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Labeling a histopathology image as having cancerous regions or not is a critical task in cancer diagnosis; it
is also clinically important to segment the cancer tissues and cluster them into various classes. Existing
supervised approaches for image classification and segmentation require detailed manual annotations for
the cancer pixels, which are time-consuming to obtain. In this paper, we propose a new learning method,
multiple clustered instance learning (MCIL) (along the line of weakly supervised learning) for histopa-
thology image segmentation. The proposed MCIL method simultaneously performs image-level classifi-
cation (cancer vs. non-cancer image), medical image segmentation (cancer vs. non-cancer tissue), and
patch-level clustering (different classes). We embed the clustering concept into the multiple instance
learning (MIL) setting and derive a principled solution to performing the above three tasks in an inte-
grated framework. In addition, we introduce contextual constraints as a prior for MCIL, which further
reduces the ambiguity in MIL. Experimental results on histopathology colon cancer images and cytology
images demonstrate the great advantage of MCIL over the competing methods.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Histopathology image analysis is a vital technology for cancer
recognition and diagnosis (Tabesh et al., 2007; Park et al., 2011;
Esgiar et al., 2002; Madabhushi, 2009). High resolution histopa-
thology images provide reliable information differentiating abnor-
mal tissues from the normal ones. In this paper, we use tissue
microarrays (TMAs) which are referred to histopathology images
here. Fig. 1 shows a typical histopathology colon cancer image,
together with a non-cancer image. Recent developments in special-
ized digital microscope scanners make digitization of histopathol-
ogy readily accessible. Automatic cancer recognition from
histopathology images thus has become an increasingly important
task in the medical imaging field (Esgiar et al., 2002; Madabhushi,
2009). Some clinical tasks (Yang et al., 2008) for histopathology im-
age analysis include: (1) detecting the presence of cancer (image
classification); (2) segmenting images into cancer and non-cancer
region (medical image segmentation); (3) clustering the tissue
region into various classes. In this paper, we aim to develop an
integrated framework to perform classification, segmentation,
and clustering altogether.

Several practical systems for classifying and grading cancer
histopathology images have been recently developed. These meth-
ods are mostly focused on the feature design including fractal fea-
tures (Huang and Lee, 2009), texture features (Kong et al., 2009),
object-level features (Boucheron, 2008), and color graphs features
(Altunbay et al., 2010; Ta et al., 2009). Various classifiers (Bayesian,
KNN and SVM) are also investigated for pathological prostate
cancer image analysis (Huang and Lee, 2009).

From a different angle, there is a rich body of literature on
supervised approaches for image detection and segmentation (Viola
and Jones, 2004; Shotton et al., 2008; Felzenszwalb et al., 2010; Tu
and Bai, 2010). However, supervised approaches require a large
amount of high quality annotated data, which are labor-intensive
and time-consuming to obtain. In addition, there is intrinsic ambi-
guity in the data delineation process. In practice, obtaining the very
detailed annotation of cancerous regions from a histopathology
image could be a challenging task, even for expert pathologists.

Unsupervised learning methods (Duda et al., 2001; Loeff et al.,
2005; Tuytelaars et al., 2009), on the other hand, ease the burden
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(a) cancer image (b) non-cancerimage

Fig. 1. Example histopathology colon cancer and non-cancer images: (a) positive bag (cancer image) and (b) negative bag (non-cancer image). Red rectangles: positive
instances (cancer tissues). Green rectangles: negative instances (non-cancer tissues). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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of having manual annotations, but often at the cost of inferior
results.

In the middle of the spectrum is the weakly supervised learning
scenario. The idea is to use coarsely-grained annotations to aid
automatic exploration of fine-grained information. The weakly
supervised learning direction is closely related to semi-supervised
learning in machine learning (Zhu, 2008). One particular form of
weakly supervised learning is multiple instance learning (MIL)
(Dietterich et al., 1997) in which a training set consists of a number
of bags; each bag includes many instances; the goal is to learn to
predict both bag-level and instance-level labels while only bag-le-
vel labels are given in training. In our case, we aim at automatically
learning image models to recognize cancers from weakly super-
vised histopathology images. In this scenario, only image-level
annotations are required. It is relatively easier for a pathologist
to label a histopathology image than to delineate detailed cancer
regions in each image.

In this paper, we develop an integrated framework to classify
histopathology images as having cancerous regions or not, seg-
ment cancer tissues from a cancer image, and cluster them into dif-
ferent types. This system automatically learns the models from
weakly supervised histopathology images using multiple clustered
instance learning (MCIL), derived from MIL. Many previous MIL-
based approaches have achieved encouraging results in the medi-
cal domain such as major adverse cardiac event (MACE) prediction
(Liu et al., 2010), polyp detection (Dundar et al., 2008, 2006, 2011),
pulmonary emboli validation (Raykar et al., 2008), and pathology
slide classification (Dundar et al., 2010). However, none of the
above methods aim to perform medical image segmentation. They
also have not provided an integrated framework for the task of
simultaneous classification, segmentation, and clustering.

We propose to embed the clustering concept into the MIL set-
ting. The current literature in MIL assumes single cluster/model/
classifier for the target of interest (Viola et al., 2005), single cluster
within each bag (Babenko et al., 2008; Zhang and Zhou, 2009;
Zhang et al., 2009), or multiple components of one object (Dollár
et al., 2008). Since cancer tissue clustering is not always available,
it is desirable to discover/identify the classes of various cancer
tissue types; this results in patch-level clustering of cancer tissues.
The incorporation of clustering concept leads to an integrated sys-
tem that is able to simultaneously perform image segmentation,
image-level classification, and patch-level clustering.

In addition, we introduce contextual constraints as a prior for
cMCIL, which reduces the ambiguity in MIL. Most of the previous
MIL methods make the assumption that instances are distributed
independently, without considering the correlations among in-
stances. Explicitly modeling the instance interdependencies (struc-
tures) can effectively improve the quality of segmentation. In our
experiment, we show that while obtaining comparable results in
classification, cMCIL improves the segmentation significantly (over
20%) compared MCIL. Thus, it is beneficial to explore the structural
information in the histopathology images.

2. Related work

Related work can be roughly divided into two broad categories:
(1) approaches for histopathology image classification and seg-
mentation and (2) MIL methods in machine learning and computer
vision. After the discussion about the previously work, we show
the contributions of our method.

2.1. Existing approaches for histopathology image classification and
segmentation

Classification. There has been rich body of literature in medical
image classification. Existing methods for histopathology image
classification however are mostly focused on the feature design
in supervised settings. Color graphs were used in Altunbay et al.
(2010) to detect and grade colon cancer in histopathology images;
multiple features including color, texture, and morphologic cues at
the global and histological object levels were adopted in prostate
cancer detection (Tabesh et al., 2007); Boucheron et al. proposed
a method using object-based information for histopathology can-
cer detection (Boucheron, 2008). Some other work is focused on
classifier design: for instance, Doyle et al. developed a boosted
Bayesian multi-resolution (BBMR) system for automatically detect-
ing prostate cancer regions on digital biopsy slides, which is a nec-
essary precursor to automated Gleason grading (Artan et al., 2012).
In Monaco et al. (2010), a Markov model was proposed for prostate
cancer detection in histological images.

Segmentation. A number of supervised approaches for medical
image segmentation have also been proposed before, for example
on histopathology images (Kong et al., 2011) and vasculature reti-
nal images (Soares et al., 2006). Structured data has also been taken
into consideration in the previous work. Wang and Rajapakse
(2006) presented a conditional random fields (CRFs) model to fuse
contextual dependencies in functional magnetic resonance imaging
(fMRI) data to detecting brain activity. A CRF-based segmentation
method was also proposed in Artan et al. (2010) for localizing pros-
tate cancer from multi-spectral MR images.

2.2. MIL and its applications

Compared with fully supervised methods, multiple instance
learning (MIL) (Dietterich et al., 1997) has its particular advantages
in automatically exploiting the fine-grained information and
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reducing efforts in human annotations. In the machine learning
community, many MIL methods have been developed in recent
years such as Diverse Density (DD) (Maron and Lozano-Pérez,
1997), Citation-kNN (Wang et al., 2000), EM-DD (Zhang and
Goldman, 2001), MI-Kernels (Gärtner et al., 2002), SVM-based
methods (Andrews et al., 2003), and ensemble algorithms
MIL-Boost (Viola et al., 2005).

Although first introduced in the context of drug activity pre-
diction (Dietterich et al., 1997), the MIL formulation has made
significant success in the area of computer vision, such as visual
recognition (Viola et al., 2005; Babenko et al., 2008; Galleguillos
et al., 2008; Dollár et al., 2008), weakly supervised visual catego-
rization (Vijayanarasimhan and Grauman, 2008), and robust ob-
ject tracking (Babenko et al., 2011). Zhang and Zhou (2009)
proposed a multiple instance clustering (MIC) method to learn
the clusters as hidden variables to the instances. Zhang et al.
(2009) further formulated the MIC problem under the maximum
margin clustering framework. MIC however is designed for data-
sets that have no negative bags and it assumes each bag contain-
ing only one cluster. Babenko et al. (2008) assumed a hidden
variable, pose, to each face (only one) in an image. In our case,
multiple clusters of different cancer types might co-exist within
one bag (histopathology image). In addition, segmentation cannot
be performed. In Dollár et al. (2008), object detection was
achieved by learning individual component classifiers and com-
bining these into an overall classifier, which also differs from
our work. Multiple components were learned for a single object
class. However, we have multiple instances and multiple classes
within each bag in our work.

The MIL assumption was integrated into multiple-label learning
for image/scene classification in Zhou and Zhang (2007), Zha et al.
(2008), and Jin et al. (2009) and for weakly supervised semantic
segmentation in Vezhnevets and Buhmann (2010). Multi-class la-
bels were given as supervision in their methods; in our method,
multiple clusters are hidden variables to be explored in a weakly
supervised manner.

The MIL framework has also been adopted in the medical
imaging domain with the focus mostly on the medical diagnosis
(Fung et al., 2007). In Liu et al. (2010), an MIL-based method
was developed to perform medical image classification; in Liang
and Bi (2007), pulmonary embolisms among the candidates
were screened by an MIL-like method; a computer aided diag-
nosis (CAD) system (Lu et al., 2011) was developed for polyp
detection with the main focus on learning the features, which
were then used for multiple instance regression; an MIL
approach was adopted for cancer classification in histopathol-
ogy slides (Dundar et al., 2010). However, these existing MIL
approaches were designed for medical image diagnosis and
none of them perform segmentation. Moreover, to the best of
our knowledge, the integrated classification/segmentation/clus-
tering task has not been addressed, which is the key contribu-
tion of this paper.
2.3. Our contributions

Although several tasks in computer vision and medical domain
have been shown to benefit from the MIL setting, we find that the
cancer image classification/segmentation/clustering task is a well-
suited medical imaging application for the MIL framework. We
propose a new learning method, multiple clustered instance learn-
ing (MCIL), along the line of weakly supervised learning. The pro-
posed MCIL method simultaneously performs image-level
classification (cancer vs. non-cancer image), medical image
segmentation (cancer vs. non-cancer tissues), and patch-level
clustering (different classes). We embed the clustering concept
into the MIL setting and derive a principled solution to perform
the above three tasks in an integrated framework. Furthermore,
we demonstrate the importance of contextual information by
varying the weight of contextual model term. Finally, we try to
answer the following question: is time-consuming and expensive
pixel-level annotation of cancer images necessary to build a
practical working medical image analysis system, or could the
weaker but much cheaper image-level supervision achieve the
same accuracy and robustness?

Earlier conference versions of our approach were presented in
Xu et al. (2012b,a). Here, we further illustrate that: (1) the MCIL
method could be applied to analyze image types other than histo-
pathology, such as cytology images, (2) additional features such as
gray-level co-occurrence matrix (GLCM) are added to this paper,
and (3) a new subset of histopathology images has been created
in this experiment. In this paper, we focus on colon histopathology
image classification, segmentation and clustering. However, it is
noted that our MCIL formulation is general and it can be adopted
to other image modalities.
3. Methods

We follow the general definition of bags and instances in the
multiple instance learning (MIL) formulation (Dietterich et al.,
1997).

In this paper, the ith histopathology image is considered as a
bag xi; the jth image patch densely sampled from an image corre-
sponds to an instance xij. A patch of cancer tissue is treated as a po-
sitive instance (yij ¼ 1) and a patch without any cancer tissues is a
negative instance (yij ¼ �1). The ith bag is labeled as positive (can-
cer image), namely yi ¼ 1, if this bag contains at least one positive
instance. Similarly, in histopathology cancer image analysis, a his-
topathology image is diagnosed as positive by pathologists as long
as a small part of image is considered as cancerous. Fig. 1 shows
the definition of positive/negative bags and positive/negative
instances.

An advantage brought by MIL is that if an instance-level clas-
sifier is learned, the image segmentation task then can be
directly performed; bag-level (image-level) classifier can also
be obtained.

In the following sections, we first give the overview of the
MIL literature, especially recent gradient decent boosting based
MIL approaches; then we introduce the formulation for the pro-
posed method, MCIL, which integrates the clustering concepts
into the MIL setting; properties of MCIL with various variations
are provided. In addition, we introduce contextual constraints
as a prior for MCIL, resulting in context-constrained multiple
clustered instance learning (cMCIL). Fig. 2 and Algorithm 1 show
the flow diagram of our algorithms. The inputs include both can-
cer images and noncancer images. Cancer images are used to
generate positive bags (red circles) and noncancer images are
used to generate negative bags (green circles). Within each
bag, each image patch represents an instance. cMCIL/MCIL is
used as a multiple instance learning framework to perform
learning. The learned models generate several classifiers for
patch-level cancer clusters. Red, yellow, blue and purple colors
represent different cancer types while green represents the non-
cancer patches. The overall image-level classification (caner vs.
non-cancer) can be obtained based on the prediction from the
patch-level classification.



Fig. 2. Flow diagram of our algorithms. The inputs include both cancer images and noncancer images. Cancer images are used to generate positive bags (red circles) and
noncancer images are used to generate negative bags (green circles). Within each bag, each image patch represents an instance. cMCIL/MCIL is used as a multiple instance
learning framework to perform learning. The learned models generate several classifiers for patch-level cancer clusters. Red, yellow, blue and purple colors represent different
cancer types while green represents the noncancer patches. The overall image-level classification (caner vs. non-cancer) can be obtained based on the prediction from the
patch-level classification. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Algorithm 1. Algorithm
Input: Colon histopathology images
Output: Image-level classification models for cancer vs.

noncancer and patch-level classification models for
different cancer classes
Step 1: Extract patches from colon histopathology images.
Step 2: Generate bags for models using extracted patches.
Step 3: Learn models in a multiple instance learning
framework (MCIL/cMCIL).
Step 4: Obtain image segmentation and patch clustering
simultaneously.
3.1. Review of the MIL method

We give a brief introduction to the MIL formulation and focus
on boosting-based (Mason et al., 2000) MIL approaches (Viola
et al., 2005; Babenko et al., 2008), which serve as the building
blocks for our proposed MCIL.

In MIL, we are given a training set consisting of n bags:
Xm ¼ fx1; . . . ; xng. xi is the ith bag, and m denotes the number of in-
stances in each bag, i.e. xi ¼ fxi1; . . . ; ximg where xij 2 X and X ¼ Rd

(although each bag may have different number of instances, for
clarity of notation, we use m for all the bags here). Each xi is
associated with a label yi 2 Y ¼ f�1;1g. It is assumed that each
instance xij in the bag xi has a corresponding label yij 2 Y, which
in fact is not given as supervision during the training stage.
As mentioned before, a bag is labeled as positive if at least
one of its m instances is positive and a bag is negative if all its
instances are negative. In the binary case, the assumption can be
expressed as:

yi ¼max
j
ðyijÞ; ð1Þ

where max is essentially equivalent to an OR operator since for
yij 2 Y; maxjðyijÞ ¼ 1() 9j; s:t: yij ¼ 1.

The goal of MIL is to learn an instance-level classifier
hðxijÞ : X ! Y. A bag-level classifier HðxiÞ : Xm ! Y could be built
with the instance-level classifier:
HðxiÞ ¼max
j

hðxijÞ: ð2Þ

To accomplish this goal, MIL-Boost (Viola et al., 2005) was pro-
posed by combining the MIL cost functions and the AnyBoost
framework (Mason et al., 2000). The general idea of AnyBoost
(Mason et al., 2000) is to minimize the loss function LðhÞ via
gradient descent on the h in the function space. The classifier h is
written in the form of ht as:

hðxijÞ ¼
XT

t¼1

athtðxijÞ; ð3Þ

where at weighs the weak learners’ relative importances.
To find the best ht , we proceed with two steps: (1) computing

the weak classifier response and (2) selecting the weak classifier
from available candidates which achieves the best discrimination.
We consider h as a vector with components hij � hðxijÞ. To find the
optimal weak classifier in each phase, we compute � @L

@h, which is a
vector with components wij � � @L

@hij
. Since we are limited in the

choice of ht , we train the weak classifier ht by minimizing the train-
ing error weighted by jwijj, using the follow formula:
ht ¼ argmin

h

P
ij1ðhðxijÞ– yiÞjwijj.

The loss function, a function over h, defined in the MIL-Boost
(Viola et al., 2005; Babenko et al., 2008) is a standard negative
log likelihood expressed as:

LðhÞ ¼ �
Xn

i¼1

wið1ðyi ¼ 1Þ log pi þ 1ðyi ¼ �1Þ logð1� piÞÞ; ð4Þ

where 1ð�Þ is an indicator function. The bag probability
pi � pðyi ¼ 1jxiÞ is defined in terms of h. wi is introduced here as
the prior weight of the ith training sample.

A differentiable approximation of the max, namely softmax
function, is then used. For m variables fv1; . . . ;vmg, the idea is to
approximate the max over fv1; . . . ;vmg by a differentiable function
glðv lÞ, which is defined as:

glðv lÞ �max
l
ðv lÞ ¼ v�; ð5Þ

@gl
ðv lÞ
@v l

� 1ðv i ¼ v�ÞP
l1ðv l ¼ v�Þ : ð6Þ



Table 1
Four softmax approximations glðv lÞ � maxlðv lÞ.

glðv lÞ @gl
ðv lÞ=@v i Domain

NOR 1�
Q

lð1� v lÞ 1�glðv lÞ
1�v i

½0;1�

GM 1
m

P
lvr

l

� �1
r glðv lÞ

vr�1
iP

l
vr

l

½0;1�

LSE 1
r ln 1

m

P
l expðrv lÞ expðrv iÞP

l
expðrv lÞ

½�1;1�

ISR
P

l
v 0l

1þ
P

l
v 0

l

; v 0l ¼
v l

1�v l

1�gl ðv l Þ
1�v i

� �2 ½0;1�
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Note that for the rest of the paper, glðv lÞ indicates a function g on all
variables v l indexed by l, not merely on one variable v l. There are a
number of approximations for g. We summarize 4 models used here
in Table 1: noisy-or (NOR) (Viola et al., 2005), generalized mean
(GM), log-sum-exponential (LSE) (Ramon and Raedt, 2000), and
integrated segmentation and recognition (ISR) (Keeler et al., 1990;
Viola et al., 2005). The parameter r controls the sharpness and accu-
racy in the LSE and GM models i.e. glðv lÞ ! v� as r !1.

The probability bag xi is defined as pi, which is computed from
the maximum over the probability pij � pðyij ¼ 1jxijÞ of all the in-
stances xij. Using the softmax g to approximate max; pi is defined
as:

pi ¼max
j
ðpijÞ ¼ gjðpijÞ ¼ gjðrð2hijÞÞ; ð7Þ

where hij ¼ hðxijÞ, and rðvÞ ¼ 1
1þexpð�vÞ is the sigmoid function. Note

that rðvÞ 2 ½0;1� and @r
@v ¼ rðvÞð1� rðvÞÞ.

Then the weight wij and the derivative @L
@hij

could be written as:

wij ¼ �
@L
@hij
¼ � @L

@pi

@pi

@pij

@pij

@hij
: ð8Þ

wij is obtained by taking three derivatives:

@L
@pi
¼

� wi
pi

if y ¼ 1;

wi
1�pi

if y ¼ �1:

(
ð9Þ

@pi

@pij
¼

1�pi
1�pij

NOR; pi
ðpijÞr�1P

j
ðpijÞr

GM;

expðrpijÞP
j
expðrpijÞ

LSE; 1�pi
1�pij

� �2
ISR:

8>><
>>: ð10Þ

@pij

@hij
¼ 2pijð1� pijÞ: ð11Þ

Once we obtain ht , the weight at can be found via a line search,
which aims to minimize LðhÞ. Finally, we combine multiple weak
learners into a single strong classifier i.e. h hþ atht . Algorithm
2 illustrates the details of MIL-Boost. The parameter T is the num-
ber of weak classifiers in AnyBoost (Mason et al., 2000).

Algorithm 2. MIL-Boost

Input: Bags fx1; . . . ; xng; fy1; . . . ; yng; T
Output: h
for t ¼ 1! T do

Compute weights wij ¼ � @L
@pi

@pi
@pij

@pij

@hij

Train weak classifiers ht using weights jwijj
ht ¼ argmin

h

P
ij1ðhðxijÞ – yiÞjwijj

Find at via line search to minimize LðhÞ
at ¼ argmin

a
Lðhþ ahtÞ

Update strong classifiers h hþ atht

end for
3.2. Multiple cluster assumption

Multiple cancer subtypes with different morphological charac-
teristics might co-exist in a histopathology image. The single mod-
el/cluster/classifier in the previous MIL method is not capable of
taking the different types into consideration. A key component of
our work is to embed clustering into the MIL setting to classify
the segmented regions into different cancer subtypes. Although
there are many individual classification, segmentation and cluster-
ing approaches in the medical imaging and computer vision com-
munity, none of these algorithms meet our requirement since they
are designed for doing only one of the three tasks. Here we simul-
taneously perform three tasks in an integrated system under
weakly supervised learning framework.

We integrate the clustering concept into the MIL setting by
assuming the existence of hidden variable yk

ij 2 Y which denotes
whether the instance xij belongs to the kth cluster. If an instance
belongs to one of K clusters, this instance is considered as a posi-
tive instance; if at least one instance in a bag is labeled as positive,
the bag is considered as positive. This forms the MCIL assumption,
which is formulated as:

yi ¼max
j

max
k

yk
ij

� �
: ð12Þ

Again the max is equivalent to an OR operator where

maxk yk
ij

� �
¼ 1() 9k; s:t: yk

ij ¼ 1.

Based on this multiple cluster assumption, next we discuss the
proposed MCIL method. The differences among fully supervised
learning, MIL, and MCIL are illustrated in Fig. 3. The goal of MCIL
is to discover and split the positive instances into K groups by

learning K instance-level classifiers hkðxijÞ : X ! Y for K clusters, gi-
ven only bag-level supervision yi. The corresponding bag-level

classifier for the kth cluster is then HkðxiÞ : Xm ! Y. The overall im-
age-level classifier is denoted as HðxiÞ : Xm ! Y:

HðxiÞ ¼max
k

HkðxiÞ ¼max
k

max
j

hkðxijÞ ð13Þ
3.3. The MCIL method

In this section, based on the previous derivations, we give the
full formulation of our MCIL method. The probability
pi � pðyi ¼ 1jxiÞ now is computed as the softmax of the probability
pij � pðyij ¼ 1jxijÞ of all the instances xij; the pij is obtained as the
softmax of pk

ij ¼ pkðyij ¼ 1jxijÞ, which measures the probability of
the instance xij belonging to the kth cluster. Thus, using the softmax
g in place of the max in Eq. (12) we compute the bag probability as:

pi ¼ gjðpijÞ ¼ gjðgkðpk
ijÞÞ ð14Þ

gj gk pk
ij

� �� �
¼ gjk pk

ij

� �
¼ gk gj pk

ij

� �� �
ð15Þ

pi ¼ gjk r 2hk
ij

� �� �
; ð16Þ

where hk
ij ¼ hkðxijÞ. Again, the function of gkðpk

ijÞ can be deduced from
Table 1; it indicates a function g which takes all pk

ij indexed by k;

similarly, gjk pk
ij

� �
could be understood as a function g including all

pk
ij indexed by k and j. Verification of this equation is shown in Re-

mark 1 in Appendix A.
The next step is to compute wk

ij with derivative: wk
ij ¼ � @L

@hk
ij
.

Using the chain rule we get:

wk
ij ¼ �

@L
@hk

ij

¼ � @L
@pi

@pi

@pk
ij

@pk
ij

@hk
ij

: ð17Þ



Fig. 3. Distinct learning goals between (a) Standard supervised learning, (b) MIL, (c) MCIL and (d) cMCIL. MCIL and cMCIL could perform image-level classification

ððxi ! f�1;1gÞÞ, patch-level segmentation ðxij ! f�1;1gÞ and patch-level clustering xij ! y1
ij; . . . ; yK

ij

n o
; yk

ij 2 f�1;1g
� �

. cMCIL studies the contextual prior information among

the instances within the framework of MCIL and correctly recognizes noises and small isolated areas. Red and yellow squares and regions represent different type of cancer
tissues. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
MCIL wk

ij=wi with different softmax functions.
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ij

.
wi

yi ¼ �1 yi ¼ 1

NOR �2pk
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� 2pi

1�pi
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� �r

� pk
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� �rþ1

P
j;k
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� �r 2
pk
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� �r

� pk
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� �rþ1

P
j;k

pk
ij

� �r

LSE
�

2pk
ij 1�pk

ij

� �
1�pi

exp rpk
ij

� �
P

j;k
exp rpk

ij

� � 2pk
ij 1�pk

ij

� �
pi

exp rpk
ij

� �
P

j;k
exp rpk

ij

� �
ISR � 2Xk

ij piP
j;k
Xk

ij

; Xk
ij ¼

pk
ij

1�pk
ij

2Xk
ijð1�piÞP

j;k
Xk

ij

; Xk
ij ¼

pk
ij

1�pk
ij
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The form of @pi
@pk

ij
is dependent on the choice of the softmax function,

which can be deduced from Table 1 by replacing glðv lÞ with pi

and v i with pk
ij. Derivative @L

@pi
is the same as Eq. (9), and

@pk
ij

@hk
ij

is ex-

pressed as:

@pk
ij

@hk
ij

¼ 2pk
ij 1� pk

ij

� �
: ð18Þ

We further summarize the weights wk
ij=wi in Table 2. Recall that wi

is the given prior weight for the ith bag.
Note that pi and LðhÞ depend on each hk

ij. We optimize
Lðh1

; . . . ;hkÞ using the coordinate descent method cycling through
k, which is a non-derivative optimization algorithm (Bertsekas and
Bertsekas, 1999). In each phase we add a weak classifier to hk while
keeping all other weak classifiers fixed. Details of the MCIL are
demonstrated in Algorithm 3. The parameter K is the number of
cancer subtypes, and the parameter T is the number of weak clas-
sifiers in Boosting. Notice that the outer loop is for each weak clas-
sifier while the inner loop is for the kth strong classifier.

In summary, the overall MCIL strategy can be described as fol-
lows. We introduce the latent variables yk

ij, which denotes the in-
stance xij belonging to the kth cluster; we encode the concept of
clustering by re-weighting the instance-level weight wk

ij. If cluster
kth can classify an instance to be positive, thus the corresponding
weights of the instance and bag for other clusters decrease in re-
weighting. Thus, it forms a competition among different clusters.

Algorithm 3. MCIL-Boost

Input: Bags fx1; . . . ; xng; fy1; . . . ; yng;K; T
Output: h1

; . . . ;hK

for t ¼ 1! T do
for k ¼ 1! K do

Compute weights wk
ij ¼ � @L

@pi

@pi
@pk

ij

@pk
ij

@hk
ij

Train weak classifiers hk
t using weights jwk

ijj

hk
t ¼ arg minh

P
ij1 h xk

ij

� �
– yi

� �
jwk

ijj

Find at via line search to minimize Lð:;hk
; :Þ

ak
t ¼ arg minaL :;hk þ ahk

t ; :
� �

Update strong classifiers hk  hk þ ak
t hk

t

end for
end for
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3.4. Contextual constraints
Y. Xu et al. / Medical Imag
Table 3
Number of images in the subsets.

NC MTA PTA MA SRC

Binary 30 30 0 0 0
multi1 30 15 9 0 6
multi2 30 13 9 8 0
multi3 50 28 8 8 6

Table 4
Run time in various algorithms (min).

cMCIL MCIL MKL MIL-
Boost

Boosting mi MI

Features 90 90 90 5 90 90
Model 35 32 8 2 15 16
Total 125 122 70 h 95 7 105 106
Language C++ C++ Matlab/

C
C++ C++ JAVA JAVA
Most existing MIL methods are conducted under the assump-
tion that instances within a bag are distributed independently,
without considering the inter-dependences among instances; this
leads to some degree of ambiguity. For example, an instance con-
sidered to be positive in a bag may be an isolated point or noise.
In this situation, it will lead to incorrect recognition of cancer tis-
sues. Rich contextual information has been proven to play a key
role in fully supervised image segmentation and labeling (Tu and
Bai, 2010). To further improve our algorithm, we take into consid-
eration such contextual information to enhance the robustness of
the MCIL. For convenience, this extension is called context-con-
strained multiple clustered instance learning (cMCIL). The key to
the cMCIL is a formulation for introducing the neighborhood infor-
mation as a prior for the MCIL. Note that the cMCIL is still imple-
mented within the framework of the MCIL. The distinction
between MCIL and cMCIL is illustrated in Fig. 3.

We define the new loss function in cMCIL as:

LðhÞ ¼ LAðhÞ þ kLBðhÞ; ð19Þ

where LAðhÞ is the standard MCIL loss function taking the form as
Eq. (4). LBðhÞ imposes a neighborhood constraints (in a way a
smoothness prior) over the instances to reduce the ambiguity dur-
ing training; it encourages the nearby image patches to be within
the same cluster.

LBðhÞ ¼
Xn

i¼1

wi

X
ðj;mÞ2Ei

v jmkpij � pimk
2
; ð20Þ

where k weighs the importance of the current instance and its
neighbors. wi is the weight of the ith training data (the ith bag). Ei

denotes the set of all the neighboring instance pairs in the ith
bag. v jm is the weight on a pair of instances (patches) j and m related
to the Euclidean spatial distance (on the image, denoted as djm) be-
tween them. Nearby instances have more contextual influence than
instances that are far away from each other. In our experiment, we
chose v jm ¼ expð�djmÞ, such that higher weights will be put on clo-
ser pairs.

According to Eq. (19), we rewrite @LðhÞ
@hk

ij
as

@LðhÞ
@hk

ij

¼ @LAðhÞ
@hk

ij

þ k
@LBðhÞ
@hk

ij

; ð21Þ

and

@LBðhÞ
@pk

ij

¼ wi

X
ðj;mÞ2Ei

2v jm pk
ij � pk

im

� �
: ð22Þ

we further rewrite the derivative of wk
ij ¼ � @L

@hk
ij

as:

wk
ij ¼ �

@L
@hk

ij

¼ � @LA

@pi

@pi

@pk
ij

@pk
ij

@hk
ij

þ @LB

@pk
ij

@pk
ij

@hk
ij

 !
: ð23Þ

The derivatives @pi
@pk

ij
and

@pk
ij

@hk
ij

have been given previously (see the sub-

section of MCIL). @LAðhÞ
@pi

takes the same form of @LðhÞ
@pi

in Eq. (9).

The optimization procedure for cMCIL is similar to MCIL. With

the weight wk
ij, we can train the weak classifier hk

t by optimizing

weighed error to obtain a strong classifier: hk  hk þ ak
t hk

t . The
details of cMCIL are similar to those of MCIL as demonstrated in
Algorithm 3 except that the weight wk

ij is replaced by Eq. (23).

4. Experiments

To illustrate the advantages of MCIL, we conduct experiments
on two medical image datasets. In the first experiment, without
loss of generality, we use colon tissue microarrays to perform joint
classification, segmentation and clustering. For convenience, tissue
microarrays are called histopathology images. In the second
experiment, cytology images (Lezoray and Cardot, 2002) are used
to further validate the effectiveness of MCIL. All the methods in
the following experiments, unless particularly stated, are con-
ducted under the same experimental settings and based on the
same features, which are declared as follows.

4.1. Experiment A: colon cancer histopathology images

Settings. For the parameter setting, we set r ¼ 20, and T ¼ 200.
As mentioned before, the parameter r controls the sharpness and
accuracy in the LSE and GM model. The parameter T decides the
number of weak classifiers in boosting. The parameter K decides
the number of cancer classes when performing clustering task. K
is set to 4 in the colon cancer image experiment because the data-
set contains four kinds of cancer types. For the value of parameter k
used in the loss function of cMCIL, 0:01 is selected according to an
segmentation experimental result based on a cross validation.

We assume the initial equal weights for the positive and nega-
tive training data. Under this assumption, the initial weight wi for
the ith bag is set as uniform. In our experiments, we use the GM
model as the softmax function, except for one classification exper-
iment part, in which we use four models for comparison. The weak
classifier we use is the Gaussian function. All the experimental re-
sults are reported with 5-fold cross validation. The number of
training data and test data are always the half of the total number
of all the data used in the experiment.

Features. Each instance is represented by a feature vector. In
this work we focus on an integrated learning formulation rather
than the feature design. Also to demonstrate the generality of
our framework, we opt for general features instead of adopting
or creating our own disease specific features. Specifically, we use
widely adopted features including L�a�b� Color Histogram, Local
Binary Pattern (Ojala et al., 2002; Ahonen et al., 2009), and SIFT
(Lowe, 2004). Note that designing disease specific features is an
interesting and challenging research topic itself due to the fact that
cell appearance of different types of cancers may be very difference
in terms of shape, size and so on. While using disease specific fea-
tures may potentially improve the performance further, we leave it
for future work.

In histopathology images, recent studies use some common and
useful features from gray-level co-occurrence matrix (GLCM),
Gabor filters, multiwavelet transforms, and fractal dimension
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Fig. 4. ROC curves for classification in (a and b): (a) ROC curves for four softmax models in MCIL; LSE model and GM model fit the best for the cancer image recognition task.
(b) Comparisons of image (bag)-level classification results with state-of-the-art methods on the three datasets: ROC curves for different learning methods; our proposed
methods have the apparent advantages.
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texture features (Huang and Lee, 2009). Therefore, we also added
the similar features.

Datasets. Colon histopathology images with four cancer types
are used, including Moderately or well differentiated tubular ade-
nocarcinoma (MTA), Poorly differentiated tubular adenocarcinoma
(PTA), Mucinous adenocarcinoma (MA), and Signet-ring carcinoma
(SRC). These four types are the most common types in colon can-
cer. Combined with the Non-cancer images (NC), five classes of co-
lon histopathology images are used in the experiments. We use the
same abbreviations for each type in the following sections.
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Fig. 5. ROC curves for classification on multi3 in (a–c). (a) Comparison with state-of-the-art methods based on the new feature set. (b and c) Comparison of MCIL/cMCIL based
on two different feature set. (d) The F-measures for segmentation at varying number of images with pixel-level full supervision.
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To better reflect the real world situation, we designed our data-
set in an unbalanced way to match the actual distribution of the
four types of cancer. According to national cancer institute
(http://seer.cancer.gov/), the incidence of Moderately or well dif-
ferentiated tubular adenocarcinoma accounts for 70–80%, Poorly
differentiated tubular adenocarcinoma accounts for 5%, Mucinous
adenocarcinoma accounts for 10%, and Signet-ring carcinoma ac-
counts for less than 1%. The images are obtained from the NanoZo-
omer 2.0HT digital slice scanner produced by Hamamatsu
Photonics with a magnification factor of 40. In total, we obtain
50 non-cancer (NC) images and 53 cancer images. First we
down-sample the images by 5 times to reduce the computational
overhead. Our segmentation therefore is conducted on the down-
sampled images rather than the original images. We then densely
extract patches from each image. The size of each patch is 64� 64.
The overlap step size is 32 pixels for training and 4 pixels for the
inference. Note that each patch corresponds to an instance, which
is represented by a feature vector.

We use all the images to construct four different subsets:
binary; multi1; multi2, and multi3. The constituents of the four
subsets are shown in Table 3. In the first three subsets, each subset
contains 60 different histopathology images. binary refers to the
subset containing only two classes: the NC class and the MTA class.
It contains 30 non-cancer and 30 cancer images, and can be used to
test the capability of cancer image detection. multi1 and multi2
each includes three types of cancer images and one type of non-
cancer images. multi3 contains all four types of images. In the all
four subsets, we demonstrate the advantage of the MIL formula-
tions against the state-of-the-art supervised image categorization
approaches. In multi2, we further show the advantage of MCIL in
an integrated classification/segmentation/clustering framework.

Annotations. To ensure the quality of the ground truth annota-
tions, images are carefully studied and labeled by well-trained ex-
perts. Specifically, each image is independently annotated by two
pathologists; the third pathologist moderates their discussion until
they reach the final agreement on the result. All images are labeled
as cancer images or non-cancer images. Furthermore, for the can-
cer image, cancer tissues are annotated and their corresponding
cancer subtypes are identified.

4.1.1. Image-level classification
In the experiment, we measure the image-level classification for

being cancer or non-cancer images. First, the performance of the
MCIL method based on different softmax models as mentions in Ta-
ble 1 are compared.

Second, to evaluate the performance of our methods, several
methods are implemented as baseline for comparison in this
experiment. Since the source codes of most algorithms presented
in the colon cancer image analysis literature are not always avail-
able, the image classification baseline we use here is multiple ker-
nel learning (MKL) (Vedaldi et al., 2009) which obtains very
competitive image classification results and wins the PASCAL Vi-
sual Object Classes Challenge 2009 (VOC2009) (Everingham et al.,
2009). We use their implementation and the same parameters
reported in their paper. For the MIL baselines, we use MI-SVM
(Andrews et al., 2003), mi-SVM (Andrews et al., 2003), and

http://seer.cancer.gov/


Table 5
Colon cancer image segmentation results in F-measure of four methods. Note that
standard Boosting (Mason et al., 2000) is trained under the image-level supervision.

Method Standard boosting MIL-Boost MCIL cMCIL

F-measure 0.312 0.253 0.601 0.717
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MIL-Boost (Viola et al., 2005). Moreover, we use all the
instances xij to train a standard Boosting (Mason et al., 2000) by
considering instance-level labels derived from bag-level labels
(yij ¼ yi; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m).

In total seven methods for colon cancer image classification are
compared, including cMCIL, MCIL, MKL, MIL-BOOST, Boosting, mi-
SVM and MI-SVM. Notice that MKL utilizes more discriminative
features than what we use in MIL, MCIL and cMCIL, including the
distribution of edges, dense and sparse visual words, and feature
descriptors at different levels of spatial organization.

Moreover, to further validate the methods, special experiments
on multi3 is conducted. In these experiments, some other features,
including Hu moment and gray-level co-occurrence matrix (GLCM)
(Sertel et al., 2009), are added into the original feature set to dem-
onstrate how the feature set influences the classification result.

Computational complexity. The machine (Processor: Intel (R)
Core (TM)2 Quad CPU Q9400 @ 2.66 GHz 2.67 GHz; RAM: 8G; 64
Operating System) is used to evaluate the computational complex-
ity. The data set Multi2 is used in the experiment. The feature code
is C++ implementation in all these algorithms except MKL. The
MKL code, including features and models, is MATLAB/C implemen-
tation from.1 The mi-SVM and MI-SVM codes are JAVA implementa-
tion from.2 The other codes are C++ implementation written by the
authors. Table 4 shows time consuming from various algorithms.
Noted that mi means mi-SVM and MI means MI-SVM. The numerical
unit is minute except MKL using hour. For the computational com-
plexity, it takes several days to train an MKL classifier for a dataset
containing 60 images while it only takes about several hours using
an ensemble of MIL. Compared with MIL and MCIL, because MCIL
adds a loop, the training time of MCIL is more than that of MIL.
The time of cMCIL is slightly more than that of MCIL due to the dif-
ferent loss function.

Evaluation. Receiver operating characteristic (ROC) curve is
used to evaluate the performance of classification. The larger the
area under the curve is, the better the corresponding classification
method is.

Results. The ROC curves for four softmax models in MCIL are
shown in Fig. 4a. According to the curves shown in the figure, it
is safely to say that the LSE model and GM model fit the best for
the cancer image recognition task, which is the reason why GM
model is chosen in all the following experiments.

Fig. 4b shows the ROC curves for different learning methods in
the three datasets. In the dataset binary, cMCIL, MCIL and MIL-
Boost outperform well than developed MKL algorithm (Vedaldi
et al., 2009) and standard Boosting (Mason et al., 2000), which
shows the advantage of the MIL formulation to the cancer image
classification task. cMCIL, MCIL and MIL-Boost achieve similar per-
formance on the binary dataset of one class/cluster; however, when
applied to the datasets multi1 and multi2, cMCIL and MCIL signifi-
cantly outperform MIL-Boost, MKL, and Boosting. This reveals that
the multiple clustering concept integrated in the MCIL/cMCIL
framework is able to successfully deal with the complex situation
in cancer image classification.

Fig. 5 further demonstrates the advantages of MCIL/cMCIL
framework than other methods. Furthermore, the three results in
the figure show that MCIL/cMCIL method based on new feature
set can hardly outperform well than the method based on the old
feature set that is very general and small. This result demonstrate
that the MCIL/cMCIL method effective to detect cancer image using
general feature set rather than using special medical features.

Discussion. In classification, we show the performance of both
MCIL and cMCIL compared to others. Note that the performance of
1 http://www.robots.ox.ac.uk/vgg/software/MKL/.
2 http://weka.sourceforge.net/doc.packages/multiInstanceLearning/weka/classifi-

ers/mi/package-summary.html.
cMCIL (F-measure: 0.972) is almost identical to that of MCIL
(F-measure: 0.963). This is expected because the contextual
models mainly improve patch-level segmentation and have little
effect on classification.

Different cancer types, experiment settings, benchmarks, and
evaluation methods are reported in the literature. As far as we
know, the code and images used in Huang and Lee (2009), Tabesh
et al. (2007), and Esgiar et al. (2002) are not publicly accessible.3

Hence, it is quite difficult to make a direct comparison between dif-
ferent algorithms. Below we only list their results as references. In
Huang and Lee (2009), 205 pathological images of prostate cancer
were chosen as evaluation which included 50 of grade 1–2, 72 of
grade 3, 31 of grade 4, and 52 of grade 5. The highest correct classi-
fication rates based on Bayesian, KNN and SVM classifiers achieved
94:6%; 94:2% and 94:6% respectively. In Tabesh et al. (2007), 367
prostate images (218 cancer and 149 non-cancer) were chosen to de-
tect cancer or non-cancer. The highest accuracy was 96:7%. 268
images were chosen to classify Gleason grading. The numbers of
grades 2–5 are 21, 154, 86 and 7, respectively. The highest accuracy
was 81%. In Esgiar et al. (2002), a total of 44 non-cancer images and
58 cancer images were selected to detect cancer or non-cancer. The
sensitivity of 90–95% and the specificity of 86–93% were achieved
according to various features.
4.1.2. Image segmentation
We now turn to an instance-level experiment. We report in-

stance-level results in the dataset multi2 that contains 30 cancer
images and 30 non-cancer images in total. Instance-level annota-
tions for cancer images are provided by three pathologists with
the procedure (two pathologists marking up and one more pathol-
ogist mediating the decision) described before.

Unsupervised segmentation techniques cannot be used as a di-
rect comparison here since they cannot output labels for each seg-
ment. The segmentation baselines are MIL-Boost (Viola et al., 2005)
and standard Boosting (Mason et al., 2000), both taking the image-
level labeling as supervision. Moreover, in order to compare with
the fully supervised approach with pixel-wise annotation, we pro-
vide a pixel-level full supervision method by implementing a stan-
dard Boosting method that takes the pixel-level labeling as
supervision (require laborious labeling work). Experiment on vary-
ing numbers ð1;5;7;10Þ of images of pixel-level full supervision
are conducted.

Evaluation. For a quantitative evaluation, the F-measure is used
to evaluate the segmentation result. Each approach generates a
probability map Pi for each bag (image) xi and the corresponding
ground truth map is named as Gi. Then we compute F-measure
as follows: Precision ¼ jPi \ Gij=jPij; Recall ¼ jPi \ Gij=jGij and
F�measure ¼ 2�Precision�Recall

PrecisionþRecall .
Results and discussion. Table 5 shows the F-measure values of

four methods, cMCIL, MCIL, MIL-Boost and standard Boosting.
Again, standard Boosting is a supervised learning baseline that
utilizes image-level supervision by treating all the pixels in the po-
sitive and negative bags as positive and negative instances respec-
3 We have also tried to contact many authors working on medical segmentation
related to our topic to validate our method. Unfortunately, they either did not answer
our email, cannot share the data with us, or tell us that their method will fail in our
task.

http://www.robots.ox.ac.uk/vgg/software/MKL/
http://weka.sourceforge.net/doc.packages/multiInstanceLearning/weka/classifiers/mi/package-summary.html
http://weka.sourceforge.net/doc.packages/multiInstanceLearning/weka/classifiers/mi/package-summary.html
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Fig. 6. Image types: from left to right. (a) The original images. (b–f) The instance-level results (pixel-level segmentation and patch-level clustering) for standard Boosting + K-
means, pixel-level full supervision, MIL + K-means, MCIL and cMCIL. (g) The instance-level ground truth labeled by three pathologists. Different colors stand for different
types of cancer tissues. Cancer types: from top to bottom: MTA, MTA, PTA, NC, and NC. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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tively. The high F-measure values of cMCIL display the great
advantage of contextual constraints over previous MIL-based
methods. We introduce context constraints as a prior for multiple
instance learning (cMCIL), which significantly reduces the ambigu-
ity in weak supervision (a 20% gain).

Fig. 6 shows some segmentation results of test data. According
to the test results, standard Boosting with image-level supervision
tends to detect non-cancer tissues as cancer tissues since it consid-
ers all the instances in positive bags as positive instances.

Since our learning process is based on image-level labels, the
intrinsic label (cancer vs. non-cancer) for each patch/pixel is
ambiguous. Using contextual information therefore can reduce
the ambiguity on the i.i.d. (independently identically distributed)
assumption. Compared with MCIL, cMCIL improves segmentation
quality by reducing the intrinsic training ambiguity. Due to neigh-
borhood constraints, cMCIL is able to reduce noises and identify
small isolated areas in cancer images to achieve cleaner
boundaries.

The corresponding F-measure values of the varying numbers of
images of pixel-level full supervision are shown in Fig. 5d, which
demonstrates that cMCIL is able to achieve comparable results
(around 0.7) but without having detailed pixel-level manual
annotations. Although our weakly supervised learning method re-
quires more images (30 positive), it eases the burden of making the
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pixel-wise manual annotation. In our case, it often takes 2–3 h for
our expert pathologists to reach the agreement on the pixel-level
ground truth while it usually costs only 1–2 min to label an image
as cancerous or non-cancerous.

4.1.3. Patch-level clustering
With the same test data mentioned in segmentation, we also

obtained the clustering results. For patch-level clustering, we build
two baselines: MIL-Boost (Viola et al., 2005) + K-means and stan-
dard Boosting + K-means. Particularly, we first run MIL-Boost or
standard Boosting to perform instance-level segmentation and
then use K-means to obtain K clusters among positive instances
(cancer tissues). Since we mainly focus on clustering performance
here, we only include true positive instances.

Evaluation. The purity measure is used as the evaluation
metric. Given a particular cluster Sr of size nr , the purity is
defined as the weighted sum of the individual cluster puri-
ties:purity ¼

Pk
r¼1

nr
n PuðSrÞ, where PuðSrÞ is the purity of a cluster,

defined as PuðSrÞ ¼ 1
nr

maxini
r . Larger purity values indicate better

clustering results.
Results and discussion. The purities of cMCIL and MCIL are

respectively 99:74% and 98:92%, while the purities of MIL-
Boost + K-means and standard Boosting + K-means are only
86:21% and 84:37% respectively. This shows that an integrated
learning framework of MCIL is better than separating the two-
steps, instance-level segmentation and clustering.

We also illustrate the clustering results in Fig. 6. As shown in the
figure, MCIL and cMCIL successfully discriminate cancer classes. The
original MCIL method divides MTA cancer images into three clus-
ters. Compared with MCIL, the patch-level clustering is less noisy
in cMCIL. The PTA cancer tissues are mapped to blue; the MTA
cancer tissues are mapped to green, yellow and red. Both
Fig. 7. Image types: from left to right. (a) The original cell images. (b–e) The segmentatio
truth images. The two bottom images are generated background images. Cytology imag
MIL-Boost + K-means and standard Boosting + K-means divide one
tissue class into several clusters and the results are not consistent.
In the histopathology images, the purple regions around cancers
are lymphocytes. For some patients, it is common that lymphocytes
occur around the cancer cells and seldom appear around non-
cancerous tissues although lymphocytes themselves are not
considered as cancer tissues. Since a clear definition of all classes
is still not available, our method shows the promising potential for
automatically exploring different classes with weak supervision.

4.2. Experiment B: cytology images

Datasets. Ten cytology images together with their correspond-
ing segmentation results (as the ground truth) are obtained from
the paper (Lezoray and Cardot, 2002). We also generate additional
ten background (negative) images. These images have the same
background texture as the ten cytology images but without cells
on them. Details of the method for texture image generation are
presented in Portilla and Simoncellt (2000), in which a universal
parametric model for visual texture, based on a novel set of pair-
wise joint statistical constraints on the coefficients of a multiscale
image representation is described. For convenience, we name the
cytology image as cell image (CELL) and texture image as back-
ground image (BG).

Experiments design. To evaluate the pixel-level segmentation,
we test these 20 images with 4 different methods, including pixel-
level full supervision, MIL-Boost, MCIL, and cMCIL. All the four
methods correctly classify the 20 images into the cell image and
background image. Since all nuclei belong to the same type, the
cluster concept that divides different instances into different
classes is rather weak in this case. Therefore, in Experiment B we
focus on the segmentation task.
n results for pixel-level fully supervision, MIL-Boost, MCIL and cMCIL. (f) The ground
e classes: from top to bottom: CELL, CELL, CELL, BG and BG.



Table 6
Cytology image segmentation results in F-measure of different methods.

Method Full supervision MIL-Boost MCIL cMCIL

F-measure 0.766 0.658 0.673 0.699

Y. Xu et al. / Medical Image Analysis 18 (2014) 591–604 603
Results and discussion. The results are shown in Fig. 7. Same as
before, supervised method with the full pixel-level supervision
achieves the best performance. By comparing weakly supervised
methods in Fig. 7, we observe: (1) some nuclei are missed by
MIL-Boost; (2) MCIL removes some errors but also brings up
noises; and (3) cMCIL further improves the results by reducing
the intrinsic training ambiguity. The F-measures calculated for a
quantitative evaluation are shown on Table 6, which is consistent
to the qualitative illustration in Fig. 7.

The experimental results demonstrate the effectiveness of
cMCIL in cytology image segmentation. MCIL significantly im-
proves segmentation over other weakly supervised methods and
it is able to achieve accuracy comparable with a fully supervised
state-of-the-art method.

5. Conclusion

In this paper, we have presented an integrated formulation, mul-
tiple clustered instance learning (MCIL), for classifying, segmenting,
and clustering medical images along the line of weakly supervised
learning. The advantages of MCIL are evident over the state-of-
the-art methods that perform the individual tasks, which include
easing the burden of manual annotation in which only image-level
label is required and perform image-level classification, pixel-level
segmentation and patch-level clustering simultaneously.

In addition, we introduce contextual constraints as a prior for
MCIL which reduces the ambiguity in MIL. MCIL and cMCIL are able
to achieve comparable results in segmentation with an approach of
full pixel-level supervision in our experiment. This will inspire fu-
ture research in applying different families of joint instance models
(conditional random fields (Lafferty et al., 2001), max-margin Mar-
kov network (Taskar et al., 2003), etc.) to the framework of MIL/
MCIL, as the independence assumption might be loose.
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Appendix A. Verification for Remark 1

We verify Remark 1 (Eq. (15)): gj gk pk
ij

� �� �
¼ gjk pk

ij

� �
¼ gk gj pk

ij

� �� �
for each model. Given the number of clusters K and

the number of instances m in each bag, we develop derivations
for four models respectively:
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For the LSE model:
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For the ISR model:
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Now we show gjk pk
ij

� �
¼ gkgj pk

ij

� �
for each softmax models.

gjk pk
ij

� �
¼ gjgk pijk

� �
could also be given in the same way. Thus

Remark 1 (Eq. (15)) could be verified.
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