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Paris-Sud
Orsay, France

asterios.katsifodimos@inria.fr

Ioana Manolescu
Inria Saclay and Université

Paris-Sud
Orsay, France

ioana.manolescu@inria.fr

ABSTRACT
In content-based publish-subscribe (pub/sub) systems, users ex-
press their interests as queries over a stream of publications. Scal-
ing up content-based pub/sub to very large numbers of subscrip-
tions is challenging: users are interested in low latency, that is, get-
ting subscription results fast, while the pub/sub system provider is
mostly interested in scaling, i.e., being able to serve large numbers
of subscribers, with low computational resources utilization.

We present a novel approach for scalable content-based pub/sub
in the presence of constraints on the available CPU and network re-
sources, implemented within our pub/sub system Delta. We achieve
scalability by off-loading some subscriptions from the pub/sub
server, and leveraging view-based query rewriting to feed these
subscriptions from the data accumulated in others1. Our main con-
tribution is a novel algorithm for organizing views in a multi-level
dissemination network, exploiting view-based rewriting and pow-
erful linear programming capabilities to scale to many views, re-
spect capacity constraints, and minimize latency. The efficiency
and effectiveness of our algorithm are confirmed through extensive
experiments and a large deployment in a WAN.

1. INTRODUCTION
Publish/subscribe (pub/sub, in short) is a popular model for dis-

seminating content to large numbers of distributed subscribers. The
literature distinguishes topic-based pub/sub, where users subscribe
to a set of predefined topics, from content-based pub/sub, where
users express their subscriptions as custom complex-structured
queries on the published data. Topic-based pub/sub offer better
scalability at the expense of subscription expressiveness, while in
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1This can be seen as organizing subscriptions in a dissemination
network where data flows from the source through a network of
subscriptions, similarly to water flow in a river delta.
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more complex systems, the increased expressive power of content-
based pub/sub makes it preferable. For instance, within a large
company ACME, “senior positions representing ACME in Singa-
pore” should be pushed to the senior staff which may be inter-
ested, while “sales seminar in Singapore” interests the sales de-
partment plus the administrative staff that must make the travel ar-
rangements.

Pub/sub subscribers are interested in low latency, that is, getting
all the results to their subscriptions, as soon as possible after the
data is published. The publisher of a pub/sub system faces sev-
eral performance challenges in order to meet subscriber require-
ments. The first is matching published items against the set of sub-
scriptions, a CPU-intensive task. Then, the publisher’s outgoing
bandwidth is another physical limitation, as more and more up-
dates must be sent to the interested subscribers. Third, the speed of
the network connecting the publisher to the subscribers imposes a
lower bound on the dissemination latency.

Both centralized and distributed approaches have been proposed
to address the above issues, while aiming at latency minimization.
The centralized ones [4, 7] mostly rely on efficient filtering algo-
rithms for matching the data against subscriptions. However, for
more expressive and numerous subscriptions, subscription match-
ing remains an onerous task. To this end, distributed pub/sub sys-
tems have been proposed [8, 10, 20, 26], providing solutions for
serving thousands or millions of subscribers with minimum re-
sources utilization and low latency. In most cases, they focus on
distributed filtering and design overlay networks in the form of log-
ical multicast trees. Those trees are formed by specialized nodes,
called brokers, able to efficiently filter and move the data from the
publisher to the subscribers, or by the subscribers themselves. Nev-
ertheless, as the amount of subscribers and data increases, the pub-
lisher’s (or broker’s) resource capacity becomes insufficient.

Problem statement. To overcome the above resource constraints,
we allow the subscribers to take part in the dissemination of data
(i.e. serve other subscribers that have similar interests) in order
to offload the data publisher. Due to their similarity of interests,
the subscribers can form a logical overlay network, over which
subscription results can flow from the data publisher to the sub-
scribers. Since subscribers have to use their resources to serve
others, the problem we consider is how to (i) minimize the total
resource utilization (e.g., CPU and bandwidth), while (ii) keeping
the subscription latency as low as possible, and (iii) respecting the
given resource capacity constraints.

The key idea on which we build our approach is that subscrip-
tions often overlap, completely or partially, when user interests are
close. In such a case, results of several subscriptions can be com-
bined to compute the results of other subscriptions. For instance,
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Figure 1: Sample dissemination networks.

from the subscriptions s1: “open positions in Asia” and s2: “open
positions in Sales”, one can compute s3: “open Sales positions in
Asia” by joining s1 and s2.

Rewriting subscriptions. More formally, a subscription can be
rewritten based on other subscriptions, by filtering their results,
e.g., through classic database selections and projections, combin-
ing them through joins, etc. For instance, rewriting and serving
s3 based on s1 and s2 instead of the publisher, relieves the pub-
lisher from the effort of computing s3 against the published data,
and saves bandwidth between the publisher and the site of s3. At
the same time, rewriting s3 from s1 and s2 incurs computations
to the sites of s1, s2 and/or s3 to evaluate the rewriting, and also
bandwidth consumption from the sites of s1 and s2, to the site of
s3. Notice that if we consider subscriptions as queries (or views),
deciding how to serve a subscription based on others, can be turned
to a problem of view-based query rewriting, which has been exten-
sively studied in the database literature (e.g. [21, 18]).

Multi-level subscriptions. Moving a subscription from being served
directly by the publisher (we call this a level 1 subscription), to
being served from other subscriptions by rewriting (we call this
a level 2, level 3 subscription, etc.), changes the data transfer and
processing paths, with many possible consequences on subscription
latency and resources utilization for data dissemination.

For illustration, Figure 1 shows three possible dissemination net-
works. At left (a), there is only one level and all subscriptions are
filled from the publisher D. The data paths from D to all subscrip-
tions are as short as possible, however all the load is on D. At (b),
the subscription s5 gets its data from s4 instead of the publisher,
while s4 results are computed based on s1 and s2. At (c), only s1
is filled from D, while s2 gets data from s1, s3 from s2, etc. The
load on the publisher is minimal, but the four hops from D to s5,
increase the latency of this subscription.

More generally, dissemination effort decreases at the publisher,
at the expense of subscribers joining this effort. A less-loaded pub-
lisher will likely match data against the rest of the subscriptions
faster, which may reduce the total latency for all the subscriptions.
However, moving a subscription to a higher level lengthens the data
path from the publisher to that subscription, which may increase its
latency. Finally, pushing some processing at the subscribers re-
quire taking into account a new set of capacity constraints, since
subscriber resources should be sparingly used, to keep the respec-
tive sites willing to participate in the system.

Contributions and outline. Given a set S of subscriptions and a
data publisherD, we term configuration a choice for each subscrip-
tion s ∈ S of filling s either (i) directly fromD or (ii) by rewriting
s over some other S subscriptions and thus computing s results
from these other subscriptions’ results. The cost of a configuration
is a weighted sum of the resource utilization and subscription laten-
cies incurred by the configuration. This work makes the following
contributions:

• We show how to model the problem of finding a minimum-
cost configuration under some resource capacity constraints
as a graph problem, related to the known Degree-bounded
Arborescence problem [1], but departing from it through our
interest in minimizing both resource utilization and latency.
As we will explain, resource utilization and latency differ in
fundamental ways, making existing solutions inapplicable in
our setting.

• Based on this insight, we provide a novel two-step algo-
rithm for selecting a configuration. First, we employ an In-
teger Linear Programming (ILP) approach to find a resource
utilization-optimal solution (ignoring latency); second, we
provide a latency optimization algorithm which starts from
the configuration found by the ILP solver and modifies it to
reduce latency.

• We have implemented all our algorithms and performed ex-
tensive experiments, including a deployment of Delta on a
significant-size pub/sub scenario on a WAN. Our experiments
demonstrate the efficiency and effectiveness of our algorithms
and the practical interest of multi-level subscriptions in large
data dissemination networks.

The paper is organized as follows. Section 2 introduces our prob-
lem and presents its graph-based formalization. Section 3 describes
our algorithms for selecting an efficient configuration, based on the
graph models previously introduced. Section 4 details our view-
based approach for rewriting subscriptions based on other subscrip-
tions, given the large number of subscribers. Section 5 describes
our experiments, we then discuss related works and conclude.

2. PROBLEM MODEL
We now describe our multi-level subscription problem model.
LetD denote a data source publishing a set of data items i1, i2, . . .

and S = {s1, s2, . . . , sn} be a finite set of subscriptions, each de-
fined by a query and established on some network site. The seman-
tics of a subscription s defined by query qs and issued at site ns

is that s must receive the results of qs(i) for any data item i pub-
lished by the data source D after s was created. From now on, for
simplicity, whenever possible we will simply use s to denote both
a subscription and the query defining it.

At the core of our work is the observation that it may be possi-
ble to compute results of a subscription out of the results of oth-
ers. We say subscription s can be rewritten based on subscrip-
tions s1, s2, . . . , sk, if there exists a query r, which, evaluated over
the results of s1, s2, . . . , sk, produces exactly the results of sub-
scription s, regardless of the actual data items published by D:
r(s1(D), s2(D), . . . , sk(D)) = s(D) for any D, or more simply,
r(s1, s2, . . . , sk) ≡ s, where ≡ denotes query equivalence.

Subscriptions = views. Observe that we are interested in com-
plete rewritings only, that is, we do not assume that r can rely di-
rectly on the data source, but only on the results of subscriptions
s1, s2, . . . , sk. This is because our goal is to off-load subscriptions
from the data source and serve them from other subscriptions in-
stead. In turn, a subscription s rewritten based on s1, . . . , sk as
above, may be used to rewrite another subscription s′. This shows
that every subscription may be considered as a (materialized) view,
based on which to rewrite the others. Thus, from now on, for con-
ciseness, we will simply use view to designate a subscription.

In the sequel, we introduce the central concepts and data struc-
tures of our work. We define rewritability graphs (RGs) and config-
urations in Section 2.1. Section 2.2 presents the basic metrics we
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Figure 2: Rewritability Graph (RG).

use to gauge the interest of a configuration, namely utilization and
latency, and shows how to incorporate load balancing in the discus-
sion under the form of constraints over the configurations. Based
on these notions, Section 2.3 formalizes our problem statement.

2.1 Rewritability Graph (RG)
A rewritability graph (RG) indicates which views can be rewrit-

ten based on other views. Its simplest representation is an AND-OR
rewritability graph as in, e.g., [11]. For each view v at site s, there
is a corresponding node in the AND-OR graph (if the same v is
declared at n distinct sites s1, s2, . . . sn, there are n corresponding
nodes in the graph). Moreover, for every view set v1, v2, . . . , vk,
based on which v can be equivalently rewritten, there exists a ∧
(AND) node av such that: (i) each of the nodes corresponding to
v1, v2, . . . , vk points to av , and (ii) av points to the v node. If v
can be rewritten based on several view sets, there will be one ∧
node pointing to v for each such rewriting possibility.

A sample RG over seven views is depicted in Figure 2. Each
view can always be evaluated directly from the data sourceD, thus,
for each view v, there is a ∧ node through which D is connected
to v. Further, in Figure 2, v2 and v3 can be used to rewrite v5, as
shown by the lower ∧ node pointing to v5; v3 and v4 can be used
to rewrite v6, etc. Observe that there may be cycles in the RG: v6
can be used to rewrite v7 and vice versa. This entails that v6 and v7
are equivalent.

Formally, given a view set S, an RG is a directed graph, defined
by the pair (V ∪ {D} ∪A,E), such that:

• V ∪ {D} ∪A is the set of nodes:

– For each view si ∈ S, there exists a corresponding
node vi ∈ V .

– D is the node corresponding to the data source.

– A is the set of ∧ nodes, each of which represents a
rewriting of a view s ∈ S based on a set of other views
{s1, s2, . . . , sk} ⊆ S \ {s}.

• E ⊆ ((V ∪{D})×A)∪(A×V ) is the set of directed edges
that connect the graph’s nodes as follows:

– V nodes (as well asD) can only point toA nodes, while
A nodes can only point to V nodes.

– Each node a ∈ A has an indegree of at least one, and
an outdegree equal to one.

– For each view v ∈ V , there exists a ∧ node av ∈ A
such that (i) D → av → v and (ii) D is the only node
pointing to av .

– For each view set {s1, s2, . . . , sk} based on which an-
other view s can be rewritten, there exists a ∧ node
av ∈ A such that the edges (v1, av), (v2, av), . . . ,
(vk, av), (av, v) ∈ E.

Size of RG. The number of nodes in an RG is |V |+ |A|+1 (where
1 corresponds to D). We have |V | = |S|, which is the number of
views (subscriptions). As for the A nodes, there is one for every V
node v, connecting D to v (thus, |S| such A nodes). Moreover, we
have oneA node for every view set that can rewrite a view v. Since
there are |S| − 1 views that can be used to rewrite v (we exclude v
itself), we can have at most 2|S|−1 such A nodes for v. Thus, we
have |A| ≤ |S| × (2|S|−1 + 1).

We now turn to the number of edges. Since by definition the
outdegree of each A node is one, there are |A| edges from A to
V nodes. Furthermore, an A node has at most |S| − 1 incoming
edges (a rewriting can involve at most that many views), leading to
at most |A| × (|S| − 1) edges from V to A nodes. Hence, we have
|E| ≤ |S|2 × (2|S|−1 + 1) ≈ |S|2 × 2|S|.

Clearly, an RG may be very large when there are many views.
Therefore, it is also of interest to develop partial rewritability graphs,
each of which can be seen as the RG from which some∧ nodes (and
their corresponding input and output edges) have been erased.

Configuration (CFG). Given an RG, a configuration (CFG) is a
subgraph of RG encapsulating a concrete choice of how to rewrite
every view v ∈ V . Specifically, in a configuration, only a single
∧ node points to each view. Moreover, there exists a directed path
from D to each view of the RG2.

Formally, given an RG rg = (V ∪ {D} ∪ A,E), a CFG cfg =
(V ∪ {D} ∪A′, E′) is a subgraph of rg such that:

• A′ ⊆ A and E′ ⊆ E;

• for any v ∈ V , there exists exactly one a ∈ A′ such that
a→ v;

• there exists a path from D to any view v ∈ V ;

• for each node a ∈ A′, if edge (vi, a) ∈ E (for each vi ∈ V ),
then (vi, a) ∈ E′.

The last point in the above definition guarantees that when we se-
lect anA node to be included in cfg, we also select all its incoming
edges that constitute the rewriting. Observe that a CFG completely
specifies the paths along which data is disseminated to all the sub-
scribers. Moreover, multiple data dissemination paths starting from
the source D may meet, for instance, when two views v1 and v2,
together, rewrite another view v3.

The number of CFGs which may be derived from an RG is
Πv∈V (in(v)) where in denotes the indegree of a view node. It
follows from the RG size estimations that the upper bound for the
number of CFGs is |S|2|S|

, which is extremely high.

2.2 Characteristics of a Configuration
We now discuss how to quantify the cost of a CFG.
For each rewriting (∧) node in a CFG, there can be several ways

of distributing the effort entailed by the rewriting (typically selec-
tions and joins) across the network nodes in which the views reside.
For example, consider the views v2, v3 and v5 of Figure 2. Assume
that v2 resides on site n2, v3 on n3 and v5 on n5. To join v2 and
v3, they could both be shipped to the site n5 and joined there. Al-
ternatively, v3 could be shipped to n2, the join could be evaluated
at n2 and the results shipped to n5, at a different resources utiliza-
tion. More generally, the utilization incurred by the operations of a
∧ node depend on the operations’ types and ordering, where each
operation runs etc.

Distributed resources utilization. To estimate the resources uti-
lization of a given ∧ node, we quantify the resources (e.g., I/O,
CPU, bandwidth) needed for its execution over the various sites.
2This also guarantees that a configuration is acyclic.
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Let N be the set of network sites on which work can be dis-
tributed (we assume for simplicity N is the set of all the sites
having subscriptions), and k be the number of distinct resources
considered for each site, such as: I/O at that site, CPU, incom-
ing and outgoing bandwidth, etc. Let P∧ be the set of all phys-
ical plans for a given ∧ node. We define the utilization function
u : P∧ → �|N|×k, assigning to each plan p ∈ P∧, the estimated
resources utilization, along different resource dimensions, entailed
by the evaluation of p. Observe that each result of u is a matrix
stating the consumption along each dimension and at each site.

To enable comparing utilizations, we rely on a single utilization
aggregator U : �|N|×k → �, which combines the utilization of
all the different resource components of the sites involved in the
execution of a plan, and returns a single (real) number. The ag-
gregator may for instance sum up all the utilization components,
possibly assigning them various weights depending on the metric
and/or the site involved. In the sequel, for a plan p ∈ P∧, we will
simply write U(p) to denote the scalar aggregation U(u(p)) of p’s
multidimensional utilization.

Finally, for a given ∧ node a ∈ A, we denote by U(a) the small-
est value of U(p), over all the plans p ∈ P∧. Moreover, the utiliza-
tion of a CFG cfg = (V ∪ {D} ∪A′, E′) is:

U(cfg) =
∑
a∈A′

U(a).

Latency. In a CFG, given a data item i and subscription v such
that v(i) 6= ∅, the data dissemination latency of v with respect to
i, denoted λ(v, i), is the time interval between the publication of i
and the moment when v(i) reaches the site of v. In the sequel, we
may simply use λ(v) to denote v’s latency.

Clearly, λ(v) is determined by the paths in CFG followed by the
data that is moving from D to v. Each ∧ node a encountered along
these paths adds to the latency its contribution, which we term local
latency of a. That reflects the delays introduced on the propagation
of data in the rewriting graph, by evaluating that rewriting. For
instance, if the best physical plan for a ∧ node requires shipping
data across the network from n1 to n2 and performing a join at n2,
the local latency of this node will reflect the data transfer and the
processing time in the join. We assume available a local latency
estimation function l, which estimates the local latency introduced
by a. We stress that l(a) characterizes only the operations at the
rewriting node a, and not the behaviour of its input(s).

Given that for every subscription v there is a single ∧ node av
pointing to v (see RG definition, Section 2.1), v’s latency is equal
to the total latency of av (denoted λ(av)), thus λ(v) = λ(av). This
latency can be computed by adding av’s local latency l(av) to the
maximum latency of the subscriptions {vi} that are inputs to av .
Denoting by vi → av the fact that node vi points to av in the RG,
we have:

λ(av) = λ(v) = maxvi→av ({λ(vi)}) + l(av)

Note that the latency ofD is defined as 0. We also define the latency
of a CFG cfg = (V ∪ {D} ∪A′, E′) as follows:

λ(cfg) =
∑
v∈V

λ(v).

Cost. We define the cost of a ∧ node a in a CFG as a linear combi-
nation of its utilization and latency:

C(a) = α× U(a) + β × λ(a)

where α and β are coefficients controlling the importance given
to the utilization and latency. A high α prioritizes solutions of
low utilization, incurring a low consumption of resources across
the network, while a high β prefers solutions having a low latency,
favoring quick dissemination of data to the subscribers. Finally, we
define the cost of a CFG cfg = (V ∪ {D} ∪A′, E′):

C(cfg) =
∑
a∈A′

C(a).

Constraints. In practice, resources such as CPU, memory, incom-
ing and outgoing network bandwidth, are limited on each site. This
has to be taken into account when deciding whether to use a view
v1 to feed another view v2 with data, since doing so incurs some
consumption of resources on the site of v1: such resource consump-
tion should be kept within the capacity limits. Each site may have
different such capacity constraints, according, for instance, to its
specific infrastructure or available bandwidth.

We make the simplifying assumption that there is a single view
published in each network site. We model capacity constraints by
a single integer Bout

v , which is the maximum number of views that
can be served by v (and which coincides with the maximum number
of views served by a network site, since there is one view per site),
and design our algorithms to operate within these constraints. This
can be easily extended to more (and more complex) constraints.

2.3 Problem Statement
Given an RG rg = (V ∪{D}∪A,E), a cost function C, a limit

Bout
v for each v ∈ V , as well as a limit Bout

D for the data source,
the problem we address is to find a CFG cfg = (V ∪{D}∪A′, E′),
such that:

1. Capacity constraints are respected:
∀v ∈ V ∪ {D}, out(v) ≤ Bout

v

where out(v) denotes the outdegree of node v in the CFG;
2. The cost of CFG C(cfg) is minimized.

3. CONFIGURATION SELECTION
We now describe our approach for selecting a low-cost config-

uration. We start by discussing RG construction in Section 3.1.
Section 3.2 provides an overview of the CFG selection, a two-
step process described in detail in Section 3.3 and 3.4, respec-
tively. Section 3.5 shows how we treat with CFG updates (view
addition/removal).

3.1 Rewritability Graph Generation
Given a set of views, we show how to construct the correspond-

ing RG, modelling the ways to rewrite views based on other views.

Naive RG generation. Assume we initially create a graph that con-
tains the nodes (V ∪ {D}), as well as the ∧ nodes that are needed
to connect D with each view v ∈ V (along with the corresponding
edges). Based on this graph, the most direct way of building the
RG is by calling the view-based rewriting algorithm exhaustively,
and adding, each time a rewriting is found, the corresponding ∧
nodes and edges. This simple method requires calling the rewriting
algorithm |V | times, using each time |V |−1 views. Given the typ-
ically high complexity of view-based query rewriting algorithms,
this method is unlikely to scale to large problems. Moreover, even
if we optimize the calls to the rewriting algorithm (e.g., by reducing
the number of views we use as input each time, as discussed in Sec-
tion 4), the resulting complete RG is usually too dense, hampering
in turn the process of choosing a CFG from RG.

Partial RG generation. In the interest of efficiency, one can limit
the search performed during each call to the rewriting algorithm to
at most k rewritings. In other words, we only consider the first (at
most) k alternative ways we find to rewrite a given query. Clearly,
the internals of the rewriting algorithm affect the order in which
rewritings are explored and, thus, the first k rewritings found; we
will revisit this issue in Section 4. Algorithm 1 outlines the con-
struction of the partial RG, obtained through this limited explo-
ration of rewritings. When a view cannot be rewritten based on the
others, Algorithm 1 connects it directly to the data source D.
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Algorithm 1: Partial RG Generation
Input : View set V , maximum number k of rewritings per view
Output: RG of V with at most k rewritings per view
// RG initially contains only V and D

1 A← ∅, E ← ∅, G← (V ∪ {D} ∪A,E)
2 foreach v ∈ V do
3 rewrNo← 0
4 while hasNextRewriting(v, V \ {v}) and (rewrNo < k) do

// Get next rewriting
5 rw ← nextRewriting(v, V \ {v})
6 A← A ∪ {rw} // Add rewriting (∧) node rw
7 E ← E ∪ {(ui, rw)}, ∀ui ∈ rw // Add edges to rw
8 E ← E ∪ {(rw, v)} // Add edges to v
9 rewrNo++

// All views are also fed by D
10 E ← E ∪ {(D, u)}, ∀u ∈ V
11 return G

3.2 Configuration Selection Overview
We now turn to the problem of selecting out of a (possibly par-

tial) RG, a CFG that minimizes the cost as a weighted sum of uti-
lization and latency, under capacity constraints (as per our problem
statement in Section 2.3).

Complexity and relationship with known problems. We now
discuss how our problem relates to already studied graph problems.

First, consider resources utilization optimization alone, that is,
ignore the latency and capacity constraints. This simplified prob-
lem can be solved in linear time, by selecting for each view v in an
RG, the lowest resources utilization ∧ node pointing to v, together
with the corresponding edge and the ∧ node’s incoming edges.

Now assume given bounds on the number of views that can be
fed (i) from D and (ii) from each view, and consider the problem
of finding a CFG that respects these capacity constraints, without
considering the cost. This version of the problem is more complex
than the previous one, as choosing ∧ nodes is no longer a local
decision for each view v in the RG: selecting an ∧ node can break
the capacity constraints of any of the nodes that are serving it.

This last problem of selecting a CFG under capacity constraints
is largely connected to the problem of finding a Degree-bounded
Arborescence (DBA, for short) in a given graph. An arborescence
is a spanning tree of a directed graph rooted at a given root node.
Finding a DBA is NP-hard [1]; the NP-hardness is due to the fact
that, in order to respect the degree bounds, the edge-selection deci-
sions cannot be local. We have shown that the DBA problem can
be reduced in polynomial time to finding a capacity-constrained
CFG, which is already a specialization of the general problem we
consider (Section 2.3), since it does not take into account the cost.
This leads us to the following proposition:

PROPOSITION 3.1. Finding a minimum-cost CFG under capac-
ity constraints is NP-hard.

The proof is given in the extended version of this paper [14].
Importantly, the latest effective techniques for solving DBA and

even more general network design problems, rely on solving linear
relaxations of Integer Linear Programs [17]. The idea is to use one
boolean variable xi to encode whether a node (or edge) is part of the
solution, and to formulate the total utilization (objective function)
as a weighted sum of all the variables, with the weights being the
respective node (or edge) utilizations. Such an ILP formulation
can be handed to an ILP solver, which takes advantage of advanced
techniques that enable it to solve large-size problems corresponding
in our context to many views and many rewritings.

Two-steps optimization approach. Although our problem (Sec-
tion 2.3) is naturally expressed as an ILP when one considers ca-

pacity constraints and optimizes for utilization (ignoring latency),
and can thus be delegated to an ILP solver, it turns out that one
cannot rely on an ILP solver to also reduce latency (as explained
in Section 3.3). Thus, our approach for addressing the problem is
organized in two steps:

1. Formulate our optimization problem considering utilization
and constraints only as an ILP and delegate it to an efficient
ILP solver. We describe this next in Section 3.3.

2. Post-process the utilization-optimal configuration returned by
the solver (if one exists under the given constraints) to reduce
latency in a heuristic fashion, as described in Section 3.4.

3.3 CFG Utilization Optimization With ILP
Integer Linear programming (ILP) is a well-explored branch of

mathematical optimizations. A wide class of problems can be ex-
pressed as: given a set of linear inequality constraints over a set
of variables, find value assignments for the variables, such that a
target expression on these variables is minimized. Such problems
can be tackled by dedicated ILP solvers, some of which are by now
extremely efficient, benefiting from many years of research and de-
velopment efforts. Inspired by the model for directed graphs of [17]
(with some changes), we formulate our problem as an Integer Lin-
ear Program as follows.

Variables. For each node n ∈ V ∪ {D} ∪ A, we denote by Ein
n

and Eout
n the sets of its incoming and respectively outgoing edges.

Selecting a CFG amounts to selecting one way to compute each
view, which is equivalent to selecting for each view v, one of the ∧
nodes pointing to v, or, equivalently, one edge from Ein

v . Thus, for
each v ∈ V and e ∈ Ein

v , we introduce a variable xe, taking values
in the set {0, 1}, denoting whether or not e is part of the CFG.

Coefficients. Our problem model attached rewriting evaluation uti-
lization to the rewriting nodes, through the utilization function U
returning for each ∧ node a ∈ A, the associated utilization U(a)
which aggregates various types of utilizations (CPU, I/O, network,
etc.) Further, as explained in Section 2.2, U(a) is the smallest
over the utilizations of all physical plans that could be used for
this rewriting. To simplify the presentation, and since there is a
bijection between A, the set of ∧ node sets, and the set of edges
entering view nodes, namely ∪v∈V E

in
v , we move the utilization

of each rewriting, to the edge going from the rewriting ∧ node, to
the corresponding rewritten view. The other edges, in particular all
those entering ∧ nodes, are assumed to have zero utilization. Thus,
for each rewriting node a ∈ A and edge e ∈ Eout

a (recall that
Eout

a = {e}, that is, each a node has exactly one outgoing edge),
we denote by Ue the utilization U(a). Our final ingredient is the
Bout

v bounds on the views fan-out, introduced in Section 2.2.

Putting it all together. Our problem’s ILP statement is given in
Table 1. Equation (1) states that each xe variable takes values in
{0, 1}, (2) ensures that every view is fed exactly by one rewriting,
(3) states that if the (only) outgoing edge of a ∧ node is selected, all
of its inputs are selected as well, and finally (4) ensures the respect
of the Bout

v constraint.

ILP example. Consider the RG shown at the top of Figure 3, where
for illustration we have added to each ∧ node leading to the view
vi, the subscript i and a superscript j with j = 0, 1, . . .. For each
edge (n,m) in the RG, where n and m are two RG nodes, we
introduce a variable xn→m stating whether that edge is part of the
chosen configuration. For simplicity, for each node ∧j

i pointing to
the view vi, we write xji instead of x∧j

i→vi
. Thus, xji is a boolean

variable whose value 1 indicates that the view vi is filled by its
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Minimize: U =
∑
e∈E

Uexe

subject to:

xe ∈ {0, 1} ∀e ∈ E (1)∑
e∈Ein

v

xe = 1 ∀v ∈ V (2)

∑
e∈Ein

a

xe = xEout
a
× |Ein

a | ∀a ∈ A (3)

∑
e∈Eout

v

xe ≤ Bout
v ∀v ∈ V ∪ {D} (4)

Table 1: Utilization optimization problem as an ILP.

rewriting ∧j
i . Moreover, for each ∧j

i , let cji be the utilization of the
processing incurred by that rewriting.

The linear program whose solution is a minimum-utilization CFG
for this graph is shown in the lower part of Figure 3. Equation num-
bers at the left refer to the generic equations in Table 1.

Non-linearity of latency. Still on the RG in Figure 3, we now turn
to quantifying the latency of each view. Let lji be the latency of
each rewriting ∧j

i ; for simplicity we include therein the impact of
all the transfers and processing incurred by the rewriting.

We consider that D implements an efficient algorithm allowing
it to match simultaneously all the subscriptions it serves, against
each newly published document. This is the case in state-of-the-
art algorithms such as [7], and also in our simpler implementation.
Thus, the latency component that is due to subscription matching
at D (as opposed to latency incurred by shipping data from D and
possibly further processing and shipping of data) is the same for all
views, and we ignore it without loss of generality.

Applying our formulas defining latency, we obtain λ(v2) = l02,
λ(v3) = l03, since v2 and v3 are fed directly from the publisher.
Since v1 can be fed either through ∧0

1 or ∧1
1, its latency is:

λ(v1) = x01l
0
1 + x11(l11 +max(λ(v2), λ(v3))) =

x01l
0
1 + x11(l11 +max(l02, l

0
3))

Similarly, given that v3 can be fed through three different ∧ nodes,
we have:

λ(v4) = x04l
0
4 + x14(l14 +max(λ(v2), λ(v3)) + x24(l24 + λ(v1)) =

x04l
0
4+x14(l14+max(l02, l

0
3))+x24(l24+x01l

0
1+x11(l11+max(l02, l

0
3)))

Observe that the above expression unfolds into a sum having
among its terms x24x01l01 and x24x11l11, which is non-linear in the
problem’s variables xji ; in contrast, the latencies of v1, v2 and v3
are linear combination of these variables. As a consequence, in
these examples and in general, configuration latency cannot be
pushed into the ILP objective function, which only admits linear
combinations of variables.

The intuition behind this non-linear behavior is easy to trace on
the RG in Figure 3. The variables which end up multiplied corre-
spond to paths of length 2, leading to v4 through v1. If x01 = x24 =
1, v1 is fed from the source and v4 from v1. If x11 = x24 = 1, v1
is fed from v2 and v3 and v4 from v1. The multiplication of vari-
ables corresponds to the logical conjunction of the edge selection
decisions they correspond to.

Concluding this discussion, we will rely on ILP to solve effi-
ciently and exactly the utilization optimization problem, and reduce
in a second step the latency of the configuration thus obtained.

D

∧0
1

∧0
2

∧0
3

∧0
4

v1

v2

v3 ∧1
4

∧2
4

∧1
1

v4

Minimize: U0
1x

0
1 +U1

1x
1
1 +U0

2x
0
2 +U0

3x
0
3 +U0

4x
0
4 +U1

4x
1
4 +U2

4x
2
4

subject to:
eq.(1) xji ∈ {0, 1}, ∀i, j
eq.(2) x01 + x11 = 1; x02 = 1; x03 = 1; x04 + x14 + x24 = 1;
eq.(3) xD→∧0

1
= x01; xD→∧0

2
= x02; xD→∧0

3
= x03;

xD→∧0
4

= x04; xv1→∧2
4

= x24;
xv2→∧1

1
+ xv3→∧1

1
= 2x11; xv2→∧1

4
+ xv3→∧1

4
= 2x14;

eq.(4) xv1→∧2
4
≤ Bout

v1 ; xv2→∧1
1

+ xv2→∧1
4
≤ Bout

v2 ;
xv3→∧1

1
+ xv3→∧1

4
≤ Bout

v3 ;
xD→∧0

1
+ xD→∧0

2
+ xD→∧0

3
+ xD→∧0

4
≤ Bout

D ;

Figure 3: Sample RG and corresponding ILP model.

3.4 CFG Latency Optimization
In this second stage, we seek to improve the latency of the CFG

obtained by solving the LP problem (corresponding to the utiliza-
tion minimization under constraints), by incremental changes on
this CFG. We start by introducing a helper notion:

Impact of a view on CFG latency. Given a CFG cfg, we define
the impact of a view v, denoted by I(v), as an estimation of v’s
impact on the latency of all of the views that are fed with data by
v, directly or indirectly. Formally:

I(v) = λ(v)× |nodes of rg reachable from v|

In the above, we consider that any rg node reachable from v is po-
tentially impacted by the latency introduced by v, and, thus, mul-
tiply v’s latency by the number of such nodes. We also define the
impact of a rewriting rwv pointing to view v to be equal to the
impact of v: I(rwv) = I(v).

The LOGA algorithm. We have devised a Latency Optimization
Greedy Algorithm (LOGA, in short), given in Algorithm 2, which
incrementally tries to improve the latency of a CFG cfg obtained
from an RG rg. The algorithm uses the original rg in order to
replace a rewriting in cfg with another one that leads to a CFG
with a globally smaller latency. It initially orders the rewritings
of cfg in descending order of impact, and then tries to replace first
the rewritings with the biggest impact. Such replacements are made
(i) without violating the Bout bounds, and (ii) without assigning
views again to D, since the goal of our work is precisely to spread
the data dissemination work.

Incremental re-computation of latency. As explained above, a
change in the latency of a view v in a CFG cfg might affect the la-
tency of every view in cfg accessible from v. Therefore, when the
latency of v changes as a consequence of a replacement, LOGA per-
forms a traversal in topological order of the cfg sub-DAG rooted
at v, to recompute the latency only of the affected views.

Recomputing impact of views. As the CFG changes through rewrit-
ing replacements, the number of nodes reachable from any given
view node v must be recomputed. This number is needed in order
to update the impact I(v), at line 5 of Algorithm 2. The number of
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Algorithm 2: Latency Optimization Greedy Algorithm (LOGA)
Input : CFG cfg, RG rg
Output: Latency optimized version of cfg

1 newLat← λ(cfg)
2 repeat
3 prevLat← λ(cfg)
4 rwList← {rw ∈ cfg | 6 ∃ edge (D, rw)}
5 rwList← reorder(rwList) in desc. order of interest I(rw)
6 foreach rw ∈ rwList do
7 minLat← λ(cfg); bestrw ← null

// Replace rw with its latency-optimal
alternative (if any)

8 foreach rw′ ∈ rg s.t. rw, rw′ feed the same view do
9 replace rw with rw′ in cfg

10 if (∀v ∈ cfg, outdegree(v) ≤ Bout
v ) and

(λ(cfg) < minLat) then
11 minLat← λ(cfg)
12 bestrw ← rw′

13 replace rw′ with rw in cfg // leave cfg intact

14 if bestrw 6= null then
15 replace rw with bestrw in cfg
16 newLat← λ(cfg)

17 until prevLat = newLat
18 return cfg

nodes reachable from v is determined by the rewriting opportuni-
ties, which in turn depend on the actual views etc. In the worst case
this may require a costly traversal of the whole CFG, however, as
our experiments show (Section 5), much fewer nodes are traversed
and thus this operation is not expensive in practice.

3.5 Incremental CFG Computation
Adding a new view v to an existing configuration cfg, goes as

follows: we compute v’s rewritings and add them to the existing
RG. We then search the RG for a rewriting rw with the least cost
C(rw) such that no bounds are violated in cfg. If such a rewrit-
ing rw exists, we add it to cfg; otherwise, v is assigned to the
data source. After a certain number of new subscriptions have been
added, or when the data source’s are been reached, the solver and
LOGA are re-invoked and a full CFG selection takes place.

When a subscription v is withdrawn or its site fails, the views
depending on v, that is those to whose cfg rewritings v contributes,
are treated as new and the above incremental process is followed for
each of them.

4. VIEW-BASED REWRITING
We now describe the view-based rewriting framework underly-

ing Delta. Section 4.1 presents some preliminary notions on views
and rewritings, whereas Section 4.2 describes an auxiliary struc-
ture, the embedding graph, which is used for building the RG.
Then, Section 4.3 presents our algorithm for efficiently rewriting
a subscription (view) based on the others. Its novelty resides in its
capability to produce a specified number of solutions, crucial in our
setting where not all rewriting opportunities are explored. Finally,
Section 4.4 discusses how other view-based rewriting algorithms
could be substituted to ours, to port the Delta architecture in other
distributed dissemination contexts.

4.1 Views and Rewritings
Since our target applications concern the dissemination of struc-

tured text news, and in order to leverage our previous system de-
velopment [15, 18], we built our system for disseminating XML
documents to a network of subscriptions expressed in a rich flavor
of XML queries.

news

item

topic

’ACME’

headlinecont

authorval

Each view is defined by a tree pat-
tern query, where nodes are labeled
with XML element or attribute names,
while edges encode parent-child (sin-
gle) or ancestor-descendant (double)
relationships. Unlike XPath 1.0, and
close to XPath 2.0 and to simple
XQuery for-let-where-return (FLWR)

expressions, our tree patterns may return content from multiple
nodes. For instance, the subscription at left requests the author
and headline of all published news about company “ACME”. Ob-
serve that the subscription requires the XPath text value (denoted
val) of the author, while for each matching headline, the complete
XML subtree rooted at the 〈headline〉 element is returned (denoted
cont). Finally, each pattern node can be annotated with the token
ID, denoting that the identifiers of XML nodes matching this pat-
tern node are part of the pattern query result.

Node IDs are implemented by virtually all efficient XML en-
gines. Therefore, we include IDs in our views, since, as we have
shown in [16], view joins based on such IDs may lead to very effi-
cient rewritings. As a simple example, consider the query q defined
as //a[//c]//b and the views v1 = //a, v2 = //aID[//c] and
v3 = //aID//b, where v2 and v3 store IDs for the a nodes. One
can rewrite q as v2 ./a.ID v3, or alternatively as v1[//c]//b. The
former is likely to be much more efficient than the latter, because
v2 and v3 are more selective than v1, especially if few a elements
have b and/or c descendants.

The full tree pattern language is described in [18], which also
provides an equivalent view-based rewriting algorithm for this lan-
guage. Unsurprisingly, this algorithm has high complexity, there-
fore, it is not applicable in a setting like ours with a very large
numbers of views. Therefore, we consider here a sub-language
of the one considered in [16, 18], that is, we assume all nodes are
annotated with ID. Moreover, to increase the possibilities of view-
based rewriting, we assume IDs are structural: by comparing two
node IDs one can decide if the node corresponding to the one is a
parent/ancestor of the node corresponding to the other. Node IDs
are invisible to the user; they are added by the system to the user-
issued tree patterns. Storing IDs in subscription data brings a space
overhead, but not a very significant one, especially if one relies on
space-efficient encodings of such views [28]. Restricting the view
language to endow all nodes with ID reduces view-based rewriting
to a set-cover problem, as we explain shortly below.

View embedding. It has been shown [18, 25] that a tree pattern
view v may participate in an equivalent rewriting of another tree
pattern view q only if there exists an embedding φ : v → q re-
specting (1) node labels, i.e., for any node n ∈ v, label(n) =
label(φ(n)), and (2) structural relationships between nodes, that
is, for any two nodes n,m ∈ v, if n is a /-child (resp., //-child)
of m, then φ(n) is a /-child (resp., descendant) of φ(m). Finally,
φ must not contradict value predicates from the query, i.e., for any
node n ∈ v, such thatm = φ(n) ∈ q, ifm is annotated with predi-
cate [val = c1] for some constant c1, then n must not be annotated
with predicate [val = c2] for some constant c2 6= c1. It follows
readily from the above properties of embeddings that:

COROLLARY 4.1. If a view v embeds into a query q, the labels
of v are a subset of the labels of q.

View coverage. We say that a set of views V covers a given view
q, iff, for every attribute att of a node nq ∈ q, there exists a node
nv belonging to a view v ∈ V and an embedding φ : v → q such
that φ(nv) = nq and nv is also annotated with att. We call such a
view set V an embedded attribute set cover (EAC) for q.
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v1

//aID//bID,cont

v2

//aID,cont//bID,cont

v3

//aID,cont

∧

∧

Figure 4: Superposed EG and RG over three views.

If we restrict the rewriting algorithm [18] to the case when all
view nodes are annotated with ID, it can be shown that the ex-
istence of an EAC V for q is a necessary and sufficient condition
for an equivalent rewriting of q based on V to exist. Indeed, given
an EAC V for q, the rewriting can be built using structural joins
(based on the node IDs) between all the involved views, and adding
all required structural predicates (imposing structural relationships
present in the query but not in the views), as well as possible value
selection predicates still needed. We formalize this as follows:

PROPOSITION 4.1. A query q can be equivalently rewritten based
on a set of views V , iff V is an EAC for q.

Observe that such a rewriting may be non-minimal; we revisit
this issue in Section 4.3.

4.2 Embedding Graph (EG)
Given a view set V , in order to build the corresponding RG, we

must solve |V | view-based rewriting problems, one for each view
based on the others. To speed up the rewriting process, we can
exploit Proposition 4.1 to attempt to rewrite a given view v, only
using those views that embed into v. Thus, we are interested in
all view pairs (v1, v2) such that v1 embeds into v2. We encode
this embedding information in an embedding graph (EG, in short),
which is a directed graph having a node for each view v ∈ V and
an edge (v1, v2), with v1, v2 ∈ V , iff v1 embeds in v2. Figure 4
depicts a sample EG (view nodes, dotted edges), along with the
corresponding RG (view and ∧ nodes, solid and dashed edges).
Next to each view node, we give its view definition. For instance,
v3 embeds in v1 and v2 (as shown by the dotted edges).

Testing whether v embeds into v′ takes at most |v| × |v′| oper-
ations [18], leading to a total complexity of O(|V |2 × |v|2max) for
creating the EG, where |v|max is the size of the largest view in V .
Such tests may get quite expensive for large V sets.

To improve performance, we pre-filter views, based on Corol-
lary 4.1: for v to embed into v′, the labels of v must be among
the labels of v′. We organize the view definitions in a prefix trie
specifically designed to support subset queries [12]. Using this trie,
given a view v, we can efficiently identify all the views ui such that
labels(ui) ⊆ labels(v).

Algorithm 3 shows how to construct an EG given a set of views
V . The algorithm starts by constructing a trie as explained above.
Then, it uses the trie as an index to efficiently build the EG: for a
given view v, the trie returns all views whose labels are a subset of
v’s labels. Only the views thus obtained are tested for embedding
into v. Since our pre-filtering has no false negative, Algorithm 3
generates the complete EG.

EG cycles and their consequences. It is possible for two views
to embed into each other, as for example v1 and v2 in Figure 4,
leading to cycles in the EG. In some cases, cycles in the EG lead
to cycles in the RG. For instance, in Figure 4, although the EG cy-
cle between v1 and v2 does not directly translate to an RG cycle,
view v3 enables some additional rewritings (such as the one repre-
sented by the upper ∧ node), and in turn these lead to an RG cycle
(involving v1, v2 and the two ∧ edges).

Algorithm 3: Trie-based EG Construction Algorithm
Input : View set V
Output: EG of V

1 E ← ∅; EG← (V,E) // Initially empty edge set
2 T ← createTrie(V ) // Create the trie for V
3 foreach v ∈ V do

//Retrieve from T all u s.t. labels(u) ⊆ labels(v)
and add edges corresponding to embeddings

4 foreach u ∈ {T.lookUp(v)} do
5 if u embeds into v then E ← E ∪ {(u, v)}

6 return EG

Algorithm 4: Cover-based greedy rewriting (CGR)
Input : View v, EG eg = (Veg , Eeg), max. number k of rewritings
Output: List with at most k rewritings of v based on the views of eg
// Get from eg all views embeddable in v

1 V ← {ui | (ui, v) ∈ Eeg}
2 rwList← ∅ // List with rewritings for v
3 visited← ∅ // Set of already visited EACs

4 if ∃ attribute att ∈ v, not covered by any u ∈ V then return ∅
5 crtEAC ← ∅ // Current EAC view set
6 backtrackFindEAC(v, V, crtEAC)
7 return rwList

8 Procedure backtrackFindEAC(v, V, crtEAC)
9 if crtEAC covers all v’s attributes and crtEAC /∈ visited then

10 visited← visited ∪ {crtEAC}
// Get rewriting from EAC and add to rwList

11 rwList.add(EACtoRw(crtEAC))
12 if (rwList.size = k) then return

// Get views not yet used in crtEAC
13 remainV iews← V \ crtEAC
14 if remainV iews = ∅ then return
15 remainV iews← sort(altV iews) in desc. order of interest i
16 foreach valt ∈ altV iews do
17 crtEAC ← crtEAC ∪ {valt}

backtrackFindEAC(v, V, crtEAC)
18 crtEAC ← crtEAC \ {valt}

RGs featuring such cycles pose an issue since the ILP solver may
return a CFG with cycles, e.g., feeding v1 from v2 and v2 from v1
in this example, without using the publisher D at all. Such CFGs
do not make sense from the application perspective, since the data
path feeding each view must start at the publisher D.

It can be shown that an RG has cycles only if the EG it has been
built from had cycles. To avoid RGs (and CFG) cycles, we break
EG cycles using the cycle removal algorithm [9].

4.3 View-based Rewriting Algorithm
We now describe our rewriting algorithm (Algorithm 4). As

stated in Proposition 4.1, to find rewritings of v it suffices to find all
embedded attribute set covers (EACs) of v, and to build an efficient
rewriting from each such EAC.

The novelty of our algorithm is that it generates solutions incre-
mentally on-demand, a useful feature given that we only consider
k alternative rewritings for each subscription (recall Section 3.1).
Since some rewritings may never be developed, Algorithm 4 strives
to develop the most promising rewritings first, that is those whose
evaluation utilization is likely to be low. This is done by ordering
candidate views in decreasing order of their interest w.r.t. rewriting
(covering) a given view v: the more v attributes currently uncov-
ered by a partial rewriting are covered by a view v′, the more inter-
esting it is to add v′ to (join it with) the respective partial rewriting.
Clearly, as views are added to the rewriting, view interests have to
be recomputed. The algorithm is based on depth-first exploration
and backtracks to move from one rewriting to the next one.
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View Set Metric Value
Number of views (unique) 100,000
Avg. number of predicates per view 0.72
Avg. number of predicates per node 0.11
Avg. number of nodes per view 6.13
Avg. number of return nodes per view 2.52
EG Metric Value
Number of edges 10,592,053
Number of edges deleted to remove cycles 18,665
% of views in which at least one view is embedded 99.95
Generation time (sec) 452
RG Metric Value
Number of rewritings (∧ nodes) 2,692,139
Number of edges 8,589,822
Generation time (sec) 127
Views rewritten by other views 94,835
Avg. number of views used in a rewriting 2.15
Avg. |Eout| 57.9

Table 2: Experiment settings and EG/RG statistics.

First, the algorithm uses the EG to retrieve the view set V con-
taining only the views embeddable in v. The EAC exploration starts
with an empty EAC, and at each point the highest-interest view not
already in the current EAC is added to it. We compute the interest
of adding a candidate view u to the EAC, given that a subset of V
has already been selected, by counting how many attributes of v
not covered by the EAC views, are covered by the candidate u.

For example, when rewriting view v /aID,cont/bID,cont and
considering a candidate view u1 = /aID/bID,cont, the interest
of u1 is 3, since u1 covers the attribute ID in two nodes of v as
well as b.cont. Once u1 is selected, the interest of another candi-
date view u2 = /aID,cont/bID is 1, since the only attribute of v
not previously covered by u1 and covered by u2 is a.cont. When
several views have the same interest, the tie is broken by picking
the one that covers attributes from the largest number of v nodes.
Once an EAC for v is found, we transform it to a rewriting expres-
sion and add it to the list of rewriting solutions.

In the worst case, Algorithm 4 will develop all subsets of V .
However, in practice, since we only seek k rewritings, the number
is typically much less, as we verified through our experiments.

Rewriting minimization. Algorithm 4 may generate rewritings
which include redundant views. These views may be removed
from the rewriting while leaving it still equivalent to the target
view. Non-minimality is due to the greedy nature of Algorithm 4:
after a view u was included in a rewriting, another set of views
{u1, u2, . . . , uk} may be added such that, together, the views in
the set cover all attributes that u was selected for. This makes u re-
dundant although it was not when initially added. To build efficient
(non-redundant) rewritings, we minimize them in a post-processing
fashion as in [25]: remove a random view from a non-minimal
rewriting, then check if this has compromised the rewriting. If yes,
the view is put back in the rewriting, another view is removed, etc.

4.4 Generality of our Approach
The core concepts and framework of Delta, discussed in Sec-

tion 2, are independent of the concrete underlying data model, query
language and query rewriting algorithm. While Delta is currently
implemented and deployed for XML subscriptions, it can be eas-
ily adapted to another data model and subscription language. We
briefly discuss the rewriting-related components needed to do so.

First, an algorithm for equivalent view-based query rewriting is
needed, such as proposed in the literature, e.g., for relational [21]
or XML data [25, 18]. In particular, the set-cover-based algorithm
described above can be used as-is if we model subscriptions sim-
ply as key-value pairs, e.g., “topic=sport and location=England”,
as considered in many publish-subscribe data management settings

Bout 30 50 100 ∞
% rewritten views 94.3 94.7 94.7 94.7
CFG utiliz. (×1013) 3.49 3.32 3.31 3.13
Avg. views per rewriting 1.77 1.78 1.79 1.8

Table 3: Impact of Bout on the selected CFGs.

(e.g., [4]). We rely on this algorithm to build the RG.
Second, while building the EG is optional, for many-view set-

tings it is likely to significantly improve performance, by limiting
the view set input to the rewriting algorithm. The embedding cri-
terium we used to build the EG has natural counterparts in other
data models, e.g., the classical containment mappings [3]. If these
are not implemented or their computational cost is high, the EG can
be approximated using any non-lossy pruning. For instance, if one
considers relational queries as subscriptions, we could add an edge
(v1, v2) in the EG as soon as the tables in v1 are a subset of those in
v2, and for each table, the constants used in selections on that table
in v1 are used in selections over the same tables in v2.

5. EXPERIMENTAL EVALUATION
In this Section we present the experimental evaluation of our sys-

tem. We describe our setup in Section 5.1, and discuss the con-
struction of EGs and RGs in Section 5.2. Section 5.3 studies the
utilization-based selection of CFGs through ILP, while Section 5.4
discusses how to improve the latency of such CFGs. Finally, Sec-
tion 5.5 presents the deployment of Delta in a wide area network.

5.1 Experimental Setup
We implemented all our algorithms in Java, except for the uti-

lization based CFG selection algorithm (Section 3.3), for which we
made use of the Gurobi ILP solver [29].

We relied on YFilter [7] to generate our views, based on the
XMark DTD [23]. We generated a view set of 100,000 unique
views3, the characteristics of which are shown in Table 2. We opted
for unique views in order to examine the scalability and efficiency
of our algorithms in the absence of trivial rewritings (where equiv-
alent views rewrite one another) and force our utilization and la-
tency optimizations algorithms to consider more complicated CFGs
(rather than chains of equivalent views that can be easily optimized).
All our experiments ran on an 8-core server (2 CPUs, Intel Xeon
@2.93GHz), with 16GBs of RAM and running CentOS Linux 6.4.

5.2 EG and RG Generation
We have generated the EG using Algorithm 3, then removed cy-

cles from it, and finally generated the RG using Algorithm 4. Algo-
rithm 4 was instructed to generate no more than k = 30 rewritings
for each view. The sizes and generation times for the EG and RG
appear respectively in the middle and bottom of Table 2. Every
time Algorithm 4 finds a rewriting, we create the corresponding ∧
node, with an outgoing edge toward the rewritten view, and with an
incoming edge from each view used in the rewriting. Table 2 shows
that the number of rewritings (and thus, the size of the unrestricted
RG) is very high, more than 2.5 millions.

5.3 CFG Utilization Optimization with ILP
We have set the upper bound of the data source as Bout

D =
6, 198, that is, the number of views that cannot be rewritten by
other views (see Table 2) plus a 20% margin. We did this in order
to push to the data sourceD the least possible load, while giving the
ILP solver some margin to assign some extra views toD if needed.
We have also set a commonBout = {30, 50, 100,∞} for all views
(to see the effect of bounds on the shape of the resulting CFGs).
3We provide more experiments with a view set containing non-
unique views in [14].
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Figure 5: Latency reduction while running LOGA.
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Figure 6: Distribution of views across CFG levels.

The Gurobi solver was then used to select utilization-optimal
CFGs. A first observation was that the running time decreases as
Bout increases, from about four minutes forBout = 30 to less than
two minutes for Bout = ∞. The reason is that a small Bout cor-
responds to highly restricted settings where the solver must search
longer in order to find acceptable solutions.

Table 3 depicts the percentage of views rewritten using other
views (and not filled from the data source D) in the CFGs returned
by the ILP solver, as well as the utilization of the CFGs and the av-
erage number of views that take part in the rewritings. First, notice
that even when we keep the load on the views under tight con-
trol (Bout = 30), we achieve a high degree of off-loading (94.3%
) from the data publisher D. Moreover, as can be seen, by de-
creasing Bout, the utilization of the CFG increases (due to tighter
constraints), while the number of views participating in a rewriting
decreases (since each view is allowed to serve less views).

5.4 Greedy CFG Latency Optimization
We now study the performance of Algorithm 2 (LOGA, Sec-

tion 3.4), applied on CFGs obtained through ILP optimization. Our
initial experiments did not show significant latency improvement,
because the ILP-selected CFGs exploited most of the freedom we
gave them (almost every view was feedingBout other views). Hence,
there was very little leeway for LOGA to make changes. To cir-
cumvent this problem, we allowed LOGA to use as bound 1.5 times
the Bout given to the ILP solver. Thus, where the ILP solver had
Bout = 30, 50, 100, LOGA used 45, 75, 150, respectively.

Latency optimization. Figure 5 depicts the latency improvement
as a function of the LOGA running time. We see that LOGA is very
effective, achieving a 43% reduction with respect to the latency of
the CFG returned by the initial ILP solver. Moreover, such savings
are obtained within 150-200 seconds. They stabilize when the data
propagation paths to all the high-impact views have been altered
and there is not much room for further optimization.
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Distribution of views into levels. Figure 6 depicts the distribu-
tion of views into levels in the CFGs for varyingBout, as produced
(i) by the ILP solver, and (ii) after LOGA optimization. Note the
logarithmic vertical axis. We see that the latency-optimized CFGs
have less than 2/3 of the number of rewriting levels of the CFGs
produced by ILP. Moreover, in the latency-optimized CFGs, most
of the views lie in levels 1-6, leaving approx. only 1.5% of the
views on levels 6-12. Thus, most views are only 4-5 hops away
from the data source. This “flattening of rewriting levels” is an
expected result of LOGA, since the more levels the data passes
through from the publisher to a view, the more latency is added.

Utilization vs. latency. Although one may expect latency opti-
mization (that reached 50%) to re-increase utilization, the increase
was very moderate (5-7%). LOGA is only making greedy incre-
mental fine-tuning over utilization-optimized CFGs (whose bounds
were already attained), and therefore, the changes in the graph
could not significantly change utilization.

5.5 Experiments in a WAN Deployment
We deployed Delta’s algorithms on top of the distributed query

execution engine of ViP2P [15], a large Java-based platform pre-
viously developed in our team. ViP2P provides a full set of con-
tinuous physical operators (structural joins, selections, etc.) which
are used in Delta’s rewritings. We report here on experiments we
carried deploying Delta in a WAN.

Infrastructure. We conducted our experiments in the Grid5000
infrastructure (https://www.grid5000.fr), using 300 machines dis-
tributed over nine major cities across France and Luxembourg. The
hardware of Grid5000 machines varies from dual-core machines
with 2GBs of RAM to 16-core machines with 32GBs of RAM.
This heterogeneous hardware distribution is likely to occur with
real settings as subscribers have varied-capacity machines.

Views and documents. We have generated a set of 10,000 views,
along with a set of 200 small (10-40KB) XMark [23] documents,
in a way such that each document matches almost all of the views.
Unlike our previous experiment, this view set has only ~3,000 unique
views, which is more representative of real-life scenarios where
some subscription topics are popular.

We have created the corresponding EG and RG and invoked
the ILP solver to generate utilization-optimized configurations for
Bout ∈ {5, 10, 30, 50, 100,∞} and Bout

D = 72. The resulting
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CFGs were optimized for latency with the LOGA Algorithm with
bounds {7, 15, 45, 75, 150,∞}.

The distribution of views into levels is depicted in Figure 7. A
first observation is that in the presence of duplicate views, the la-
tency optimized CFGs can have less than half of the levels of their
utilization-optimized counterparts. A CFG with duplicate views is
easier to optimize through the LOGA Algorithm since equivalent
views may be served from one another.

We now move to presenting our results from deploying the gen-
erated CFGs. To characterize the performance of Delta, we have
measured two important metrics, namely the observed latency and
the document delivery time.

Observed view latency. We measured the latency of a view v for a
document d as the time elapsed between: (i) the moment when the
first tuple of d leaves the data source, and (ii) the instance when
the last tuple of d reaches the view v. Note that in the observed
view latency we do not include the time needed to extract the level
1 view tuples from a document. We do not include this4 since this
extraction step is not the main scope of the paper and has been
studied in other works [7, 13].

Figure 8 depicts the average observed view latency for all pairs
of views and documents in our CFGs. A first observation is that on
average, views get their results in just 1.6 seconds after a document
is published. This translates to a throughput of many thousands of
subscriptions served per second, with a data source having to serve
only ~0.7% (72 out of 10.000) of the views. This demonstrates how
Delta makes it possible to serve large numbers of subscribers using
very little publisher computing resources.

Our second remark regards the minimum/maximum latencies for
Bout = 5 in utilization-optimized CFGs. Some views in the net-
work receive their results extremely fast (~30ms) while some others
considerably slower (~3.7s). This is an inherent feature of Delta:
views that are close to the data source receive their data faster than
the ones that reside in deeper levels.

The LOGA algorithm reduces the observed latency of views up
to ~20% (Bout = 5) compared to the utilization-optimized CFGs.
This also shows that our latency estimation models (used by our
algorithms) are quite accurate.

An interesting phenomenon is the following: in the utilization-
optimized CFG where Bout = ∞ we notice a very large increase
in the maximum latency (~4.7s) while the CFG is not too deep
(13 levels) compared to other CFGs that showed lower latency.
This is explained by the fact that when a view serves a very large
number of other views, it can be overloaded and the data process-
ing/transmission throughput is reduced. This shows the importance
of the bounds Bout in Delta: for optimal performance, Bout must
be set in the “sweet spot” between values too large (to avoid over-
loading) and too low (to avoid very deep CFGs). In practice, a
simple test can be performed at each subscriber machine to tailor
its Bout to its observed hardware performance.

Document Delivery Time. For a view v and a document d that
matches v, we term document delivery time, or simply DDT, the
total time needed for all the matching tuples of document d to reach
the view v. For a set of views V , the DDT is measured as the inter-
val between: (i) the moment when the first tuple of the document
d leaves the data source and (ii) the instance when the last tuple
of the document d has reached the slowest view v ∈ V . In other
words, this metric captures the time it takes for a document to reach
its slowest interested view.

4For completeness: our view matcher took an average of ~100ms to
extract from each document the tuples for the 72 first-level views.
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Figure 8: View latency for utilization-optimized CFGs (left)
and latency optimized CFGs (right).
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Figure 9: Document delivery time for utilization-optimized
CFGs (left) and latency optimized CFGs (right).

Figure 9 shows the average, minimum and maximum DDT over
all published documents in our experiment. In general, in all CFGs,
a document is delivered to all views in the network, in an average of
2-2.5 seconds. Note that the maximum observed latency coincides
with the maximum DDT (see Figures 8 and 9) as the slowest view
in the network actually defines the DDT. Thus, we observe the same
phenomenon as in the observed latency: DDT slows down for the
extreme Bout = {5,∞} values.

5.6 Experiment Conclusion
Our experiments have demonstrated the efficiency and effective-

ness of Delta’s multi-level dissemination approach. With respect to
efficiency, for 100,000 distinct subscriptions, the full graph genera-
tion, optimization for utilization and then latency took less than 13
minutes. As for effectiveness, the configurations retained have low
cost scores. This is confirmed by the WAN deployment of 10,000
subscriptions, which showed a high message delivery throughput
and low latency: documents are propagated to 10,000 subscrip-
tions, which are fed with data within 1.5 seconds on average.

6. RELATED WORK
Our work belongs to the class of content-based publish subscribe

systems, disseminating to users the results of their specified sub-
scriptions over a stream of published data. This paper is related to
several themes of existing works.

Filtering systems. A large part of the literature addresses the prob-
lem of optimizing the publisher so that it handles the filtering of
incoming data for very large numbers of subscribers.

YFilter [7] stands out as a widely-known system for XML publish-
subscribe. It is able to feed many XPath 1.0 subscriptions very effi-
ciently by matching them simultaneously against documents through
a single automaton. NiagaraCQ [4] relies on multi-query optimiza-
tion for continuous queries, taking advantage of the similarity of
subscriptions in order to share operators during evaluation. Simi-
larly, [13] addressed the same problem but for a more expressive
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subscription language, supporting joins over multiple documents.
Finally, [27] proposes a pub/sub system where the evaluation of
subscriptions is done inside a relational database.

The above do not consider distributed data dissemination. In-
stead, they focus on optimizing the publisher task, to support very
large numbers of subscribers. Our work can be seen as comple-
mentary since we focus on the design of a logical overlay network
(CFG), that exploits the subscribers in order to scale up. Any effi-
cient filtering at the publisher can be adopted in our setting.
Distributed publish/subscribe. Onyx [8] connects multiple pub-
lishers and subscribers by employing multiple YFilter instances
running on connected brokers. Recently, FoXtrot [19] has dis-
tributed YFilter automata on top of a DHT network. Other DHT-
based pub/sub systems are, e.g., [5, 10]. Closer to our work, Sem-
Cast [20] leverages commonalities between subscriptions and cre-
ates logical channels between brokers and subscribers to form mul-
ticast trees of low utilization and latency. However, the system re-
lies on a network of brokers, and the subscribers do not help in the
dissemination of data. Finally, [26] builds one multicast tree per
broker aiming at redundancy and fault tolerance.

Contrariwise, in [2], every peer can forward messages to its neigh-
bors if the message matches its own interests. Peers are organized
in an hierarchy tree based on subscription similarity. However,
by design, the peers do not know the subscriptions of their neigh-
bors, and as a result, their routing protocol allows for false positives
(peers may receive messages which do not interest them).

In contrast with these works, Delta builds multi-level dissemina-
tion networks involving the subscribers, leveraging query rewriting
to determine whether some subscriptions can be used to compute
results of other subscriptions. One of the consequences unique to
Delta is the ability to combine the results of multiple subscriptions
in order to serve another one.
View-based data management. As explained in Section 4.4, any
efficient view-based rewriting algorithm (e.g., [21]) can be used in-
stead of our Algorithm 4. View maintenance has been investigated
in the centralized context of data warehousing [24, 22]. In [6], the
authors consider “stacked” views, specified as queries over other
defined views, study their maintenance and the efficient evalua-
tion of queries using such views; these resemble our multi-level
configurations, but in [6] the connections between views are given,
whereas we choose them for performance through our algorithms.

7. CONCLUSION
We considered the problem of scaling up content-based pub-

lish/subscribe systems under resource constraints (such as finite
CPU and network capacity) by off-loading some of the data pub-
lisher’s effort on the subscriber sites. This is achieved by organizing
subscriptions in a rewritability graph which materializes the ways
in which one subscription could be served from others, through
view-based rewriting. We provide a novel two-step algorithm for
organizing the views in a network minimizing a combination of re-
source utilization and data dissemination latency. First, we express
the utilization minimization problem as a linear program and solve
it exactly; as we show, latency cannot be included in the ILP formu-
lation due to its non-linear nature. We reduce latency in a second
step based on the result obtained from the ILP solver. Our configu-
ration choice algorithm scale well to 100.000 unique subscriptions,
whereas in a WAN deployment, Delta succeeds in filling in 10.000
subscriptions with a latency of under 2 seconds.
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