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Abstract

We propose a novel zero-shot learning method for semantic utterance classifi-
cation (SUC). It learns a classifier f : X → Y for problems where none of
the semantic categories Y are present in the training set. The framework un-
covers the link between categories and utterances through a semantic space. We
show that this semantic space can be learned by deep neural networks trained on
large amounts of search engine query log data. What’s more, we propose a novel
method that can learn discriminative semantic features without supervision. It uses
the zero-shot learning framework to guide the learning of the semantic features.
We demonstrate the effectiveness of the zero-shot semantic learning algorithm on
the SUC dataset collected by [1]. Furthermore, we achieve state-of-the-art results
by combining the semantic features with a supervised method.

1 Introduction

Conversational understanding systems aim to automatically classify user requests into predefined
semantic categories and extract related parameters [2]. For instance, such a system might classify the
natural language query “I want to fly from San Francisco to New York next Sunday” into the semantic
domain flights. This is known as semantic utterance classification (SUC). Typically, these systems
use supervised classification methods such as Boosting [3], support vector machines (SVMs) [4], or
maximum entropy models [5]. These methods can produce state-of-the-art results but they require
significant amounts of labelled data. This data is mostly obtained through manual labor and becomes
costly as the number of semantic domains increases. This limits the applicability of these methods
to problems with relatively few semantic categories.

We consider two problems here. First, we examine the problem of predicting the semantic domain
of utterances without having seen examples of any of the domains. Formally, the goal is to learn a
classifier f : X → Y without any values of Y in the training set. In constrast to traditional SUC
systems, adding a domain is as easy as including it in the set of domains. This is a form of zero-
shot learning [6] and is possible through the use of a knowledge base of semantic properties of the
classes to extrapolate to unseen classes. Typically this requires seeing examples of at least some of
the semantic categories. Second, we consider the problem of easing the task of supervised classifiers
when there are only few examples per domain. This is done by augmenting the input with a feature
vector H for a classifier f : (X,H) → Y . The difficulty is that H must be learned without any
knowledge of the semantic domains Y .

In this paper, we introduce a zero-shot learning framework for SUC where none of the classes have
been seen. We propose to use a knowledge base which can output the semantic properties of both the
input and the classes. The classifier matches the input to the class with the best matching semantic
features. We show that a knowledge-base of semantic properties can be learned automatically for
SUC by deep neural networks using large amounts of data. The recent advances in deep learning
have shown that deep networks trained at large scale can reach state-of-the-art results. We use the
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Bing search query click logs, which consists of user queries and associated clicked URLs. We hy-
pothesize that the clicked URLs reflect high level meaning or intent of the queries. Surprinsingly, we
show that is is possible to learn semantic properties which are discriminative of our unseen classes
without any labels. We call this method zero-shot discriminative embedding (ZDE). It uses the
zero-shot learning framework to provide weak supervision during learning. Our experiments show
that the zero-shot learning framework for SUC yields competitive results on the tasks considered.
We demonstrate that zero-shot discriminative embedding produces more discriminative semantic
properties. Notably, we reach state-of-the-art results by feeding these features to an SVM.

In the next section, we formally define the task of semantic utterance classification. We provide a
quick overview of zero-shot learning in Section 3. Sections 4 and 5 present the zero-shot learning
framework and a method for learning semantic features using deep networks. Section 6 introduces
the zero-shot discriminative embedding method. We review the related work on this task in Section 7
In Section 8 we provide experimental results.

2 Semantic Utterance Classification

The semantic utterance classification (SUC) task aims at classifying a given speech utterance Xr

into one of M semantic classes, Ĉr ∈ C = {C1, . . . , CM} (where r is the utterance index). Upon
the observation of Xr, Ĉr is chosen so that the class-posterior probability given Xr, P (Cr|Xr), is
maximized. More formally,

Ĉr = argmax
Cr

P (Cr|Xr). (1)

Semantic classifiers need to allow significant utterance variations. A user may say “I want to fly
from San Francisco to New York next Sunday” and another user may express the same information
by saying “Show me weekend flights between JFK and SFO”. Not only is there no a priori constraint
on what the user can say, these systems also need to generalize well from a tractably small amount
of training data. On the other hand, the command “Show me the weekend snow forecast” should
be interpreted as an instance of another semantic class, say, “Weather.” In order to do this, the
selection of the feature functions fi(C,W ) aims at capturing the relation between the class C and
word sequence W . Typically, binary or weighted n-gram features, with n = 1, 2, 3, to capture the
likelihood of the n-grams, are generated to express the user intent for the semantic class C [7]. Once
the features are extracted from the text, the task becomes a text classification problem. Traditional
text categorization techniques devise learning methods to maximize the probability of Cr, given the
text Wr; i.e., the class-posterior probability P (Cr|Wr).

3 Zero-shot learning

In general, zero-shot learning [6] is concerned with learning a classifier f : X → Y that can predict
novel values of Y not present in the training set. It is an important problem setting for tasks where
the set of classes is large and in cases where the cost of labelled examples is high. It has found
application in vision where the number of classes can be very large [8].

A zero-shot learner uses semantic knowledge to extrapolate to novel classes. Instead of predicting
the classes directly, the learner predicts semantic properties or features of the input. Thanks to a
knowledge-base of semantic features for the classes it can match the inputs to the classes.

The semantic feature space is a euclidean space of d dimensions. Each dimension encodes a se-
mantic property. In vision for instance, one dimension might encode the size of the object, another
the color. The knowledge base K stores a semantic feature vector H for each of the classes. The
zero-shot classifier f = m ◦ n is the composition of two classifiers. The first classifier m : X → H
predicts the semantic properties of the input. The training set is found by replacing the class values
in the training set by their semantic features. The second classifier n : H → Y matches the semantic
code to the class. This can be done by a k-NN classifier.

In applying zero-shot learning to semantic utterance classification there are several challenges. The
framework described by [6] requires some of the classes to be present in the training data in order
to train the m classifier. We are interested in the setting where none of classes have training data.
Furthermore, an adequate knowledge-base must be found for SUC.
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4 Zero-Shot Learning for Semantic Utterance Classification

In this section, we introduce a zero-shot learning framework for SUC where none of the classes are
seen during training. It is based on the observation that in SUC both the semantic categories and the
inputs reside in the same semantic space. In this framework, classification can be done by finding
the best matching semantic category for a given input.

Semantic utterance classification is concerned with finding the semantic category for a natural lan-
guage utterance. Traditionally, conversational systems learn this task using labelled data. This over-
looks the fact that classification would be much easier in a space that reveals the semantic meaning of
utterances. Interestingly, the semantics of language can be discovered without labelled data. What’s
more, the name of semantic classes are not chosen randomly. They are in the same language as the
sentences and are often chosen because they describe the essence of the class. These two facts can
easily be used by humans to classify without task-specific labels. For instance, it is easy to see that
the utterance the accelerator has exploded belongs more to the class physics than outdoors. This is
the very human ability that we wish to replicate here.

Figure 1: Visualization of the 2d semantic space learned by a deep neural net. We see that the two
axis differentiate between phrases relating to hotels and movies. More details in Section 8.

We propose a framework called zero-shot semantic learning (ZSL) that leverages these observations.
In this framework, the knowledge-base K is a function which can output the semantic properties of
any sentence. The classification procedure can be done in one step because both the input and the
categories reside in the same space. The zero-shot classifier finds the category which best matches
the input. More formally, the zero-shot classifier is given by

P (Cr|Xr) =
1

Z
e−|K(Xr)−K(Cr)| (2)

where Z =
∑

C e
−|K(Xr)−K(C)| and |x − y| is a distance measure like the euclidean distance.

The knowledge-base maps the input K(Xr) and the category K(Xr) in a space that reveals their
meaning. An example 2d semantic space is given in Figure 1 which maps sentences relating to
movies close to each other and those relating to hotels further away. In this space, given the cate-
gories hotel and movies, the sentence motels in aurora colorado will be classified to hotel because
K(motels in aurora colorado) is closer to K(hotel).

This framework will classify properly if

• The semantics of the language are properly captured by K. In other words, utterances are
clustered according to their meaning.

• The class name Cr describes the semantic core of the class well. Meaning that K(Cr)
resides close to the semantic representation of sentences of that class.

The success of this framework rests on the quality of the knowledge-base K. Following the success
of learning methods with language, we are interested in learning this knowledge-base from data.
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Unsupervised learning methods like LSA, and LDA have had some success but it is hard to ensure
that the semantic properties will be useful for SUC.

5 Learning Semantic Features for SUC using Deep Nets

In this section, we describe a method for learning a semantic features for SUC using deep networks
trained on Bing search query click logs. We use the query click logs to define a task that makes the
networks learn the meaning or intent behind the queries. The semantic features are found at the last
hidden layer of the deep neural network.

Query Click Logs (QCL) are logs of unstructured text including both the users queries sent to a
search engine and the links that the users clicked on from the list of sites returned by that search
engine. Some of the challenges in extracting useful information from QCL is that the feature space
is very high dimensional (there are thousands of url clicks linked to many queries), and there are
millions of queries logged daily.

We make the mild hypothesis that the website clicked following a query reveals the meaning or intent
behind a query. The queries which have similar meaning or intent will map to the same website.
For example, it is easy to see that queries associated with the website imdb.com share a semantic
connection to movies.

Figure 2: Depiction of the deep network from queries to URLs.

We train the network with the query as input and the website as the output (see Figure 2). This
learning scheme is inspired by the neural language models [9] who learn word embeddings by
learning to predict the next word in a sentence. The idea is that the last hidden layer of the network
has to learn an embedding space which is helpful to classification. To do this, it will map similar
inputs in terms of the classification task close in the embedding space. The key difference with word
embeddings methods like [9] is that we are learning sentence-level embeddings.

We train deep neural networks with softmax output units and rectified linear hidden units. The inputs
Xr are queries represented in bag-of-words format. The labels Yr are the index of the website that
was clicked. We train the network to minimize the negative log-likelihood of the data

L(X,Y ) = − logP (Yr|Xr)

The network has the form

P (Y = i|Xr) =
eW

n+1
i Hn(Xr)+bn+1

i∑
j e

Wn+1
j Hn(Xr)+bn+1

j

The latent representation function Hn is composed on n hidden layers

Hn(Xr) = max(0,WnHn−1(Xr) + bn)

H1(Xr) = max(0,W 1Xr + b1)

We have a set of weight matrices W and biases b for each layer giving us the parameters θ =
{W 1, b1, . . . ,Wn+1, bn+1} for the full network. Though rectified linear units are not smooth, re-
search [10, 11] has shown that they can greatly improve the speed of learning of the network. We
train the network using stochastic gradient descent with minibatches.
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The knowledge-base function is given by the last hidden layer K = Hn(Xr). In this scheme, the
embeddings are used as the semantic properties of the knowledge-base. However, it is not clear that
the semantic space will be discriminative of the semantic categories we care about for SUC.

6 Learning Discriminative Semantic Features without Supervision

We introduce a novel regularization that encourages deep networks to learn discriminative semantic
features for the SUC task without labelled data. More precisely, we define a clustering measure
for the semantic classes using the zero-shot learning framework of Section 4. We hypothesize the
classes are well clustered hence we minimize this measure.

In the past section, we have described a method for learning semantic features using query click
logs. The features are given by finding the best semantic space for the query click logs task. In
general, there might be a mismatch between what qualifies as a good semantic space for the QCL
and SUC tasks. For example, the network might learn an embedding that clusters sentences of the
category movies and events close together because they both relate to activities. In this case the
features would have been more discriminative if the sentences were far from each other. However,
there is no pressure for the network to do that because it doesn’t know about the SUC task.

Figure 3: Visualization of an actual 2d embedding space learned by a DNN (left) and DNN trained
with ZDE (right). The points are sentences with different colors for each class and the arrows point
to the location of the class name in the embedding space. ZDE significantly improves the clustering
of the classes. More details in Section 8.

This problem could have been addressed by multi-task or semi-supervised learning methods if we
had access to labelled data. Research has shown adding even a little bit of supervision is often helpful
[12]. The simplest solution would be to train the network on the QCL and SUC task simultaneously.
In other words, we would train the network to minimize the sum of the QCL objective− logP (Y |X)
and the SUC objective − logP (C|X). This would allow the model to leverage the large amount of
QCL data while learning a better representation for SUC. We cannot miminize − logP (C|X) but
we can minimize a similar measure which does not require labels.

We can measure the overlap of the semantic categories using the conditional entropy

H(P (Cr|Xr)) = E[I(P (Cr|Xr))] (3)

= E[−
∑
i

P (Cr = i|Xr) logP (Cr = i|Xr)].

The measure is lowest when the overlap is small. Interestingly, calculating the entropy does not
require labelled data. We can recover a zero-shot classifier P (C|X) from the semantic space using
Equation 2. The entropy H(P (Cr|Xr)) of this classifier measures the clustering of the categories
in the semantic space. Spaces with the lowest entropy are those where the examples K(Xr) cluster
around category names K(Cr) and where the categories have low-overlap in the semantic space.
Figure 3 illustrates a semantic space with high conditional entropy on the left, and one with a low
entropy on the right side.
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Zero-shot Discriminative Embedding (ZDE) combines the embedding method of Section 5 with the
minimization of the entropy of a zero-shot classifier on that embedding. The objective has the form

L(X,Y ) = − logP (Y |X) + λH(P (C|X)). (4)

The variable X is the input, Y is the website that was clicked, C is a semantic class. The hyper-
parameter λ controls the strength of entropy objective in the overall objective. We find this value by
cross-validation.

7 Related work

Early work on spoken utterance classification has been done mostly for call routing or intent de-
termination system, such as the AT&T How May I Help You? (HMIHY) system [13], relying on
salience phrases, or the Lucent Bell Labs vector space model [14]. With advances in machine learn-
ing, especially in discriminative classification techniques, in the last decade, researchers have been
able to apply off-the-shelf classification algorithms. Typically word n-grams are used as features
after preprocessing with generic entities, such as dates, locations, or phone numbers. Because of the
very large dimensions of the input space, large margin classifiers such as SVMs [4] or Boosting [3]
were found to be very good candidates. Deep learning methods have first been used for semantic ut-
terance classification by Sarikaya et al. [15]. Deep Convex Networks (DCNs) [1] and Kernel DCNs
(K-DCNs) [16] have also been applied to SUC. K-DCNs allow the use of kernel functions during
training, combining the power of kernel based methods and deep learning. While both approaches
resulted in performances better than a Boosting-based baseline, K-DCNs have shown significantly
bigger performance gains due to the use of query click features.

Entropy minimization [17] is a semi-supervised learning framework which also uses the conditional
entropy. In this framework, both labelled and unlabelled data are available, which is an important
difference with ZDE. In [17], a classifier is trained to minimize its conditional likelihood and its
conditional entropy. ZDE avoids the need for labels by minimizing the entropy of a zero-shot clas-
sifier. [17] shows that this approach produces good results especially when generative models are
mispecified.

8 Experiments

In this section, we evaluate the zero-shot semantic learning framework and the zero-shot discrimi-
native embedding method proposed in the previous sections.

8.1 Setup

We have gathered a month of query click log data from Bing to learn the embeddings. We restricted
the websites to the the 1000 most popular websites in this log. The words in the bag-of-words
vocabulary are the 9521 found in the supervised SUC task we will use. All queries containing only
unknown words were filtered out. We found that using a list of stop-words improved the results.
After these restrictions, the dataset comprises 620,474 different queries.

We evaluate the performance of the methods for SUC on the dataset gathered by [1]. It was compiled
from utterances by users of a spoken dialog system. There are 16,000 training utterances, 2000
utterances for validation and 2000 utterances for testing. Each utterance is labelled with one of 25
domains.

The hyper-parameters of the models are tuned on the validation set. The learning rate parameter of
gradient descent is found by grid search with {0.1, 0.01, 0.001}. The number of layers is between
1 and 3. The number of hidden units is kept constant through layers and is found by sampling a
random number from 300 to 800 units. We found that it was helpful to regularize the networks
using dropout [18]. We sample the dropout rate randomly between 0% dropout and 20%. The λ of
the zero-shot embedding method is found through grid-search with {0.1, 0.01, 0.001}. The models
are trained on a cluster of computers with double quad-core Intel(R) Xeon(R) CPUs with 2.33GHz
and 8Gb of RAM. Training either the ZSL or ZSC method on the QCL data requires 4 hours of
computation time.
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8.2 Results

First, we want to see what is learned by the embedding method described in Section 5. A first
step is to look at the nearest neighbor of words in the embedding space. Table 1 shows the nearest
neighbours of specific words in the embedding space. We observe that the neighbors of the words
al share the semantic domain of the word. This confirms that the network learns some semantics of
the language.

Restaurant Hotel Flight Events Transportation
steakhouse suites airline festivals distributing

diner hyatt airfaire upcoming dfw
seafood resorts plane fireworks petroleum
tavern ramada baggage happening hospitality

Table 1: Nearest neighbours in the embedding space. Each column displays the 5 nearest neigh-
bours of the word at the top. We can see that the embedding captures the semantics of the words.

We can better visualize the embedding space using a network with a special architecture. Following
[19], we train deep networks where the last hidden layer contains only 2 dimensions. The depth al-
lows the network to progressively reduce the dimensionality of the data. This approach enables us to
visualize exactly what the network has learned. Figure 1 shows the embedding a deep network with
3 layers (with size 200-10-2) trained on the QCL task. We observe that the embedding distinguishes
between sentences related to movies and hotels. In Figure 3, we compare the embedding spaces of
a DNN trained on the QCL (left) and a DNN trained using ZDE (right) both with hidden layers of
sizes 200-10-2. The comparison suggests that minimizing the conditional entropy of the zero-shot
classifier successfully improves the clustering.

Method Restaurant Hotel Flight Events Transportation
ZSL with Bag-of-words 0.616 0.641 0.683 0.559 0.5
ZSL with p(Y |X) (LR) 0.779 0.821 0.457 0.677 0.472
ZSL with p(Y |X) (DNN) 0.838 0.862 0.46 0.631 0.503
ZSL with DNN Embedding 0.858 0.935 0.870 0.727 0.667
ZSL with ZDE Embedding 0.863 0.940 0.906 0.841 0.826
Representative URL heuristic (DNN) 0.798 0.892 0.769 0.707 0.577

Table 2: Comparison of several zero-shot semantic learning methods for 5 semantic classes. Our
proposed zero-shot learning system with DNN embeddings outperforms other approaches.

Second, we want to confirm that good classification results can be achieved using zero-shot semantic
learning. To do this, we evaluate the classification results of our method on the SUC task. Our
results are given in Table 2. The performance is measured using the AUC (Area under the curve
of the precision-recall curve) for which higher is better. We compare our ZDE method against
various means of obtaining the semantic features H . We compare with using the bag-of-words
representation (denoted ZSL with Bag-of-words) as semantic features. ZSL with p(Y |X) (LR) and
ZSL with p(Y |X) (DNN) are models trained from the QCL to predict the website associated with
queries. The semantic features are the vector of probability that each website is associated with the
query. ZSL with p(Y |X) (LR) is a logistic regression model, ZSL with p(Y |X) (DNN) is a DNN
model. We also compare with a sensible heuristic method denoted Representative URL heuristic.
For this heuristic, we associate each semantic category with a representative website (i.e. flights
with expedia.com, movies with imdb.com). We train a DNN using the QCL to predict which of
these websites is clicked given an utterance. The semantic category distribution P (C|X) is the
probability that each associated website was clicked. Table 2 shows that the proposed zero-shot
learning method with ZDE achieves the best results. In particular, ZDE improves performance by
a wide margin for hard categories like transportation. These results confirm the hypothesis behind
both ZSL and the ZDE method.

We also compare the zero-shot learning system with a supervised SUC system. We compare ZSL
with a linear SVM. The task is identify utterances of the restaurant semantic class. Figure 4 shows
the performance of the linear SVM as the number of labelled training examples increases. The

7



Figure 4: Comparison between the proposed zero-shot learning method and an SVM trained with
increasing amount of examples. Even with a large number of labelled data, ZSL achieves within
90% of the performance of the SVM. The curve shows that ZSL compares favorably with SVMs
when the number categories is large and there is few training data per category.

performance of ZSL is shown as a straight line because it does not use labelled data. Predictably, the
SVM achieves better results when the labelled training set is large. However, ZSL achieves better
performance in the low-data regime. This confirms that ZSL can be useful in cases where labelled
data is costly, or the number of classes is large.

Features Kernel DCN SVM
Bag-of-words 9.52% 10.09%

QCL features [20] 5.94% 6.36%
DNN urls 6.88%

DNN embeddings 6.2%
ZDE embeddings 5.73%

Table 3: Test error rate of various methods on the SUC task. The best results are achieved with by
augmenting the input with ZDE embeddings.

Finally, we consider the problem of using semantic features H to increase the performance of a
classifier f : (X,H) → Y . The input X is a bag-of-words representation of the utterances. We
compare with state-of-the-art approaches in Table 3. The state-of-the-art method is the Kernel DCN
on QCL features with 5.94% test error. However, we train using the more scalable linear SVM
which leads to 6.36% with the same input features. The linear SVM is better to compare features
because it cannot non-linearly transform the input by itself. Using the embeddings learned from the
QCL data as described in Section 4 yields 6.2% errors. Using zero-shot discriminative embedding
further reduces the error t 5.73%.

9 Conclusion

We have introduced a zero-shot learning framework for SUC. The proposed method learns a
knowledge-base using deep networks trained on large amounts of search engine query log data. We
have proposed a novel way to learn embeddings that are discriminative without access to labelled
data. Finally, we have shown experimentally that these methods are effective.
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