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ABSTRACT 
 
The large number of parameters in deep neural networks 

(DNN) for automatic speech recognition (ASR) makes 

speaker adaptation very challenging. It also limits the use of 

speaker personalization due to the huge storage cost in 

large-scale deployments. In this paper we address DNN 

adaptation and personalization issues by presenting two 

methods based on the singular value decomposition (SVD). 

The first method uses an SVD to replace the weight matrix 

of a speaker independent DNN by the product of two low 

rank matrices. Adaptation is then performed by updating a 

square matrix inserted between the two low-rank matrices.  

In the second method, we adapt the full weight matrix but 

only store the delta matrix – the difference between the 

original and adapted weight matrices. We decrease the 

footprint of the adapted model by storing a reduced rank 

version of the delta matrix via an SVD. The proposed 

methods were evaluated on short message dictation task. 

Experimental results show that we can obtain similar 

accuracy improvements as the previously proposed 

Kullback-Leibler divergence (KLD) regularized method 

with far fewer parameters, which only requires 0.89% of the 

original model storage. 
 

Index Terms— deep neural network, speaker 

adaptation, speaker personalization, singular value 

decomposition 

 

1. INTRODUCTION 
 
Recent progress in deep learning has attracted a lot of 

interest in automatic speech recognition (ASR) 

[1][2][3][4][5][6]. The discovery of the strong modeling 

capabilities of deep neural networks (DNN) and the 

availability of high-speed hardware has made it feasible to 

train huge networks with tens of millions of parameters. In 

the framework of context-dependent DNN hidden-Markov-

models (CD-DNN-HMM) [1], the conventional Gaussian 

Mixture Model (GMM) is replaced by a DNN to evaluate 

the senone log-likelihood. Besides CD-DNN-HMMs, a 

DNN can also be used to provide the bottle-neck features for 

a GMM-HMM system [7][8]. In both applications of a DNN 

in ASR, significant accuracy improvement was achieved.  

However, the outstanding performance of CD-DNN-

HMM requires huge number of parameters, which makes 

adaptation very challenging, especially with limited 

adaptation data. Several methods for DNN adaptation have 

previously been proposed [9]. For example, affine 

transformations are applied to the inputs and outputs of a 

neural network, where a linear layer is added before the 

original input layer and after the output layer [10]. Another 

approach applies a linear transformation to the activations of 

the internal hidden layers [11]. The shape of the activation 

function was changed to better fit the speaker-specific 

features in [12]. Recently, a regularized adaptation 

technique was proposed, which adapts the model 

conservatively by forcing the senone distributions estimated 

from the adapted model to be close to that estimated from 

the speaker independent (SI) model [13]. In [14], a separate 

small size of speaker code is learned for each individual 

speaker while the large adaptation network is learned from 

the whole training set. Factorized adaptation is studied in 

[15] by using limited number of parameters to take into 

account of the underlying factors that contribute to the 

distorted speech signal. 

Besides DNN adaptation, speaker personalization with a 

DNN model creates a storage issue. It is not practical to 

store an entire DNN model for each individual speaker 

during deployment due to the high storage cost. None of the 

previous methods addressed this issue. In this paper we 

present two low-footprint DNN adaptation and 

personalization methods based on a singular value 

decomposition (SVD). The first method, called SVD 

bottleneck adaptation, uses a recently proposed format for 

the SI model where the weight matrix in each layer is 

approximated as the product of two low-rank matrices [16] 

[17]. Between the two low-rank matrices in each layer, we 

insert an additional square matrix, initialized to identity. We 

only update and store these matrices during adaptation. 

These small matrices have much fewer parameters 

compared to the original DNN model, which significantly 

reduces the footprint of personalized DNN model. In the 

second method, called SVD delta compression, we adapt the 

weight matrix in each layer but only store the difference 

between the adapted and SI weights, which we refer to as 

the delta matrix. We assume these delta matrices have low 

rank because the adapted model doesn’t deviate 

significantly from the SI model. Thus, we can reduce the 

footprint of the delta matrices by using an SVD and only 



storing the decomposed matrices, which have a much 

smaller number of parameters. In both methods we use the 

Kullback-Leibler divergence (KLD) regularized 

optimization criterion [13] during adaptation, which 

prevents overfitting to the adaptation data by preventing the 

adapted model from staying too far from the SI model.  

The rest of the paper is organized as follows. Section 2 

briefly reviews the KLD regularized algorithm [13].  

Section 3 describes our new SVD-based DNN adaptation 

and personalization methods, including SVD bottleneck 

adaptation and delta compression. Experimental results are 

presented in Section 4 to show the effectiveness of the 

methods. We conclude our work in Section 5. 

 

2. KLD REGULARIZED ADAPTATION 
 
The parameters of DNNs are typically trained to maximize 

the negative cross entropy 
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where xt is the input feature vector, yt is the output at time t,  

S is the total number of senones, N is the number of samples 

in the training set, and   ̃   |    is the target probability.  

A straightforward approach to adapt a DNN is to adjust 

the DNN parameters with the adaptation data, starting from 

the SI model. However, doing so may destroy previously 

learned information and over-fit the model to the adaptation 

data, especially when the adaptation set is small. To prevent 

over-training, model updating needs to be done 

conservatively. A regularized adaptation method was 

proposed to address this issue [13]. The idea is that the 

posterior senone distribution estimated from the adapted 

model should not deviate too far from the one estimated 

with the SI model. The deviation is measured by KLD. By 

adding this divergence as a regularization term to the 

objective function used in regular DNN training and 

adaption, like cross entropy, and removing the terms 

unrelated to the model parameters, we get a new regularized 

optimization criterion  
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where  ̂   |    equals       ̃   |           |   , ρ is 

the regularization weight, and       |    is the posterior 

probability estimated from the SI model. By comparing 

formulae (1) and (2) we can see that applying KLD 

regularization is equivalent to changing the target 

probability distribution to  ̂   |   , which is a linear 

interpolation of the distribution estimated from the SI model 

and the ground truth alignment of the adaptation data. 

The normal back-propagation algorithm can be directly 

applied to adapt the model. The only difference is the error 

signal at the output layer, which is now defined based on 

 ̂   |   . More details can be found in [13]. 

 

3. METHODS DESCRIPTION 
 

A DNN used for ASR system typically has 5-8 hidden 

layers, and each layer consists of a few thousand units. With 

the same amount of training data, the DNN model usually 

has 2 to 10 times more parameters than the traditional GMM 

model. The huge number of parameters in DNN presents big 

challenges for speaker adaptation and personalization. We 

recently presented a SVD based DNN model restructuring 

method in [17]. With this method we can convert the 

original large full-rank DNN model to a much smaller low-

rank model without loss of accuracy. Most of the previously 

proposed DNN adaptation methods can also apply this low-

rank DNN model. But all of these methods still need to 

update and store a large amount of parameters. Although in 

some methods only some of the DNN layers need to be 

adjusted, the updated portion is still large due to the high 

dimensionality of each layer.  

Here we presented two SVD based DNN adaptation and 

personalization methods. The goal of both of these methods 

is to be able to adapt and store a small-footprint model 

representation that still obtains large accuracy 

improvements, which will reduce the cost in deployment.  

 

3.1. SVD Bottleneck adaptation 
 
As described in [17], for a     (m ≥ n) weight matrix A in 

DNN, apply SVD on it, we get 

               
 

               (3) 

where ∑ is a diagonal matrix with A’s singular values on the 

diagonal. If A is a sparse matrix, the number of A’s non-zero 

singular values will be k, where k << n. Then we can rewrite 

(3) as  

              
                   (4) 

Applying the decomposition to the DNN model, it acts as if 

a linear bottleneck layer with much fewer units has been 

added between the original layers. 

 
a) One layer in original DNN model 

 

 
b) Three corresponding layers in new DNN model 

 
Figure 1 Model conversion in low-rank DNN 



To do SVD bottleneck adaptation, we add an additional 

linear layer to the bottleneck linear layer with k units. 

Applying this change to (4), we get  

                                           (5) 

where Sk×k is initialized to be identity matrix Ik×k. Figure 1 

describes how we modify the model structure.  

We use the square matrix S to store the speaker 

information. In the SI model, S is set to the identity matrix 

so that (4) and (5) are identical. During adaptation we only 

update the square matrix S. The number of parameters for 

matrix S is k
2
, which is much smaller than the original 

number     . 

The advantage of this approach is that only a couple of 

small matrices need to be updated for each speaker. This 

dramatically reduces the deployment cost for speaker 

personalization. Also, it potentially reduces the required 

amount of adaptation data for each new speaker. 

 
3.2. SVD delta compression 
 
Usually the adaptation set is small for each individual 

speaker, so the adapted model should not deviate far away 

from the SI model. This is the foundation of regularized 

adaptation. From this point of view, we believe that the delta 

matrices between the adapted matrices and SI matrices 

should have low ranks. If we apply SVD decomposition on 

the delta matrices and only keep a small number of non-zero 

singular values for each one, the delta matrices should be 

largely unchanged. So we can convert each delta matrix into 

the product of two low-rank matrices in the same way as 

before 
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We only need to store matrices U and N for each individual 

speaker. The total number of parameters changes from mn to 

(m+n)k. During runtime we multiply U and N, add the result 

back to     
   to resynthesize the adapted model.  

 

3.3 Combination of SVD bottleneck adaptation and delta 

compression 
 
The two methods introduced above address the DNN 

adaptation and personalization issues from different 

perspectives. We can combine them together if the delta 

matrices for the square matrices in low-rank DNN model 

still have the low-rank property. We investigate this in 

section 4. 

 

4. EXPERIMENTS 
 
The proposed methods were evaluated on a short message 

dictation (SMD) task. The baseline SI models were trained 

with 300hours voice search and SMD data. The input 

feature to CD-DNN-HMM system is a 24-dimension mean-

normalized log-filter bank feature with up to second-order 

derivatives and a context window of 11 frames, forming a 

vector of 792-dimension (72×11) input. On top of the input 

layer there are 5 hidden layers with 2048 units for each. The 

output layer has a dimension of 5976. To apply SVD 

bottleneck adaptation method, we first convert the full-rank 

DNN model to low-rank model by doing SVD on the 

matrices above all the hidden layers and keeping 40% of 

total singular values. Then the numbers of units for the 

linear layers after SVD are 208, 184, 176, 200, and 344 

accordingly, from bottom to top. We then retrained the low-

rank model and obtained comparable accuracy to the full-

rank model. More details of SVD based low-rank DNN 

model training can be found in [17]. 

The evaluation was conducted on data from 9 speakers. 

The total number of test set words is 26433. There is no 

overlap among training and testing data. The first several 

rows of Table 1 summarize the results obtained with SI 

models and with KLD regularized adaptation on the low-

rank SI model. The regularization weight ρ is set to 0.5, and 

the WER shown is averaged on 9 speakers. 
 

Table 1. Results of SI modes, KLD adaptation method,   

and bottleneck KLD adaptation method 

Acoustic model WER 
Number of 

parameters 

Full-rank SI model 25.21% 30M 

Low-rank SI model 25.12% 7.4M 

Supervised KLD adaptation with 5 

utterances 
24.30% 7.4M 

Supervised KLD adaptation with 100 

utterances 
20.51% 7.4M 

Supervised SVD bottleneck 

adaptation with 5 utterances 
24.23% 266K 

Supervised SVD bottleneck 

adaptation with 100 utterances 
19.95% 266K 

 

From Table 1 we observe that supervised KLD regularized 

adaptation obtains 18.4% and 3.3% relative WER reduction 

with 100 and 5 utterances of adaptation data. 

 

4.1. Results of SVD bottleneck adaptation 
 
The last two rows of Table 1 show us the results obtained 

with bottleneck KLD adaptation method, where number of 

parameters only includes the adapted portion of the models. 

The supervised SVD bottleneck adaptation obtains 20.6% 

and 3.5% relative WER reduction with 100 and 5 utterances 

of adaptation data, respectively, which is a little better than 

the results obtained with standard KLD regularized 

adaptation method. However, the number of parameters in 

the adapted portion reduces to 266K, only 0.89% of the 

parameters updated in the standard KLD regularized 

method. 

 

4.2. Results of SVD delta compression 
 



The experiments of SVD delta compression were first 

conducted on the full-rank model. We do supervised KLD 

regularized adaptation on full-rank SI model, and then apply 

SVD delta compression to reduce the storage footprint of 

the adapted model for each speaker. Table 2 shows the 

results using SVD delta compression. The values in the first 

column of last four rows indicate the number of singular 

values that were kept for each delta matrix, from bottom to 

top. Number of parameters in the last column shows the 

stored portion of the model. 
 

Table 2. Results of SVD delta compression with  

supervised KLD adaptation method 

Acoustic model 
WER Number of 

parameters 5 utter. 100 utter. 

Supervised KLD on full-

rank SI model 
24.21% 20.40% 30M 

256-512-512-512-512-512 24.21% 20.40% 13.2M 

128-256-256-256-256-256 24.20% 20.50% 6.6M 

64-128-128-128-128-128 24.22% 20.62% 3.3M 

32-64-64-64-64-64 

 

24.22% 20.70% 1.7M 

 
From Table 2 we can see that, in the 5 utterances case we 

can reduce number of parameters to 1.7M without losing 

accuracy, which is only 5.6% of the original model size. But 

if we have 100 utterances of adaptation data, we will start to 

have more than 1% relative accuracy loss if we reduce the 

number of parameters to 3.3M. This is because the adapted 

model deviates further away from SI model with more 

adaptation data. So the delta matrices will have higher rank 

and we cannot compress them as aggressively. 

 

4.3. Results of combination 
 
As we indicated in section 3.3, SVD bottleneck adaptation 

and delta compression methods address the DNN adaptation 

and personalization issues from different perspectives, so we 

try to combine them to obtain further improvement. We 

applied SVD delta compression to the adapted models 

obtained with SVD bottleneck adaptation and summarized 

the results in Table 3, where number of parameters only 

includes the stored portion of the models. 

From Table 3 we observe that, combining SVD 

bottleneck adaptation and delta compression in the 5 

utterances case can further reduce number of parameters to 

71K without losing accuracy. But for 100 utterances case we 

cannot combine two methods, since we will at least have 

more than 2% relative accuracy loss if we do so. 
 

Table 3. Results of combining SVD bottleneck adaptation 

 and delta compression 

Acoustic model 
WER Number of 

parameters 5 utter. 100 utter. 

Supervised KLD on low-

rank SI model 
24.23% 19.95% 266K 

32-32-32-32-32 24.25% 22.14% 71K 

64-64-64-64-64 24.26% 21.42% 142K 

96-96-96-96-96 24.21% 20.39% 214K 

  

 

5. CONCLUSION 
 
In this paper we present two SVD based methods to address 

the DNN adaptation and personalization issues which 

requires only small amount of parameters for each speaker. 

The first method inserts an additional linear layer above 

each original linear layer in SVD based low-rank DNN 

model with a small identity matrix, and only updates the 

inserted small matrices during adaptation. In the second 

method, we use an SVD to compress and store the delta 

matrices between the adapted and SI models. We evaluated 

our methods on a short message dictation task and reduce 

the speaker-specific parameters to only 0.89% of the 

original model size without a loss of accuracy. We further 

investigate the combination of the two proposed methods 

and we can further reduce the model size if only few 

adaptation data are available. With more adaptation data 

performance suffers since the adapted model deviates far 

away from the SI model on the adapted matrices, violating 

the low rank assumption of the SVD delta compression 

method. 
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