies. Our experimental evaluation confirms that this extra
information, combined with effective planning, and adaptive
scheduling delivers an advantage over existing approaches.

The rest of this paper discusses these contributions. This
presentation is necessarily terse, but more details and exper-
imental evidence can be found in the companion technical
report [15]. The log of changes to Apache Hadoop for our
Rayon implementation can be found in YARN-1051 [5].



2. Reservation
As mentioned above, the types of computations that are run
on modern big-data clusters have diversified from MapRe-
duce jobs to interactive analytics, stream and graph pro-
cessing, iterative machine learning, MPI-style computations
[11, 12, 14], and complex workflows (DAGs of jobs) lever-
aging multiple frameworks [9, 38]. Moreover, the consolida-
tion of clusters means that production jobs with strict dead-
lines will be run together with latency critical best-effort
jobs. In this section, we focus on designing a reservation def-
inition language (RDL) capable of expressing the above.

The following are key requirements for RDL:
R1 malleability for batch jobs (e.g., MapReduce)
R2 strict parallelism and continuity for gang jobs (e.g., MPI)
R3 explicit temporal requirements (i.e., SLAs).
R4 precedence constraints (dependencies) among jobs that

comprise a pipeline (e.g., Hive, Oozie, Azkaban)
R5 composable for workload optimization

This set of requirements captures most of the practical
scenarios we encountered. We formalize RDL next.

2.1 Reservation Definition Language (RDL)
An RDL expression can be:
1. An atomic expression of the form atom(b,g,h,l,w),

where: b is a multi-dimensional bundle of resources1

(e.g., <2GB RAM, 1 core>) representing the “unit” of
allocation, h is the maximum number of bundles the job
can leverage in parallel, g is the minimum number of
parallel bundles required by the job; a valid allocation
of capacity at a time quanta is either 0 bundles or a
number of bundles in the range [g, h]. l is the minimum
lease duration of each allocation; each allocation must
persist for at least l time steps, and w is the threshold of
work necessary to complete the reservation (expressed as
bundle hours); the expression is satisfied iff the sum of
all its allocations is equal to w. In Figure 3a, we show an
example of atomic expression.

2. A choice expression of the form any(e1, . . . , en). It is
satisfied if any one of the expressions ei is satisfied.

3. A union expression of the form all(e1, . . . en). It is
satisfied if all the expressions ei are satisfied.

4. A dependency expression of the form order(e1, . . . , en).
It is satisfied if for all i the expression ei is satisfied with
allocations that strictly precede all allocations of ei+1.

5. A window expression of the form window(e,s,f),
where e is an expression and [s, f) is a time interval.
This bounds the time range for valid allocations of e.
It is easy to see that RDL allows users to express com-

pletely malleable jobs such as MapReduce (by setting g = 1
and l = 1) and very rigid jobs such as MPI computations
requiring uninterrupted and concurrent execution of all their
tasks (by setting g = h and l = w/h)—requirements R1,
R2. The window operator allows to constrain the interval of

1 This matches YARN containers [40] and multi-resource vectors in [22].
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validity for any sub-expression. Its natural application is to
express completion deadlines—requirement R3. Users can
represent complex pipelines and DAGs of jobs in RDL using
the order,all—requirement R4. The any operator allows
one to express alternative options to satisfy a single reserva-
tion.

Note that RDL expressions typically admit multiple solu-
tions for a given plan—requirement R5. Choosing between
equivalently valid allocations is a prerogative of the Plan-
ning phase (discussed in Section 3), which leverages this
flexibility to optimize system-wide properties such as effi-
ciency of resource utilization, fault resilience, etc.

Finally, while best-effort jobs do not participate in the
reservation process they could be formally represented by
a void atomic expression atom(b,1,h,1,0), which is triv-
ially satisfied; Such void expression provides no “guaran-
teed” access to resources, as w = 0, but only best-effort
access to idle resources.

We illustrate the use of RDL with the hypothetical pro-
duction workflow of Figure 3 (b). This workflow is com-
posed of two malleable batch jobs {A,B} (e.g., MapRe-
duce) and a third {C} with a gang requirement (e.g., Gi-
raph [3]). C depends on A and B.
RDL completeness and limitations We do not make com-
pleteness claims about the RDL language, but it was suffi-
cient to naturally capture all the practical scenarios we en-
countered. We broadly validated this claim by presenting
our language design to the Apache Hadoop community (a
large group of users of big-data systems). In general, we
found strong support for RDL as the reservation language
for Hadoop. We also developed ideas for extending RDL,
such as directly embedding periodicity and relative time.
Deriving RDL from user jobs We conclude this section
by discussing how users (or tools on their behalf) can derive
RDL expressions for their jobs. Most production jobs natu-
rally fall into one of the following well behaved categories:

High-level frameworks: Despite the diversity of work-
loads a significant fraction of production jobs are gener-
ated by a handful of frameworks such as Hive, Pig, Giraph
[11, 12, 14]. This gives us an opportunity to build profil-
ers and optimizers capable of automatically producing pre-
cise resource demands for queries/jobs by leveraging the ap-
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plication semantics [18–20, 28, 33, 41]. In particular, we
extended [18] to generate RDL expressions from Hive and
MapReduce jobs, and we are currently collaborating with
the authors of [33] to port their Giraph-centric solution to
Rayon. We plan to report on this in follow up work.

Periodic jobs: Production jobs are often canned compu-
tations, submitted periodically [14, 20]. This makes them
amenable to history-based resource prediction [35]. We in-
formally validate this by running seasonality detection and
building predictors for workflows from internal Microsoft
clusters. We report on this in Section 5.2.

Socializing RDL with the OSS community we gathered
interest in using it as a dynamic provisioning tool to provide
time-evolving allocations to users. All of above amounts to
an informal but promising validation of RDL practicality.
We discuss this in depth in the companion tech-report [15].
Compiling RDL: normalization and optimization RDL
expressions are processed by a simple, custom compiler/op-
timization layer. Our compiler automatically verifies simple
satisfiability, and optimizes the input expressions, by apply-
ing a series of semantics-preserving transformations such
as: 1) redundant operator removal 2) unification of compat-
ible atomic expressions and 3) operator re-ordering (push-
down of window operators). This process gives users com-
plete freedom in expressing their requirements with RDL,
but simplifies and accelerates our placement algorithms. The
compiler produces an internal AST representation, that is
used to generate the MILP formulation we discuss next,
as well as structured and normalized input formats to the
heuristics of Section 3.2.

3. Planning
The RDL expressions define the temporal resource needs of
jobs. Planning the cluster’s agenda involves constructing a
temporal assignment of cluster resources to jobs such that
each job’s RDL expression is satisfied. This planning prob-
lem is provably NP-complete [15].

We formalize such planning as a combinatorial optimiza-
tion problem (Section 3.1). The resulting formulation is a
Mixed-Integer Linear Program (MILP) that covers all fea-
tures of RDL (and can be generated by our compiler).

3.1 Formalizing planning as an optimization problem
For the sake of presentation we omit the nesting properties
of RDL and introduce the model progressively.

Basic formulation We use variables xjt to represent the
resources allocated to job j during time step t. Using these
variables, we can formulate linear inequalities to assert pack-
ing and covering constraints on feasible allocations, and de-
fine a objective function as follows:

minimize
∑
j,t

cjt × xjt

subject to:

∀t :
∑
j

xjt ≤ Capt (1)

∀j∀t : xjt ≤ hj (2)

∀j :
∑

sj≤t<fj

xjt = wj (3)

∀j, t : xjt ∈ R+ (4)

where, the allocation of xjt are positive real variables (4)
subject to the following constraints:
(1) capacity constraint: at every time t the sum of allocations

must be within the physical cluster capacity2,
(2) parallelism constraint: the resources allocated to a job

are bounded by the job’s maximum parallelism hj , and
(3) demand constraint: the resources allocated between a

job’s start and completion time satisfy its demand wj .
This formulation covers atom expression in RDL (except

gang semantics discussed next), and window operators. In
this basic formulation, the model is infeasible if all jobs can-
not be fit. We address this issue in Section 3.1.1. Subject to
these constraints we minimize the cost of the overall alloca-
tion, expressed as a weighted sum over all allocations. cjt
captures the cost of assigning capacity to job j at time t.
Therefore, controlling the assignments of cjt allows us to:
1) prioritize jobs, and 2) make certain time periods more ex-
pensive. To cover the full semantics of RDL’s atom operator
we extend our basic formulation. as follows.
Supporting gang semantics g We support gang semantics
by changing (4) for the set of jobs with gang semantics as:

∀j /∈ Gang, ∀t : xjt ∈ R+ (5)

∀j ∈ Gang, ∀t : xjt ∈ {0, gj , 2gj , 3gj , . . . , hj} (6)

where Gang is the set of jobs with gang semantics, i.e.,
j ∈ Gang ⇐⇒ gj > 1. Assuming hj is an exact multiple
of gj (6) above forces allocations to respect the gang require-
ments. Supporting gangs, as well as order, any, forces our
problem in Mixed-Integer Linear Programming (MILP) ter-
ritory. We quantify the computational cost of dealing with
integrality in Section 5.3.
Supporting minimum lease duration l The minimum
lease duration requirement expresses the need for alloca-
tions that last at least l time steps. We start by assuming full

2 We simplify our multi-resource formulation for the sake of presentation.
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rigidity, i.e., gj = hj and lj =
wj

hj
. Under this assumption

every valid allocation must have exactly one transition up
from 0 to gj and after l time steps exactly one transition
down from gj to 0. We can force allocations to assume this
shape, by introducing a set of support variables yjt bound to
assume the absolute value of the discrete derivative of xjt,
i.e., yjt = |xjt − xj(t−1)|, and then constrain their sum to
allow only one transition up and one down:

∀j∈Gang

∑
t

yjt ≤ 2× gj (7)

This combined with (3) and (6) forces each allocation to
last precisely l time steps. Note that the absolute values can
be linearized , by expressing them as:

∀j∀t : yjt ≥ xjt − xj(t−1) (8)

∀j∀t : yjt ≥ xj(t−1) − xjt (9)

This works because we are minimizing yjt, and only one
of the constraints (8) or (9) will be active for any given
assignment of xjt and xj(t−1). The full rigidity assump-
tion we made on the atom expressions (gj = hj and
lj =

wj

hj
) can be lifted by means of RDL rewriting. Our

compiler automatically rewrites each atom expression that
requires gangs but is not fully rigid in a more complex
all(order(..., ai, ...)

∗) expression where each of the ai
atoms is fully rigid.

Note that even ignoring the integrality of (6), the con-
straints (8) and (9) have negative coefficients, therefore we
cannot use the fast solver techniques applicable to classical
packing and covering constraints [43].
Supporting any and all The RDL any operator allows
us to express that two (or more) sub-expressions are alterna-
tives, where the system is free to pick one. We capture each
sub-expression as a separate job in the formulation, and then
constrain their placement. To support this we employ a clas-
sical trick in optimization, which is to introduce a slack/over-
flow variable xjo for each job in constraint (2). We then in-
troduce an integral variable oj that is set to 1 if xjo is greater
than zero, as follows:

∀j : xjo +
∑

bj≤t<ej

xjt = wj (10)

∀j : oj >
xjo
wj

(11)

Intuitively, if oj is equal to 1 then the corresponding job j
(one of the any alternatives) is not placed. We then impose
that for k jobs tied by a single any expression all but one of
the oj to be 1. This forces the solver to pick exactly one of
the any alternatives. The same can be done for all, simply
forcing the sum to zero (i.e., all the jobs must be placed)—
the need for this will be apparent later.
Supporting order RDL allows us to express temporal de-
pendencies among allocations: order(e1, . . . , en). The in-
tuition behind supporting this in our MILP formulation is to
define a set of support variables sjt and fjt, that represent
the “start” and “finish” of each sub-expression j′, j′′, and
then impose that allocations of j′′ start after allocations of j′

finish. This is achieved by constraining the relative values of
sj′′t and fj′t.

This newly introduced variables must be integral, with
sjt transitioning from 0 to 1 at the first non-zero allocation
of xjt, and fjt transitioning from 1 to 0 at the last non-zero
allocation for xjt. This is shown pictorially in Figure 4, and
defined formally as:

∀j∀t : sjt ≥ sj(t−1) (12)

∀j∀t : sjt ≥
xjt
hj

(13)

∀j∀t : fjt ≥ fj(t+1) (14)

∀j∀t : fjt ≥
xjt
hj

(15)

∀(j′, j′′) ∈ D ∀t : sj′′t ≤ 1− fj′t (16)

∀j∀t : sjt, fjt ∈ {0, 1} (17)

where D is the set of dependencies. Note that to express
ordering among jobs with different max parallelism hj , we
normalize constraint (13) and (15), and impose integrality
(17) for sjt and fjt. Finally, constraint (16) imposes that
the first non-zero allocation of j′′ must happen after the last
non-zero allocation for j′. Supporting order substantially
increases the number of integral variables and constraints,
and we will see is a key limiting factor for the practical use
of our MILP formulation.

3.1.1 Improving our formulation
What we discussed so far covers the semantics of RDL,
now we turn to improving the quality of our solutions by
capturing important practical considerations.
Minimizing preemption We focus on improving the qual-
ity of the allocations by extending our objective function.
When the plan allocations change drastically from one time
step to the next, the underlying system must quickly redis-
tribute the physical resources among jobs. This requires the
use of preemption [13, 40], and incurs some overhead. We
minimize abrupt vertical transitions by introducing a term∑

jt yjt in our objective function, i.e., minimizing the abso-
lute value of derivatives. Figure 5 shows the improvement
delivered by this addition by running a commercial solver
on a 3-job instance of this MILP formulation.



Avoiding infeasible models The formulation we described
so far requires that every job is assigned by its deadline.
This can be troubling, as an MILP solver would return an
infeasible model error if it cannot place all of the jobs. Prag-
matically we expect this to happen frequently, and prefer a
more graceful degradation, where as many jobs as possible
are placed and only few are rejected. We leverage the notion
of overflow variables we introduced to support the any and
all semantics, but instead of imposing a hard constraint on
the sum of the oj we modify the objective function. We make
it very expensive to use the overflow variables by adding the
following term to our objective function:

∑
j αj × oj , with

αj being a weighting factor that describe how bad it is to
reject job j.

3.1.2 Discussion
Rayon makes use of planning in two ways: online, to commit
to accept/reject jobs on arrival (i.e., as soon as their reserva-
tion requests are received), and offline, to reorganize sets of
(already accepted) jobs, optimizing their allocations, possi-
bly in response to changing cluster conditions.

The MILP formulation discussed so far is a useful formal
tool, and by leveraging powerful commercial solvers (such
as Gurobi) we use it to study the solution space. However, it
is not practical for online scenarios, and cannot scale to large
problem sizes. This is due to the corresponding explosion of
the number of variables and constraints. The practical limit,
even for offline uses, is hundreds of atom expressions, or
tens of complex order,any,all expressions. Furthermore,
there are prior impossibility results on designing optimal
algorithms for commitment on arrival scheduling problems
[30]. For these reasons, we focus on greedy heuristics next.

3.2 Greedy Heuristics
The algorithms we present are greedy in two dimensions.
First, they place one job at a time, and never reconsider
placement decisions for previously placed jobs. Second, as
they traverse an RDL expression, sub-expressions are placed
with no backtracking. This has some impact on the num-
ber of jobs these policies can accept, but placement is scal-
able and fast. We study this trade-off experimentally in Sec-
tion 5.3.

RDL:  
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GREE  "late" allocation
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Figure 6. Visualizing GREE and GREE-L allocations.

Algorithm 1: GREE-L (low preemption greedy)
Input: Plan p, RDL e, TimeInterval ti
Result: An assignment of e in p
switch e.type do

case (window)
GREE-L (p,e, ti ∩ e.window);

case (all,any,order)
foreach (RDL subExpr : reverseChild(e)) do

TimeInterval lti = guessInterval(subExpr);
GREE-L (p,subExpr,lti);

return p.curAlloc;
case (atom)

foreach Time t:ti do
p.assign(e,ti,e.w/ti.length);

return p.currAlloc;

Procrastinating heuristic (GREE) Our first placement
heuristic places a job as close to its deadline as it can, as
shown in Figure 6. This is done by traversing the AST repre-
sentation of the RDL expression of each input job in a one-
pass, right-deep, depth-first fashion. Each sub-expression e
is placed (compatibly with its constraints and space avail-
ability) as late as possible. To place an atomic allocation
we scan the plan right to left and track the maximum avail-
able height (up to h) and the most constrained point in time
tlim. When we reach l consecutive instants in time where
the height of the allocation exceeds g, we allocate this por-
tion of work. If work remains to be allocated, we restart the
search at tlim−1. Intuitively, this finds the tallest, rightmost
allocation for this plan that is compatible with the expres-
sion constraints. We enforce order constraints by updating
the time range in which we place preceding atomic expres-
sions. To place any expressions, we greedily accept the first
alternative that fits (and never backtrack).

Allocating “late” may appear counter-intuitive (why would
one allocate late when the job might fit in earlier parts of the
plan?). In practice, this policy improves the chances of jobs
that show up late but have an early deadline to be placed,
and works surprisingly well in coordination with the un-
derlying adaptive scheduling mechanisms that we discuss
in Section 4. In fact, the allocations produced by the plan-
ner prescribe the guaranteed access to resources for a job,
while the underlying adaptive scheduler allows jobs to ex-
ceed their guaranteed allocations if there are idle resources
(redistributing resources based on weighted fairness).

When running many best-effort and SLA jobs in a clus-
ter the effect of this lazy planning and eager scheduling is
to give good latency to best-effort jobs, while still meeting
all SLAs—we evaluate these claims experimentally in Sec-
tion 5.4.

Lower preemption heuristics (GREE-L) As we show in
Figure 5(b), smoother allocations are preferable as they in-
cur less preemption. GREE fares poorly by this metric, as
it tends to produce “tall and skinny” allocations. We thus
propose GREE-L a variant of GREE that trades jobs’ accep-



(per-job)
Job 

Manager

Plan

Planning

Planning
Agent

Plan
Follower

jPlanning
Agent
MILP /
GREE

… j

4

2

5

6

j1

7

RDL

sharing
policy

adapter

3

8

Reservation

Adaptive
Scheduling

Scheduler

Resource Manager

Node 
Manager

Node 
Manager

Node 
Manager...

Figure 7. Overview of the Rayon system.

tance in exchange for reduced preemption. The pseudo-code
for the GREE-L algorithm is shown in Algorithm 1.

The guessIntervals function divides the valid time for
each expression into K time intervals (one for each child
expression). Like GREE, the traversal proceeds right to left
(reverseChild), but assignment is done for the atom expres-
sions such that the allocation is as “flat” as possible through-
out the heuristically selected interval. We show this in Fig-
ure 6. Each time an expression is placed, the sub-intervals
are recomputed (redistributing the left-over space).

Rejection is not shown in Algorithm 1 due to space con-
straints, but it matches the operator semantics described in
section 2.1. GREE-L rejects more jobs than GREE because
it does not backtrack when allocating flatter reservations in
the plan; its subsequent placement of early stages may be in-
feasible, due to sparser use of the area closer to the deadline.

Note that both GREE and GREE-L might reject jobs that
the MILP formulation accepts, as they do not consider mov-
ing previously accepted jobs or stages. On the other hand,
they are very fast and scalable and accept a competitive frac-
tion of production jobs, as illustrated in Section 5.3.

4. Adaptive Scheduling / Rayon architecture
In this section, we describe an architecture for a fully func-
tional big-data system that leverages RDL and the Planning
algorithms of Section 3. We also present a form of Adap-
tive Scheduling designed to cope with practical concerns
that emerge from real-world scenarios, including: scaling to
thousands of machines and hundreds of thousands of daily
jobs, supporting user quotas, and handling of failures, mis-
predictions, and systematic biases. We describe the architec-
ture in general terms (Section 4.1), but the reader familiar
with any modern big-data system (YARN, Mesos, Omega,
or Corona) should notice obvious similarities to those archi-
tectures. We make them explicit in Section 4.2 where we cast
our design as an extension of YARN [40].

4.1 Design
With reference to Figure 7, the architecture we propose con-
tains the following components: 1) a central resource man-

ager arbitrating the allocation of physical resources to jobs,
2) node managers running on each worker node, reporting
to the resource manager liveness information and enforcing
access to local resources, and 3) per-job job managers nego-
tiating with the resource manager to access resources on the
worker nodes, and orchestrate the job’s execution flow3.

Following Figure 7, we present the next level of detail
by discussing the steps involved in running production (and
best-effort) jobs:

Step 1 The job manager estimates the demand generated by a
production job (see Section 2.1) and encodes its con-
straints as an RDL expression, submitted to the resource
manager at reservation time.

Step 2 The Planning component of the resource manager main-
tains a Plan of the commitments made on cluster re-
sources by tracking all admitted reservations. This com-
ponent leverages a set of pluggable placement policies
(i.e., the MILP, GREE and GREE-L algorithms of Sec-
tion 3), to determine whether and how the RDL expres-
sion can fit in the current Plan.

Step 3 The resulting allocation is validated both against physical
resource constraints and sharing policies. Sharing poli-
cies enforce time-extended notions of user quotas.

Step 4 The user receives immediate feedback on whether the
RDL request is accepted. Accepted RDL expressions are
tracked by the Plan, and define a contract between users
and the system.

Step 5 The Scheduler is in charge of dispatching resources to
jobs, tracking detailed locality preferences, and enforcing
instantaneous invariants such as fairness, capacity and
priorities. A component called PlanFollower, monitors
cluster conditions and translates the absolute promises
we made in the Plan to the relative terms of the under-
lying Scheduler (e.g., increasing a jobs’ priority).

Step 6 When a job starts its execution, the runtime component
of the job manager requests resources based on instanta-
neous needs from the job. Production jobs specify their
reservation ID, and the Scheduler guarantees that they
will receive at least the resources reserved for that con-
tract. Idle resources are redistributed according to fair-
ness/capacity semantics [22, 40] among both production
and best-effort jobs.

Step 7 The job manager receives access to resources and pro-
ceeds to spawn the tasks of the job as processes running
on the worker nodes controlled by the node managers.

Step 8 The adapter and the PlanFollower of Step 5 are a key
component of our adaptive scheduling approach. The
adapter dynamically rearranges the Plan in response to
changes in cluster capacity (node failures or additions).
This runs the Planning algorithms in an offline mode,
where all accepted jobs are placed in the Plan anew.

3 Note that the architecture, like any modern big-data system, allows for
arbitrary application frameworks (e.g., MapReduce, Giraph, Spark, REEF).



Repeat During job execution job managers might detect that
the application-level progress is happening faster/slower
than foreseen at reservation time, and wish to change
its reservation. The API we expose to the job manager
allows for dynamic renegotiation of reservations
In the preceding, every RDL expression is associated

with a single job. More generally, each RDL reservation
can support a session accepting an arbitrary number of jobs.
Next, we discuss how this architecture is implemented in the
YARN codebase and provide details on the PlanFollower,
Adapter, and Sharing policies.

4.2 YARN-based implementation
The structure of our architecture is largely compatible with
several, recent big-data systems [2, 24, 36, 40]. We chose
YARN [40] as the starting point for our implementation due
to its popularity, availability as an open-source project, and
our familiarity with the platform4.
Protocol and architectural changes In order to support
Step 1 and Step 4 we modify YARN’s application submission
protocol, by introducing four new APIs for reservation:

YARN Protocol Extension
API call return value
createRes(ResDefinition rdl) ResID

updateRes(ResID curRes, ResDefinition rdl) boolean

deleteRes(ResID curRes) boolean

listRes(UserID userResID) List<ResID>

This allow users and tools to reserve resources ahead of ex-
ecution, and to dynamically update this reservation (i.e., the
renegotiation steps discussed above). In order to support this
new API, we extended YARN’s ResourceManager substan-
tially, by introducing the Planning layer of Figure 7 a new
component to the YARN’s architecture. This includes a scal-
able representation of a Plan (capturing allocations in a com-
pact run-length encoded form), and fast implementations of
GREE and GREE-L for online acceptance of RDL expres-
sions (Step 2).
Sharing Policies The notion of sharing policy is derived
from conversations with professional cluster administrators
that expressed the need to govern and bound the freedom
given to users by RDL. Without a sharing policy (such as
user quotas), Rayon would allow a user to ask for arbitrary
allocations of resources, subject only to physical constraints.
These policies are pluggable, and we provide a first imple-
mentation that extends the classical notion of capacity to ex-
press constraints over the both integral and instantaneous re-
sources.
PlanFollower Both Planning and Scheduling track re-
source availability and job demand, but they do so in sub-
stantially different ways. Planning provides an explicit no-
tion of time, manages demands at the job level, and resources
as an undiversified continuum. In contrast, Scheduling fo-
cuses only on the current slice of time, but handles demands

4 We leverage our experience with the codebase and the prior work on
preemption [40] that we integrated and contributed to Apache Hadoop.

at a task level and resources at a node level. This two-level
view is a fundamental design point to limit the complexity
of each component. The PlanFollower (Step 5) is the key to
translate between these two worlds. Mechanically the Plan-
Follower runs on a timer, reads the Plan current state and
updates the Scheduler configuration to affect the resources
that will be given to each job during Step 6 and Step 7. In
YARN this required us to modify the CapacityScheduler
and FairScheduler to allow for dynamic creation/destruc-
tion/resizing of queues—YARN’s mechanism to partition
resources among user groups [40].
Adapter Planning the use of future resources is at odds
with the reality of fast-evolving conditions in large clusters
(frequent node failures), errors in the user supplied reser-
vation requests, and imperfections in the underlying infras-
tructure. In our implementation, we cope with this by imple-
menting the Adapter component of Step 8. This consists of a
software module actively monitoring the cluster conditions,
comparing them with the expectations we have on future re-
sources, and triggering re-planning actions as required. The
adapter also copes with systematic biases, such as schedul-
ing delays for large tasks (a known limitation of the Capaci-
tyScheduler [40]).

5. Experimental Evaluation
In this experimental evaluation we validate our hunches on
RDL expressivity and usability (Section 5.2), analyze the
quality and complexity of Planning, comparing our MILP
formulation and greedy algorithms (Section 5.3), and test
our end-to-end design on a large and busy 256 machine clus-
ter, comparing it against stock YARN on previously pub-
lished workloads [11, 12] and production jobs from Mi-
crosoft clusters (Section 5.4).

We highlight the following insights:
1. RDL naturally is a practical and reasonably easy to use

language.
2. For large clusters, our greedy algorithm GREE-L matches

the quality of solutions of MILP (i.e., high job acceptance
rates, and low preemption). GREE-L is up to 5 orders
of magnitude faster than MILP while placing complex
workloads.

3. Adaptive scheduling allows us to achieve cluster utiliza-
tions approaching 100%.

4. Rayon reliably meets the SLAs of 100% of accepted jobs,
improves throughput by 15% and delivers better latency
to 40% of best-effort jobs.
These results are due to two main factors: 1) by intro-

ducing the notion of reservation-based scheduling, we arm
Rayon with inherently more information about the jobs it
runs, and 2) our algorithms and system implementation
leverage this advantage effectively.

Therefore we conclude that by introducing an explicit
representation of time, reservation-based scheduling signif-
icantly improves predictability in running a mix of produc-



tion and best-effort jobs, enabling cluster operators to make
promises on jobs’ allocation over time.

We defer further tests and more detailed analysis of the
workloads to our technical report [15].

5.1 Experimental setup
Our experimental setup comprises of (1) cluster configura-
tion and the software we deployed and (2) workloads used
for the evaluation.
Cluster setup Our large experimental cluster has approxi-
mately 256 machines grouped in 7 racks with up to 40 ma-
chines/rack. Each machine has 2 X 8-core Intel Xeon E5-
2660 processors with hyper-threading enabled (32 virtual
cores), 128GB RAM, 10Gbps network interface card, and
10 X 3-TB data drives configured as a JBOD. The connec-
tivity between any two machines within a rack is 10Gbps
while across racks is 6Gbps.

We run Hadoop YARN version 2.x with our modifica-
tions for implementing Rayon. We use HDFS for storing
job input/output with the default 3x replication. We use a
Gurobi 5.6 parallel solver running on a 128GB RAM, 32
cores server, whenever a MILP solver is needed.
Workloads To evaluate our system we construct syn-
thetic workloads that include 1) jobs with malleable re-
source needs (e.g., MapReduce jobs), 2) jobs with gang-
scheduling resource needs (e.g., Giraph graph computa-
tions), and 3) workflows with time-varying resource needs
(e.g., Oozie/Hive). These are respectively derived from:

Workload A: distribution-based Map-Reduce Workload
The SWIM project [11, 12] provides detailed characteristics
of workloads from five Cloudera customers clusters, two
Facebook clusters, and a Yahoo! cluster. The cluster sizes
range from 100’s of nodes up to 1000’s of nodes. We devised
a synthetic generator based on Gridmix3, producing jobs that
respect the original distributions of: submission time, job
counts, sizes, I/O patterns, and task runtimes.

Workload B: Giraph jobs with gang semantics We use
Apache Giraph to perform page-rank computations on syn-
thetically generated graphs consisting of up to 50 million
vertices and approximately 25 billion edges. We base this
on graphs that are routinely used for testing purposes at
LinkedIn. Recall that Giraph computations require gang-
scheduling for their tasks.

Workload C: Traces of production workflows We con-
struct synthetic jobs using the resource profiles collected
from a set of production pipelines from Microsoft’s Bing
clusters. We describe the overall profile of the workflow as
an RDL expression, and generate corresponding load with a
synthetic time-varying job.

Deriving SLAs Information about SLAs are generally
not available as today’s system do not provide this feature.
We approach this problem as in [20]. Based on conver-
sations with cluster operators we settle for a conservative
5% of jobs with deadlines, and a 10% “slack” (i.e., over-
estimation) over the actual job resource requirements, which
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Figure 8. Comparing MILP, GREE, and GREE-L, for in-
creasing number of jobs and increasing cluster size.

were known since we control job ergonomics. Deadlines are
inferred as estimates from the available trace/workload in-
formation, and from conversations with job owners when-
ever possible. This is not ideal, but is the best we can do.

All workloads have also been scaled (by limiting max size
and submission rates) to match our cluster capabilities. In
the evaluation, we use a modified version of GridMix3 for
job submission.

5.2 Evaluating RDL
In this section, we provide an initial assessment of RDL
expressivity and usability.
Community feedback We socialized RDL with over 50
practitioners from the Apache community, and extensively
discussed the trade-offs between richness and usability of the
language. The key ask was to keep the first iteration of the
language as simple as possible. In response, we simplified
the first version of RDL we released, to only allow a single-
level of all,any,order operators in each expression (i.e.,
removing nesting). This limits expressivity of the language,
but it is likely to foster initial adoption.
Coverage of Hive, MapReduce and Giraph Through col-
laborations with the authors of [18] and [33], and several
months of internal use on research clusters, we validated
RDL expressivity against thousands of jobs derived from
Hive, MapReduce and Giraph frameworks. In particular, we
tested against over 3k Hive production queries. RDL was
sufficiently expressive to capture all these jobs with suffi-
cient resolution of details.
History-based prediction We conclude with an initial val-
idation of the hypothesis that one can build good predictors
from historical runs of periodic jobs. We apply a state of the



art prediction algorithm5 to two very large and complex pro-
duction workflows from Bing clusters. The predictor’s aver-
age overestimate is well contained to 8.25%. To put this in
perspective, the existing allocation mechanisms (static ca-
pacity) only allows peak provisioning. Given the large gap
between peaks and average in these workflows, the baseline
produces allocations equivalent to a 1470% over-estimation.

These spot results are encouraging, though we refrain
from any generalization as RDL practical relevance can only
be judged by real-world adoption, and production usage.

5.3 Evaluating Planning
In Section 3 we introduced a complete MILP formulation
of our problem, and to address the MILP scalability limits
we proposed two greedy algorithms GREE and GREE-L.
We evaluate the quality of the solutions produced by MILP,
GREE and GREE-L, using the following four metrics:
1. runtime: measured in milliseconds to place a given set of

jobs. This dictates whether a solution can be used online
or offline, and how well it handles large scale problems.

2. acceptance: measured as a weighted6 count of accepted
jobs. Higher degrees of acceptance are desirable as they
represent higher value delivered by a cluster in terms of
more guaranteed resources offered to users.

3. preemption: measured as the sum of vertical (down)
transitions in the plan. Lower values of this metrics corre-
spond to plans that are less likely to force the underlying
system to make use of preemption (an undesirable over-
head) to vacate jobs when their allocations shrink in size.

4. uniformity: measured as stddev
average of the overall plan uti-

lization. Lower values of this metric corresponds to uni-
form headroom in the plan. This is correlated to lower
impact of failures, and more consistent availability of re-
sources for best-effort jobs.

Comparing MILP and Greedy heuristics We test MILP,
GREE, and GREE-L in an offline setting (where all jobs are
known in advance), focusing only on placement. This allows
us to perform parameter sweeps well beyond our physical
cluster capacity. Our first experiment consists of placing an
increasing number of atomic jobs (100-1k) randomly gen-
erated from Workload A, on a simulated cluster of progres-
sively growing size (400 to 4k nodes), while collecting mea-
sures for the metrics above. Note that the larger scenarios
tested in this experiment, are the target zone for Rayon, i.e.,
large consolidated clusters. We repeat each run with several
initializations and report the average of the results—all re-
sults are expressed as relative improvements over GREE.

The runtime of GREE and GREE-L range from 35 to
130ms. MILP runtime ranges from 80 to 3200 seconds (i.e.,
up to 5 orders of magnitude slower). The solver performance
is nonetheless impressive given that the problem size exceed
250k variables and constraints. This makes MILP viable as a

5 Microsoft internal at the time of this writing.
6 Weights are proportional to job size.

reference to develop heuristics but it is still not practical for
online or large scale uses.

Figure 8a, shows that MILP is capable of placing more
jobs than GREE, and GREE-L for small problem sizes (20
to 40% better acceptance), but the gap asymptotically dis-
appears. We can explain this intuitively by observing that
larger problem sizes, correspond to scenarios in which each
job’s contribution to the overall problem is relatively small,
so the regret of a (potentially wrong) greedy decision is low.
GREE-L performs close to GREE, with slightly lower ac-
ceptance rates due to its focus on lowering preemption.

Figure 8b shows that despite accepting a larger number
of jobs, MILP is capable of finding allocations with substan-
tially less need for preemption, when compared to GREE.
GREE-L on the other hand is capable of closely matching
MILP preemption performance throughout the entire range.
The uniformity results are similar, with GREE-L and MILP
improving on GREE by 20% on average.

Comparing GREE-L and MILP on all these metrics we
conclude that: for large consolidated clusters GREE-L
matches MILP solution quality, while reducing runtime
by up to 5 orders of magnitude. We started investigating
hybrid strategies, that leverage MILP for the large (hard to
place) jobs, and GREE-L for the bulk of small jobs. As of
this writing, the results are not conclusive.
Impact of RDL complexity Next we study the impact of
complex RDL expressions on our placement strategies. We
fix the job count to 100 but progressively change the mix-
ture of jobs between Workload A, B, and C. Placement be-
comes more complex as the percentage of jobs from B and
C increases. As expected, GREE and GREE-L runtimes are
mostly unaffected. MILP runtimes grow sharply and hit 1
hour (an ad-hoc time bound we impose on the solver run-
time) for 20% or more jobs with gang (Workload B) or 10%
or more jobs with dependencies (Workload C). This is due to
a drastic increase in the number of integral variables required
to model the set of RDL expressions (from O(numJobs) to
O(numJobs× timeSteps)). Upon reaching this time limit
the solver returns the best solution found so far (which is
not optimal). For complex workloads MILP solution quality
drops below GREE and GREE-L. This confirms that MILP
is a useful formal tool, but cannot scale to large or complex
problems. For these reasons we use a conservatively tuned
GREE-L for all of our end-to-end experiments.

5.4 End-to-end evaluation
We now turn our attention to evaluating the complete end-to-
end Rayon architecture, running on a 256 machine cluster.

To generate a baseline, we compare Rayon versus the
stock YARN CapacityScheduler (CS). We picked this sched-
uler because it is popular in production environments and be-
cause we are deeply familiar with its configuration and inter-
nals [40]. Note that the relative performance we will demon-
strate against YARN, would likely translate to Mesos if we
were to port our ideas to that infrastructure, as Mesos also
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Figure 9. End-to-end experiment showing: 1) SLA acceptance and fullfillment, 2)Best-effort job throughput, 3) Best-effort
job latency (as delta between approaches), and 4) cluster utilization.

has no notion of time/deadlines, and provides instantaneous
scheduling invariants very similar to YARN’s ones.

In the experiment, we generated jobs at the rate of 5,400
jobs per hour from Workload A (and later add B,C). We con-
figured the baseline CapacityScheduler (CS) assuming per-
fect workload knowledge and manually tuned all queue pa-
rameters following industry best practices (confirmed with
professional hadoop cluster operators). This means that we
leverage a-posteriori knowledge on what jobs will be sub-
mitted to which queue, and assign capacity to queues op-
timally. Succinctly, this contrasts the best static tuning we
could find against the dynamic adaptability of Rayon. De-
tails are provided in our tech report [15].

In contrast, Rayon configuration is basically tuning-free.
We assign a maximum of 70% of the resources to production
jobs, and let Rayon’s dynamic allocation redistribute that as
needed. Best-effort jobs are assigned to queues as in the
baseline. Rayon redistributes all unused resources among
production and best-effort jobs (key to high utilization), and
leverages preemption [40] to rebalance allocations.

We measure the systems under test according to the fol-
lowing metrics, defined over a window of time:
1. SLA acceptance: % of production jobs accepted;
2. SLA fulfillment: % of accepted jobs meeting SLAs;
3. best-effort job completion: the number of best-effort jobs

processed to completion by the system;
4. best-effort job latency: completion latency for best-effort

jobs;
5. cluster utilization: the overall resource occupancy.

Figure 9 shows the results of our experiments compar-
ing Rayon, the CS, and CS running on half of the load
CS(cold) according to the above metrics. CS accepts all jobs
(no knowledge of deadlines) but fails to fulfill the SLA for
over 15% of jobs (still non-zero when running on a fraction
of the load). In contrast, Rayon fulfills 100% of the SLAs
it accepts (more on rejection later). In the meantime, best-
effort jobs throughput is increased by more than 15% and
latency is improved for almost 40% of jobs. To understand
why Rayon outperforms CS we look at rejection rates, clus-
ter utilization, and latency for SLA jobs. Rayon correctly

detects that not all jobs with SLA can be accepted7, and re-
jects about 4% of the jobs (too large to fit by their deadline).
This frees up considerable resources that are leveraged to im-
prove upon the other metrics. Moreover, Rayon leverages our
prior work on preemption [15, 40], and thus achieves overall
higher cluster utilizations 8—again extra resources that we
can dedicate to improve on key metrics. Finally Rayon lever-
ages the fact that SLA jobs do not care about latency to pri-
oritize best-effort jobs when production jobs’ deadlines are
not imminent. This priority inversion leads to a by-design
larger latency for 60% of SLA jobs, and allows best-effort
jobs to be run earlier/ faster, thus improving their latency.
These results are further analyzed in [15].
Impact of Over-reservation In Section 2.1, we discussed
how users can define their RDL expressions. A reason-
able question is “what happens to Rayon’s performance if
users make mistakes while requesting resources?”. In case
of under-reservation the answer is simple: the production
job will run with guaranteed resources up to a point, and
then continue as a best-effort job until completion. Over-
reservation, on the other hand, affects job acceptance. To
measure this we repeat the above experiment, but we sys-
tematically over-reserve by 50% (i.e., each jobs specify in
its RDL expression an amount of work w that is 50% above
its true needs). Due to space limitation we omit the graph,
but observe the following key effects: 1) Rayon rejects more
jobs (11%, up from 4%), 2) SLAs are met for all accepted
jobs, 3) cluster throughput for best-effort jobs improves by
20% (as Rayon backfills with best-effort jobs), and 4) both
SLA and best-effort jobs see improved runtimes. Provided
we have enough best-effort jobs waiting for resources, clus-
ter utilization remains close to 100%. Note that the drop in
acceptance is less than the over-reservation. This is due to
the online nature of our acceptance, and made possible by
the adaptive scheduler, anticipating job and removing reser-
vations for completed jobs.
Handling Mixed Workloads We validate Rayon’s ability
to handle mixed workloads, by repeating the experiments of

7 These rejections, albeit negative, happen at reservation time, which is
much better than unannounced violation of the job’s deadline.
8 In separate tests, we confirmed that preemption alone is not sufficient to
fix the SLA violations of the CapacityScheduler, though it helps to increase
utilization, more details in [15].



the previous section with a mixture of 80% of Workload A,
10% of Workload B, and 10% of Workload C (our best guess
of a likely mixture in consolidated clusters). This introduces
jobs with gang semantics, and inter-job dependencies.

Analyzing these runs, we confirm two key hypothesis: 1)
Giraph jobs from Workload B, gets access to all resources
nearly instantaneously, instead of trickling of resources (as
it happens with CS), and 2) Rayon manages to achieve high
cluster utilization (near 100% after a warm-up phase) even
when tasked with mix workloads9.

6. Related Work
While Rayon draws from a large body of existing work in
both systems and scheduling literature, the decomposition
of the problem and its practical implementation are novel. To
the best of our knowledge, no system handles consolidated
workloads of production and best-effort jobs at high cluster
utilization by explicitly managing allocations over time.

Big-data resource management YARN [40], Corona [2],
Omega [36] and Mesos [24] invite direct comparisons to
Rayon. While we implement Rayon over YARN, we believe
that one could apply planning and reservation techniques to
any of the prenominate systems. As of this writing, none
allocate resources in time. Reservation-time planning cre-
ates opportunities for Rayon unavailable to online sched-
ulers, particularly for gang requirements, workflow alloca-
tions, and admission control for time-based SLAs. Rayon
can provide a substrate to extend invariants— such as fair-
ness and locality [26, 44]— and techniques— such as multi-
resource sharing [10, 22]— over time.

HPC resource management HPC schedulers [4, 37, 39]
cover a complementary space, particularly for gang alloca-
tions of MPI frameworks. Where available, Rayon leverages
fault and preemption tolerance of application frameworks to
place, anticipate, and replan allocations. Parallel efforts in
the big-data space make the same assumption [6, 13, 40].
Fault-tolerance is currently under review for the forthcoming
4.0 MPI standard,[1] but it cannot be assumed by HPC plat-
forms. As a consequence, the isolation guarantees in HPC
clusters are stronger, but at the expense of utilization. Grid
systems like GARA [21] also use reservations to defer al-
location, but Rayon adds support for dependencies and sup-
ports a more abstract language.

Deadlines and predictability Predicting execution times
and deadlines of batch frameworks [19, 20, 41] is largely
complementary to Rayon. These systems do not provide
a declarative language like RDL, neither do they support
gangs, inter-stage dependencies, or multiple frameworks.
Bazaar [28] does not consider preemption in its allocation
of VMs and network resources. Lucier [30] assumes work-
preserving preemption in its allocations, but dependencies
are not explicitly modeled.
9 We visualize all of this further in [15].

Resource definition languages Many declarative languages
for resource definition are input to resource managers. One
early example is IBM JCL. SLURM [42] supports a rich
set of algorithms for inferring job priority and mechanisms
to evict, suspend, and checkpoint jobs based on operator-
configured policies. In contrast, RDL is abstract, its alloca-
tions are fungible, and are not bound to a host until a ten-
ant generates demand. As used in GARA [21], RSVP [45]
and RSL [16] specify particular resources rather than nested
reservations of abstract requirements.

Packing and Covering Prior applications of optimization
techniques to resource allocation inspired our MILP formu-
lation. In particular, work minimizing workload makespan, [7,
23, 31], satisfing deadlines and SLAs [8, 29], and guaran-
teeing latency in mixed workloads [29]. These formulations
explore the theoretical aspects of the problem, but do not
cover all the properties of our workloads.

7. Concluding Remarks
Modern big-data clusters run a diverse mix of production
workflows and best-effort jobs. These have inherently dif-
ferent scheduling needs. In this paper, we make the case for
reservation-based scheduling, an approach that leverages ex-
plicit information about job’s time-varying resource needs,
and completion SLAs, to plan the cluster’s agenda. We make
four key contributions: 1) a declarative reservation definition
language (RDL) to capture such information, 2) a framework
for planning where we characterize the scheduling problem
using an MILP formulation and develop fast, greedy heuris-
tics, 3) adaptive scheduling of cluster resources that follows
the plan while adapting to changing conditions, and 4) a sys-
tem, named Rayon, that integrates the above ideas in a com-
plete architecture. We have implemented Rayon as an exten-
sion to Apache YARN and have released it as part of Apache
Hadoop 2.6. Our experimental results confirm that tempo-
ral planning of the cluster’s agenda enables Rayon to meet
production SLAs, while providing low-latency to best-effort
jobs, and maintaining high-cluster utilization.

Rayon is our first step towards addressing this problem.
Ongoing work in collaboration with the authors of [18], and
[33], is geared towards addressing Rayon’s usability. We are
also exploring more sophisticated planning algorithms, and
economy-based models for resource reservation.
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