
1

Cryptographically Verified
Design and Implementation of a

Distributed Key Manager

Tolga Acar∗,Cédric Fournet†,Dan Shumow∗
∗ Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{tolga,danshu}@microsoft.com
† Microsoft Research, 7 J J Thomson Ave, Cambridge CB3 0FB, UK

fournet@microsoft.com

Abstract
We present DKM, a distributed key management system
with a cryptographically verified code base.

DKM implements a new data protection API. It
manages keys and policies on behalf of groups of
users that share data. To ensure long-term protection,
DKM supports cryptographic agility: algorithms, keys,
and policies can evolve for protecting fresh data while
preserving access to old data. DKM is written in C# and
currently used by several large data-center applications.

To verify our design and implementation, we also
write a lightweight reference implementation of DKM
in F#. This code closes the gap between formal crypto-
graphic models and production code:

• Formally, the F# code is a very precise model of
DKM: we automatically verify its security against
active adversaries, using a refinement type-checker
coupled with an SMT solver and new symbolic
libraries for cryptographic agility.

• Concretely, the F# code closely mirrors our produc-
tion code, and we automatically test that the cor-
responding C# and F# fragments can be swapped
without affecting the runtime behavior of DKM.

To the best of our knowledge, this is the largest
cryptographically-verified implementation to date. We
also describe several problems we uncovered and fixed
as part of this joint design, implementation, and verifi-
cation process.

I. Introduction

Securing data at rest is a challenging problem that
has become increasingly important. While numerous
protocols are routinely deployed to protect data in
transit over networks, such as SSL/TLS, IPsec, and
SSH [15, 19, 20, 29], security for stored data, especially
shared stored data in large and distributed systems, is
much less advanced.

Enterprise IT departments used to assume that data
on the company intranet was secure as long as it was
hidden behind firewalls and VPNs, Cloud computing
clearly invalidates this naive assumption: in outsourced
infrastructures, data security necessarily involves cryp-
tography. However, encrypted storage requires users to
manage their keys. Thus, cryptography shifts the burden
from protecting data to protecting keys in distributed
systems. Managing cryptographic keys remains one
of the hard problems in applied cryptography. With-
out proper key management, an otherwise theoretically
secure system is in reality quite vulnerable. For ex-
ample, TLS and IPsec are insecure without a proper
PKI [15, 19, 20], and SSH is vulnerable to man-in-
the-middle attacks without trusted public keys [29].
Similarly, NIST identified several difficulties for storage
encryption [28]: managing access to keys in storage,
cryptographic algorithm and key length selection, and
notably, the ease of solution updates as stronger algo-
rithms and keys become available.

To address the increasing demand for secure per-
sisted data in distributed environments, we develop
a Distributed Key Manager (DKM). DKM operations
rely on cryptographic keys, policies, and access control
information, stored in a distributed repository. Our goal
is not to create a new authentication mechanism or
a secure key repository. On the contrary, we build
on existing authentication, authorization, and storage
methods, such as Active Directory and SQL.

The verified DKM implementation is far from being
an academic exercise. DKM has been integrated into
several large products and services of a large software
company; some of them are data center applications that
implement underpinnings of the now-pervasive “cloud”
where flexible cryptographic policies are required to
service the diverse needs of customers. Multiple busi-
ness groups have shipped DKM in boxed products and
deployed them in large data centers in various hosted
service environments. We describe three such real-life

2
scenarios in Section II.

Data Protection APIs. The Windows operating sys-
tem features a 10-year-old interface (DPAPI) providing
local data protection services to user and system pro-
cesses [26]. DPAPI does not share keys across users
or machines—a severe restriction for data centers. We
design DKM to provide a similar service to multiple
users across multiple machines.

DKM is not a cryptographic API, such as CAPI [24],
CNG [25], PKCS#11 [27] or KeyCzar [14]. CAPI,
CNG, and PKCS#11 are APIs exposing cryptographic
primitives through well-defined interfaces. KeyCzar
tackles cryptographic misuse by hiding details such
as key lengths and algorithms, and by providing safe
defaults through a simple interface. Unlike DKM, Key-
Czar does not automatically manage keys or provide
agility. By design, DKM does not expose cryptography:
it provides a data protection interface. Various cryp-
tographic parameter decisions, key management and
sharing across users and machines, and key lifecycle
management are abstracted away from the user [2]. We
describe the DKM architecture in Sections II and V.

Cryptographic Agility. Over time, cryptographic algo-
rithms become obsolete and keys become too short for
a desired security level. For example, DES [17] was
the primary encryption algorithm a couple of decades
ago. It was later replaced by 3DES and eventually
AES. MD5 and SHA1 were the primary hash algorithms
until major vulnerabilities were disclosed [32, 31], and
an industry-wide effort started to replace them with
SHA2. However, retiring a cryptographic algorithm is
easier said than done. Disabling weak algorithms may
improve security in theory, but may also cause data loss
and renders real-life systems unusable, an unacceptable
trade-off for many products.

We design DKM to be cryptographically agile: inse-
cure algorithms can be replaced easily while maintain-
ing backwards compatibility. DKM can generate and
distribute fresh keys upon each algorithm change, and
provides support for data re-encryption; this is recom-
mended, but often not tenable in practice: keys may be
derived from unalterable hardware-provided secrets or
from re-usable passwords; key distribution may be slow
or expensive; besides, operational oversights may lead
to accidental key re-use. Thus, DKM embeds defensive
key-derivation mechanisms to support (apparent) key
re-use across algorithms, even broken algorithms. We
present our cryptographic constructions in Section III.

Verifying DKM design and implementation. Despite
their technical merits, formal tools for cryptography
are seldom applied to the design and implementation
of new protocols and APIs. Our formal work shows
how to close the gap between cryptographic models and

concrete production code, by applying verification tools
on a large scale, early in the design and implementa-
tion process. Our method relies on developing verified
reference implementations [6, 18, 11], also known as
executable specifications, using general-purpose pro-
gramming languages (rather than, say, rewriting rules or
process calculi). Thus, we obtain a very precise formal
specification of the product, shared between developers,
security experts, and automated verification tools.

Compared with abstract models distilled from infor-
mal specifications, reference implementations also ben-
efit from existing software tools, such as programming
environments, compilers, typecheckers, debuggers, and
test harnesses. Pragmatically, the functional properties
of the model can be automatically tested against produc-
tion code. Conversely, when there is an ambiguity, one
can quickly assemble new security tests from the refer-
ence code, run them against production code, observe
the result, and fix one of the two.

We implement DKM in C# and F# (a variant of
ML). The production code is entirely written in C#.
Additional F# code covers the security-critical parts
of the implementation, rewritten in a more functional
style to enable its automated cryptographic verification
using F7 [8], a refinement typechecker coupled with
Z3 [13], an SMT solver. We obtain in particular a
full-fledged, verified reference implementation of DKM.
(Other software verification tools independently apply
to C# production code; they check simple safety prop-
erties, for instance excluding out-of-range access to
arrays, or dereference on null objects; However, they
do not handle the security properties verified in this
paper, which involve active adversaries, concurrency,
and cryptography.) We describe our C# and F# code
in Sections V and VI.

Very few large cryptographically-verified reference
implementations exist, notably for subsets of TLS [7]
and CardSpace [9]. Their code was developed with
specific verification tools in mind, independently of the
original protocol design and implementation, so they
treat prior production code as black boxes for basic
interoperability testing. In contrast, we advocate a close
collaboration between designers, developers and secu-
rity reviewers, and we use a single code base for the two
implementations. We take advantage of the fine-grained
integration of C# and F# within the .NET framework
to compose them at the level of individual methods: we
precisely align each fragment of (formally verified) F#
code to the corresponding fragment of (production) C#
code. Both implementations share the same structure,
along with the same typed interfaces. This complicates
verification, but also yields stronger guarantees for the
production code. Indeed, this task involves a careful
code review, driven from the elaboration of a verified

3
model, with numerous automated verifications and tests
between the two. In our experience, it led to the dis-
covery of ambiguities in the DKM design, of delicate
low-level issues in its implementation, and of a few
serious vulnerabilities. Overall, we improved DKM and
gained more confidence in its security, with a reasonable
verification overhead: we wrote 5% additional F# code,
and automated verification runs faster than our test suite.

Main Contributions. To our knowledge, this is the first
time automated cryptographic verification is integrated
in the design and production of a new security com-
ponent deployed in large-scale commercial products.
Also, to the best of our knowledge, this is the largest
cryptographically-verified implementation to date.

We verify the design and implementations of DKM
for a threat model that covers (in particular) our key
deployed scenarios. We obtain formal security guar-
antees for F# reference code tightly linked to our C#
production code. We discuss problems discovered as
part of this hybrid verification process, as well as their
fixes. We highlight that our efforts have a direct impact
in the security of real products.

Contents. Section II presents DKM using a few de-
ployment scenarios. Section III specifies its main cryp-
tographic constructions and discusses cryptographic
agility. Section IV defines its security goals (precisely,
but informally). Section V gives selected C# imple-
mentation details. Section VI presents the reference F#
implementation. Section VII evaluates our approach,
discusses several weaknesses we identified and fixed,
and concludes. For readers interested in the details
of our formal verification we have provided appen-
dices. Appendix A reviews our verification method.
Appendix A gives selected modeling details. This paper
presents only selected code excerpts and omits many
details. The entire F# and F7 source code used for
verification is available from http://research.microsoft.
com/∼fournet/dkm.

II. Distributed Key Manager

DKM involves three roles: users, a trusted repository,
and untrusted stores; it operates on data organized into
named groups of users that share the data. DKM is a
library that runs on the users’ machines, on their behalf,
with their authenticated identity. As it reads and writes
data, each user may call the DKM API to carry out
Protect and Unprotect operations, of the form below:

blob := Protect (group, data)
data := Unprotect (group, blob)

Intuitively, Protect applies some authenticated encryp-
tion algorithm to the user data. The resulting ciphertext

‘blob’ can then be persisted in untrusted storage. Con-
versely, Unprotect verifies and decrypts a given blob,
and then returns the plaintext data to the user, or fails
with a ‘corrupted data’ error. If the user does not belong
to the named group, both calls fail with an ‘access
denied’ error.

Each DKM group relies on a small amount of trusted
data kept in the repository, essentially a collection of
keys and a cryptographic policy. Repository access,
effective cryptographic policy determination, and all
cryptographic operations are hidden behind the DKM
interface. The repository has client (requestor) and
server (responder) components; it is used as a black-
box by DKM on behalf of each user. Authorization is
at group granularity and is enforced by the repository.
Some users, called group administrators, can also add
members or change its policy. This requires write access
to the repository. Conversely, the untrusted stores are
directly managed by the users; they may consist of file
systems, SQL servers, or any other storage medium.

We describe two cloud scenarios with data-center
servers acting as DKM users. These scenarios are sim-
plified from real life deployed products that use DKM.
Scenario 1. Hosted E-Mail Server. Consider a cloud
e-mail service hosted on multiple servers. The e-mail
servers share the same set of keys for protecting mailbox
contents. They offer offer message aggregation, fetching
mail from third-party service providers on behalf of
their users, and storing them in user mail boxes. Third-
party services require a user name and password for
authentication, so it is necessary for the e-mail servers
to have access to these credentials. The data center hosts
e-mail for multiple tenants. Each tenant has an e-mail
administrator to remotely manage that tenant’s e-mail
settings. One threat is that these e-mail administrators
may attempt to steal a user’s plaintext credentials.
Another threat is the data center personnel who may
access a user’s plaintext credentials.

To address these threats, a data center administrator
creates a DKM group to protect e-mail credentials and
grants read/write access only to the e-mail servers. The
DKM repository denies e-mail users, e-mail adminis-
trators, and data center operations personnel access to
DKM groups with the exception of a few trusted data
center administrators. The typical e-mail fetch workflow
starts with an e-mail server reading a user’s encrypted
credentials (labeled (1) on Figure 1). The e-mail server
sends a decryption request to DKM and receives the
user’s plaintext credentials. In step (3), the e-mail server
authenticates to the external server.
Scenario 2. Offloading Web Server State. In a large
scale deployment with thousands of servers, sometimes
spread across multiple data centers, any server affinity
to session states is a huge impediment to scalability

4

Mail Server

(Hotmail, Yahoo,

Gmail, etc)

Tenant 2Tenant 1

Mailbox Store

Settings

User’s Mailbox

User’s DKM
encrypted
password

DKM
Keys

User’s Mailbox

User’s DKM
encrypted
password

Internet

E-Mail Servers

DKM

Tenant 2

Admin 2

User 2

Tenant 1

User 1

Admin 1 Settings

Repository

E-Mail Servers can retrieve

mail from the ISP on behalf

of the user

1
2

3

Manage

settings

Access

Mailbox

No

Access

No

Access

Fig. 1. DKM hosted e-mail scenario.

and reliability. A common approach is to make the
servers stateless, and instead pass any session state
back and forth between the client and the server. The
session state may contain user credentials, such as
forms-based authentication data, as well as data-center-
specific sensitive information. This state must also be
preserved across multiple requests serviced by different
servers. The threat is that a client may read and modify
his session state, or even the session state of other
clients. Figure 2 depicts the data flow with two requests
where session state 1 is created on one server, and is
read and modified to session state 2 on another server.

TLS provides adequate security to session state trans-
mitted over the network. However, the session state must
not be disclosed to the user and must not be modified
by the user. Naive attempts to use CBC encryption
have been proved vulnerable in theory and in real
life [30, 21]. Our solution uses DKM on data center
servers to protect session states. Thus, any server that
belongs to the DKM group associated with the service
can authenticate, encrypt, and decrypt the state, while
any client (presumably not member of the group) are
unable to read or modifiy it. This approach has been
successfully implemented in a large hosted services
offering and contributed to better server utilization.

III. Cryptographic Agility

We define cryptographic agility as the capability to
securely use different sets of algorithms with the same
keys. Securing persisted data highlights the need for
agility, as the data may outlive the actual security of
any cryptographic algorithms and keys. Cryptographic
agility in DKM keeps the long-term key secure even
if one or more of the algorithms that used the key
are compromised: a critical property we implement and
formally verify. Our constructions are based on those

Fig. 2. Web server state offloading scenario.

initially proposed by Acar et al. [1].
Cryptographic Algorithms. DKM policies are param-
eterized by two kinds of symmetric-key algorithms.

• We let E range over encryption algorithms, and
write D for the corresponding decryption algo-
rithm. We currently use AES in CBC mode.
Similarly, we let Eae range over authenticated
encryption algorithms and a proper Dae for an
authenticated decryption algorithm. We currently
use AES-GCM [23].

• We let H and Hd independently range over keyed
hash algorithms. We currently use HMAC [4, 3]
with either SHA-256 or SHA-512.

Each algorithm has a fixed key length, written |E|,
|Eae|, |H|, and |Hd|, respectively. Each algorithm also
has a global, unambiguous algorithm identifier, written
〈E〉, 〈Eae〉, 〈H〉, and 〈Hd〉. In our implementation,
we use DER (Distinguished Encoding Rules) encoded
object identifiers.

To provide secure and flexible cryptographic algo-
rithm support, DKM is parameterized by a whitelist
of cryptographic algorithms that meet target security
properties. The algorithm list can be adapted in future
implementations to allow new or custom algorithms.
DKM Construction. Let es = (Kges,Kdes,Ences,
Deces) represent an authenticated encryption scheme
that consists of a key generator Kges, a key derivation
function Kdes, and authenticated encryption and decryp-
tion algorithms Ences and Deces.

The algorithms Ences and Deces provide authenticated
encryption. We use the term authentication method
to describe a particular construction DKM supports:
Encrypt-then-Mac, Mac-Then-Encrypt, or an authenti-
cated encryption mode AES-GCM. While we prefer the
less frequently fielded AES-GCM as an authenticated
encryption algorithm, the CBC and HMAC based meth-
ods are necessary to attain a much larger deployment
base. The scheme is parameterized by a cryptographic
policy p that determines the method to use and its

5
algorithms: either an authenticated encryption algorithm
Eae, or a block cipher in CBC mode composed with
HMAC, using two algorithms E and H . Additionally,
the cryptographic policy indicates which hash algorithm
Hd to use with the key derivation function.

The key derivation function KDF uses a pseudo-
random function in a prescribed construction [22]. In
this implementation, KDF is the SP800-108 KDF in
counter mode [12] and the pseudo-random function is
an HMAC, specified as algorithm Hd in the policy and
keyed with a group key k.

We write k for a DKM key generated as k =
Kges(Lk), where Lk indicates the length of k and is
a function of the policy:

Lk =

{
max(|Hd|, |Eae|) when using Eae

max(|Hd|, |E|, |H|) when using E and H

(1)

When using Eae, we write kes = kae for the authenti-
cated encryption key. When using E and H , we write ke
and km for the encryption and MAC keys, respectively,
and let kes = ke|km be their concatenation. The
authenticated encryption key length Les is a function
of the policy:

Les =

{
|Eae| when using Eae

|E|+ |H| when using E and H
(2)

The key derivation function KDF yields a key kes
of length Les

kes = KDF (Hd, Les, k, R,Mes|Ies) (3)

where k is the DKM key, R is a fresh random nonce,
Mes is the authentication method, and Ies is an un-
ambiguous DER encoding of the algorithm identifiers
in the policy: Ies is either 〈Eae〉 or 〈E〉|〈H〉. (We
will show the motivation for including Mes in the key
derivation.)
Achieving Agility. To achieve cryptographic agility, the
finite set of algorithms must “fit together”, a notion
formally introduced in [1]. One example of a condition
“fitting together” is that the encryption scheme es must
have a unique encoding. We “fit together” our scheme
with a small set of authenticated encryption algorithms
chosen from an agile set and a fixed PRF (Pseudo
Random Function) constructed from HMAC with SHA-
256 and SHA-512. Since there are more authenticated
encryption algorithms than PRFs in practice, this is not
a severe restriction.
Agile Encoding. How do we represent the set of
algorithms and parameters in an agile implementation?
To provide cryptographic agility at encryption time, our
implementation relies on a cryptographic policy and a
key stored in the repository. This allows an administrator

to configure the cryptographic policy and update the
key as needed. The Protect operation unambiguously
encodes the cryptographic policy and the key identi-
fier in the ciphertext. We use DER-encoded OIDs to
represent algorithms and Guid to represent the key
identifier in the encoded ciphertext blob. The Unprotect
operation first decodes and validates the algorithms
and parameters from the ciphertext, then fetches the
authenticated-decryption key from the repository. This
decoded policy may differ from the latest policy stored
in the repository. Section VII-A describes a problem
with agile encoding found by this verification effort.
Crypto-Agile DKM. With these necessary building
blocks, we present the DKM functions for authenticated
encryption (called Protect) and decryption (called Un-
protect):

• Protect. If the user has at least read access to the
DKM group, the current group key k and policy
p are read from the repository. An Les bits long
authenticated encryption key kes is derived from
the key k. Figure 3 gives the encryption steps
to produce C. Finally, the formatted ciphertext is
given by the equation

blob = V |〈p〉|Gk|R|IV |LH |LC |C (4)

where | is concatenation, V is a 32-bit version
number, 〈p〉 = Mes|〈Hd〉|Ies is the unambiguously
encoded policy, 〈Hd〉 is the key-derivation PRF
algorithm identifier, Gk is the 128-bit DKM key
identifier, R is the random nonce, IV is the ini-
tialization vector for encryption, LH is the MAC
length, and LC is the length of |C| in Figure 3.
The values Gk, R, and IV are DER-encoded to
allow variable lengths.

• Unprotect. The protected blob is parsed as blob
(Equation (4)) and validated: in addition to var-
ious length and buffer overflow length checks
that include LH and LC , the algorithms Hd, E,
and H are validated against the list of accepted
algorithms. The G, R, and IV lengths are also
validated: |IV | must match the blocksize of E,
and |R| must match |Hd|. The decoded policy may
differ from the current policy (e.g. when unpro-
tecting an old ciphertext) and is a priori untrusted.
Only after a successful validation, the decryption is
carried out and the decrypted message is returned if
the MAC verifies. The key identifier Gk is used to
fetch the DKM group key k from the repository.
If a key is found, it is fed to the key derivation
and decryption algorithms to calculate the plaintext
message M and return it to the user.

Security Challenge. There are two main paths to verify
as regards cryptographic agility: encryption and decryp-
tion. The encryption uses algorithms in the policy and

6Policy p Derivation from key k and R Operations
EncryptThenMAC(Hd , E,H) ke|km = KDF (Hd , Les, k, R,Mes|Ies) Ce = E(ke, IV, text)

mac = H(km, IV |Ce)
C = Ce|mac

MACThenEncrypt(Hd , E,H) ke|km = KDF (Hd , Les, k, R,Mes|Ies) mac = H(km, text)
C = E(ke, IV, text|mac)

GCM(Hd , Eae) kae = KDF (Hd , Les, k, R,Mes|Ies) C = Eae(kae, IV, text)

Fig. 3. DKM key derivations and encryption methods.

must derive a new kes with KDF from k, a fresh R, and
Ies. At decryption time, Ies and R are decoded from
the ciphertext. In both cases, Ies is compared against
known set of algorithms (the white list) to prevent
an insecure algorithm from being used. Verification
must thus account for algorithmic choices. To this end,
our formal model defines two logical predicates on
policies, Authentic(p) and Confidential(p), that explicitly
state sufficient security conditions on their algorithms
(within our symbolic model) to ensure authenticity and
confidentiality, respectively, for any data protected with
a correctly generated group key that remains secret.
(The next sections also deals with key compromises.)

For example, paraphrasing its logical definition, the
predicate Authentic(p) says that, in policy p, Hd is a
pseudo-random function; and, if p selects authenti-
cated encryption, then Eae is a secure authenticated
encryption algorithm, otherwise, H is a hash function
resistant to existential forgery chosen-message-attack
and, moreover, if p selects Encrypt-then-MAC, then E
is at least functionally correct (that is, it correctly de-
crypts any correctly-encrypted message, to prevent data
corruption after authentication). We refer to Section A
for additional modelling details.

IV. Security

We give a precise but informal descriptions of our ver-
ified security properties and attacker model for DKM.
The formal counterpart is discussed in Section A.

Goals and Non-goals. DKM provides data integrity,
data secrecy, and authentication for the group name
and the key policy. On the other hand, DKM does not
attempt to protect privacy information associated with
group membership or policies, or with traffic analysis
(e.g. the number and size of encrypted blobs).

Our verification effort concerns only security prop-
erties. For instance, we do not verify that Unprotect
always succeeds on the output of Protect when both
users have access to the group (although we believe
that our model could be extended accordingly).

Access Levels. DKM distinguishes four access levels
and provides an interface to manipulate them. These
levels are enforced by the repository implementation.

For each group, they control whether a user can read
and write keys and policies, or manage other users, as
detailed below.

1) NO ACCESS. This is the default for all users.
2) READ ONLY. Users with read-only access to the

DKM group in the repository can read its cryptog-
raphy policy and its keys; thus, they can use DKM
both for reading (unprotect) and writing (protect)
group data.

3) READ/WRITE. Users that also have write access
to the group can additionally update the crypto-
graphic policy, create new keys, delete existing
keys, and delete the group.

4) OWNER. Users that own a DKM group (also
known as group administrators) have full access
to the group. They can additionally change user
access levels.

DKM also provides an interface for managing keys
and policies. For policies, for instance, a user may read
and write a DKM group policy using calls of the form

policy := ReadPolicy(group)
WritePolicy(group, policy)

In addition, after any successful call to Unprotect, a
user can read the policy that is part of the blob and used
for unprotecting it. We call this policy the unprotect
policy. As explained below, the user can inspect this
policy to obtain finer authentication guarantees in case
weak algorithms may have been used.

Adversary Model. We now define our active adver-
saries for DKM, to reflect our threat model for the
purpose of verification. Our adversaries can:

• Read and write any protected blob. (We assume
that a protected blob is stored in untrusted media
accessible by adversaries.)

• Perform arbitrary computations using our (sym-
bolic) cryptographic interface.

• Control users, asking them to protect plaintexts of
their choice, to unprotect blobs of its choice, to
create new groups, to manage groups, etc; to renew
a key; or to change a policy.

• Corrupt users, thereby gaining their repository ac-
cess and their capabilities (that is, depending on
group membership, read any group key, or even

7
inject arbitrary values for group keys and policies
into the repository).

In our model, “control” accounts for the unknown
behavior of the service built on top of DKM. In the
properties below, if the adversary asks a user to pro-
tect some text, this is formally recorded as a genuine
plaintext for the group. In contrast, conversely, “corrupt”
accounts for the potential partial compromise of the
group users. If the adversary directly reads a key and
runs the protect algorithm on some plaintext on its own,
then the resulting blob is treated as a forgery.

Conversely, our adversaries cannot:
• Corrupt the repository: they have to comply with

its access control policy. We thus entirely trust the
repository and its secure channel facilities.

• Introduce their own broken crypto primitives—
however, our model features a fixed collection of
“broken” primitives to formally let the adversary
build insecure policies.

Authentication. We now express the precise logical
authentication guarantee we verified on DKM. (This
guarantee can be simplified by making additional as-
sumptions, for instance by excluding the compromise of
any group member, or assuming that all cryptographic
algorithms are secure, to obtain corollaries of our main
verification results.)

For any run of DKM with any number of users and
groups, and for any adversary, if a user a successfully
unprotects a blob for a given group, then we have all
the properties below.

1) user a had read access to the group;
2) the unprotect policy uses algorithms in the DKM

whitelist;
3) one of the following holds: either (a) the resulting

plaintext was protected by a user who had read
access to the group, using this unprotect policy;
or (b) a corrupted user had read access to the
group; or (c) the unprotect policy does not have
the “Authentic” property.

The “Authentic” property is defined from the security
assumptions on the three security algorithms in the
policy. Moreover, if a user a successfully protects a
plaintext for a given group, then we have

1) user a had read access to the group.
2) the protect policy use algorithms in the DKM

whitelist;
3) either the protect policy and key k have been

proposed and correctly generated by a user who
had write access to the group, or there is a
corrupted user who had write access to the group.

Secrecy. If a user protects a plaintext for a given group,
then one of the following holds: (a) the plaintext remains

secret; or (b) the current group policy does not have the
“Confidential” property; or (c) there is a corrupted user
who had read access to that group, or (d) there is a user
who had read access to that group that leaks plaintexts.
Example. Our property statements cover partial- com-
promise scenarios with dynamic group memberships
and policies. As a simple common case for illustrating
our results, consider a group whose owner uses the
default policy and remains the single user. Our security
guarantees boil down to: Unless the owner is compro-
mised, any unprotected value is a previously-protected
value, and their secrecy is preserved.
Limitations (Modeling). We do not capture some tem-
poral properties of access control: our properties are
conservatively stated in terms of users having access
in the past, so for example they do not state sufficient
conditions to render a group secure again once corrupt
users have been expelled and new keys generated. We
do not model group deletion, and may not entirely
account for group creation—in our model, whoever first
creates a group owns that group. Thus, we differentiate
between initial deployment and run-time operations and
focus on run-time aspects. However, we observe that
the creation of a DKM group requires write access to
the DKM container in the repository, which in practice
is typically restricted to a small set of trusted network
administrators.

V. Modular Software Architecture

Next, we outline the structure of the DKM implemen-
tation, with a selection of details relevant for the rest
of the paper. Our production code is written in C#
and distributed as a single DLL deployed with user
applications. It was coded partly before our verification
effort—we have released 5 minor revisions of DKM so
far.

Figure 4 describes the modular structure of DKM as
a UML class diagram. The API consists of a single
public interface, named IDKM. DKM also uses internal
interfaces, such as IRepository and IAuthEncrypt, and
internal classes, such as KeyPolicy and Key. It relies on
system libraries for all cryptographic algorithms [25]
(omitted in the figure).
IDKM. The two main methods of the DKM API,
outlined in Section II, are declared as follows:

public interface IDKM {
(...)
MemoryStream Protect(MemoryStream plaintext);
MemoryStream Unprotect(MemoryStream ciphertext);
KeyPolicy DecodedPolicy { get; } }

To access data, the user first creates an instance of DKM
for a given group name. To store sensitive data, the

8

Fig. 4. DKM main interfaces (in green) and classes (in blue)

user writes to a plaintext stream, calls Protect to obtain
a protected ciphertext stream, and then directs this
stream to untrusted storage. (Streams are the primary
I/O mechanisms in the .NET framework; they generalize
the C++ ios class. The MemoryStream used in DKM
is just a stream implemented over memory buffers.)
Conversely, to retrieve data, the user opens a ciphertext
stream from untrusted storage, calls Unprotect to obtain
a plaintext stream, then reads data from it. In addition,
the user can read the DecodedPolicy property to review
the policy last used for unprotecting data. We omit
a description of the other methods and properties of
IDKM listed in the figure, which support group, policy,
and key management, as well as data migration (an
unprotect followed by a protect with the current group
key and policy).

IRepository. The IRepository interface decouples the
choice of a particular trusted repository from the rest
of DKM. It has methods for accessing a secure con-
tainer associated with each group name. The container
maintains a small amount of trusted data for the group:
an access control list for its users, its current protect
policy, and a set of keys. (Keys used with earlier protect
policies are usually retained to enable unprotection of
old data.)

In addition, an internal MemoryKeyCache class pro-
vides a per-process in-memory cache for keys retrieved
from the repository. These cached keys are kept en-
crypted using a per-process ephemeral key the Windows
OS provides. The cache is consulted first on each key
read request, and is cleared before the process exits.

DKM currently supports four implementations of

IRepository, based respectively on Microsoft Active Di-
rectory, on Microsoft SQL Server, on NTFS/SMB, and
on a simple in-memory database. All implementations
rely on the current user’s credentials for authentication
and authorization purposes. For verification, we model
only the in-memory repository, as we are mostly inter-
ested in the sequences of calls through the repository
interface, rather than its implementation details.
IAuthEncrypt. The IAuthEncrypt interface encapsu-
lates crypto-agile authenticated encryption and its state,
which consists of the the policy to use, the random
nonce, an IV for encryption, and the derived keys.
Three subclasses, named EncryptMAC, MACEncrypt,
and GCM (one for each authentication method) provide
different implementations of the methods Authenticat-
edEncrypt, and AuthenticatedDecrypt but share code
for key derivation (DeriveKey) and for parsing and
formatting the protected blobs (Decode and Encode).
Cryptographic Algorithms and Materials. The
Crypto class provides all primitive cryptographic op-
erations. such as block encryption and decryption and
random generation. In addition, DKM defines a few
auxiliary classes:

• AlgorithmIdentifier objects uniquely identify algo-
rithms, using the AlgorithmOid constants.

• Key objects encapsulate cryptographic keys; their
KeyValue property yields their (otherwise in-
memory encrypted) key bytes; auxiliary properties
record the key identifier and its intended algorithm.

• KeyPolicy objects state a particular choice of au-
thentication method, of cryptographic algorithms
(for key derivation, encryption, and authentication)

9
and of key identifier.

VI. Functional Implementation

Our verified reference-implementation code takes ad-
vantage of the modular structure of DKM and of the
fine-grain integration between C# and F# within the
.NET platform. Thus, our two implementations can call
one another and share interfaces, classes, and objects.

We do not implement primitive cryptographic oper-
ations in F#; instead, we just call their C# implemen-
tations from F# and reflect their properties using type
annotations and logical refinement at their interface. We
end up with a hybrid C#—F# code base, with two
implementations for the main classes and interfaces,
and the ability to build executable code by selecting
implementations for each of the three main interfaces.

The main purpose of the F# code is to bridge the gap
between an imperative implementation and a functional
model. Hence, our F# implementation avoids mutable
fields and object oriented-features, whenever possible:
some C# objects are coded as F# records, C# properties
are coded as F# fields, and some data representations
are simplified. Each F# implementation file is structured
in two parts: (1) mostly-functional code, in the subset
of F# verifiable by the F7 typechecker, followed by
(2) a small object-oriented stub that implements the
target C# interface, with implementation methods that
mostly call plain F# functions. (These stubs are used, for
instance, to leverage the existing test suites developed
for the C# implementation.) Next, we give selected
F# implementation details for the three main DKM
interfaces. Section A provides the corresponding F7
declarations verified by typing.
DKM. This module re-implements the core logic of
the DKM base class. It uses a record to store the
group name and the last unprotect policy (instead of
C# properties). It also turns the (implicit) authenticated
user identity into an explicit parameter, so that it can
be used in specification events. We give an outline of
the whole F# implementation, showing code only for
Unprotect. As explained above, part (1), above the #if
F7 conditional-compilation flag, is formally verified by
typing; and part (2) is a stub implementing IDKM by
calling part (1).

module DKM
(...)
type Dkm = { GroupName: string;

DecodedPolicy : KeyPolicy Var.t }
let DkmUnprotect (user:principal) (dkm:Dkm) cipher plain =

let n = dkm.GroupName
let ae = DkmDecodeProtectedBlob cipher
let p = Var.get ae.Policy
let keyId = KeyPolicyGetCurrentKeyGuid p
let k0 = ReadKey user n keyId

let k = checkKeyLength p k0
AuthEncDeriveKeys ae k
Var.set dkm.DecodedPolicy p
AuthenticatedDecrypt ae cipher plain

#if F7
#else
type public DKMFsharp (repository:IRepository,

keyCache:IKeyCache,
authEncrypt:IAuthEncrypt) =

let user = WindowsIdentity.GetCurrent().User.ToString()
let dkm = CreateDkm user repository.GroupName
(...)
interface IDKM with

member r.GroupName with get() = dkm.GroupName
member r.Unprotect(cipher:MemoryStream) =

let plainText = new MemoryStream()
DkmUnprotect user dkm cipherText plainText
plainText

(...)
#endif

As explained in Section III, DkmUnprotect first
parses the blob and decodes the unprotect policy (p).
This may fail, for instance if the policy proposes algo-
rithms outside the set supported by DKM. Otherwise,
this returns an initialized instance (ae) of IAuthEncrypt.
The code then reads the key (k0) referenced in the
policy from the repository, checks that this key is
appropriate for use with p, and finally performs authen-
ticated decryption on ae (listed below). The stub for
IAuthEncrypt implements the method IDKM.Unprotect;
it creates the plaintext stream then just calls DkmUnpro-
tect.
Authenticated Encryption. Module AuthEncModel
implements crypto-agile protection depending on
a given policy p and its fields: p.AuthEncMethod,
p.KdfMacAlgorithm, p.MacAlgorithm, and
p.EncryptionAlgorithm. We give the code of the
two main functions for encryption and decryption,
as described in Figure 3. These functions operate
on byte arrays and are parameterized by policy (p),
random nonce (r), encryption IV (iv), and group
key (k); they each have three branches, depending
on the authentication method. Decryption is also
parameterized by the expected lengths for ciphertext
and mac, previously obtained when parsing the
ciphertext. This code is verified by typing, as explained
in Section A.

let authenticatedEncrypt p r iv k plaintext =
let ke,kh = deriveKeys p r k
match AuthEncMethod p with
| AuthEncryptCM →

encrypt p.EncryptionAlgorithm iv ke plaintext
| EncryptThenMac →

let e = encrypt p.EncryptionAlgorithm iv ke plaintext
let v = concat iv e
assert(IsEncryptThenMac(v,k,p,r,plaintext,ke,iv,e))
let m = mac p.MacAlgorithm kh v

10
concat e m

| MacThenEncrypt →
let m = mac p.MacAlgorithm kh plaintext // but not iv
let v = concat plaintext m
assert(IsMacThenEncrypt(v,k,p,r,plaintext,kh,m))
encrypt p.EncryptionAlgorithm iv ke v

let authenticatedDecrypt p r iv k ciphertext ctLn macLn =
let ke,kh = deriveKeys p r k
match AuthEncMethod p with
| AuthEncryptCM →

let pt = decrypt p.EncryptionAlgorithm iv ke
ciphertext

pt
| MacThenEncrypt →

let d = decrypt p.EncryptionAlgorithm iv ke
ciphertext

let pt,ptm = split d (ctLn−macLn) macLn
macVerify p.MacAlgorithm kh pt ptm
pt

| EncryptThenMac →
let ct,ctm = split ciphertext (ctLn−macLn) macLn
let v = concat iv ct
macVerify p.MacAlgorithm kh v ctm
let pt = decrypt p.EncryptionAlgorithm iv ke ct
pt

In-Memory Repository. Module RepositoryModel pro-
vides a simple implementation of the IRepository in-
terface. We represent the persisted state of each DKM
group as a tuple consisting of the group name, a mutable
list of key policies, an in-memory database of keys
indexed by key identifiers (Guid), and an in-memory
database of access rights indexed by user names. Their
F# type is

type StoredGroup =
groupname ∗
KeyPolicy list ref ∗
Db.t<guid,Key> ∗
Db.t<principal, right list>

We list sample code for setting and getting key poli-
cies. Similarly to the Protect and Unprotect functions,
the Get and Set policy functions accept a user name
string to enforce access rights.

let consPolicy n p ps = p::ps
let insertPolicy n p ps = ps := consPolicy n p !ps

let GetKeyPolicy (id:principal) (n:groupname) =
let (,ps, ,) = Access id n Read
match !ps with
| p:: → assert(GroupPolicy(n,p)); p
| → failwith "no policy yet"

let SetKeyPolicy (id:principal) (n:groupname) (p:KeyPolicy)
=

let (,ps, ,) = Access id n Write
assume (Assigned(id,n,p)) // security event
insertPolicy n p ps

Additional Modules. For completeness, we mention the
other F# modules of the reference implementation:

• Acls implements an abstraction of access control
list to represent access rights;

• Db implements an abstraction of an in-memory
database;

• Var implements a write-once variable (see Section
A);

• KeyPolicyModel implements key policies as
records, rather than objects.

• CryptoModel provides functional wrappers around
.NET cryptographic primitives, and is the basis of
their formal model.

Testing. We validate our F# code by writing tests,
both in F# and in C#. These tests cover a number of
DKM scenarios as well as interoperability between the
two implementations. In addition to C# manual code
reviews, this gives us high confidence that our verified
code closely corresponds to our production code, and
also enables us to automatically detect any discrepancy
that may appear as the result of code changes. (So far
9 minor revisions of the C# DLL have been released.)

The C# tests make sure that the F# code interoperates
with the C# code. To this end, we wrote a simple
in-memory repository also in C#, and ported the 28
existing C# tests. Those tests exercise scenarios such
as initializing IDKM and IRepository implementations,
adding groups to a repository, adding users to these
groups, and protecting and unprotecting various series
of data.

The F# tests take the existing 28 tests for the C# in-
memory repository, and replace instances of C# DKM
components with their F# counterparts. Additionally, we
also test using the C# IDKM implementation configured
to use the F# in memory repository, to make sure that
this repository operates correctly.

Finally, we write explicit interoperability tests, mak-
ing sure that data protected with F# can be unprotected
with C# and vice-versa, for various choices of policies
and algorithms. There are 56 such tests written in C#
exercising F# DKM.

Hybrid Codebase. Figure 5 provides lines of code in
C#, F#, and F7 for the verified codebase, following the
structure of the F# code, as well as its verification time.
Both for C# and F#, we give separate sizes for inter-
faces and their implementations. Overall, DKM con-
sists of 21,000 lines of code; it contains cryptographic
primitives and data structures, and several repository
implementations. Thus, the programming overhead for
building the reference F# implementation is small as
compared to the whole DKM project. For F7, we give
the size of the corresponding annotated interfaces we
use for automated verification, and also the size of
the query script passed to the SMT solver. Hence,
the logical annotations (855 lines in total) are almost

11
// privileged administrator functions
let admin: principal = "DKM administrator"
let AddServer group s = AddUser admin group s Acls.Read
let CreateServerGroup (servers:principal list) group =

let dkm = CreateDkm admin group
DkmAddGroup admin dkm
List.iter (fun s →AddServer group s) servers

// server functions
let Read id group (u:username) (x:provider) =

let dkm = CreateDkm id group
let cipher = FileToStream (u,x)
let plain = newMemoryStream ()
DkmUnprotect id dkm cipher (write only plain)
let (u’,x’,pwd) = StreamToData (read only plain)
if (u’,x’) = (u,x) then pwd
else failwith "stored record mismatch"

let Store id group (u:username) (x:provider) pwd =
let dkm = CreateDkm id group
let plain = DataToStream id group (u,x,pwd)
let cipher = newMemoryStream()
DkmProtect id dkm plain (write only cipher)
StreamToFile (u,x) (read only cipher)

Fig. 6. F# Sample Code for Stored Passwords

as large as the verified F# code, partly because we
systematically re-used C# code that did not require any
verification rather than re-implement it in F#. Most
of the verification effort focused on developing these
annotations. Still, once in place, automated verification
is fast and modular: the total runtime for F7 is smaller
than the time it takes to build or test DKM.

Sample User Code. We complete our outline of our
implementations with sample F# code for the two
scenarios of Section II. For simplicity, our code directly
calls our verified functions rather than the methods
defined in the main DKM interface.

The code given in Figure 6 first defines functions
for the administrator to create and populate groups. We
may use this code to write a test with six servers split
in two groups; for instance the commands for creating
the groups are:

CreateServerGroup
["srv1";"srv2";"srv3";"srv4"]
"Stored E-Mail Credential Group"

CreateServerGroup
["srv5";"srv6"]
"Third-Party Access Group"

The code then defines two functions for data center e-
mail servers granted access to stored credentials, to read
and store the protected user credentials on untrusted
storage. The first parameter id represents the authen-
ticated caller id. The auxiliary functions FileToStream
and StreamToFile associate the username with some
untrusted storage location and perform actual I/O.

VII. Evaluation

A. Problems we found and fixed in DKM

Our modeling effort uncovered subtle problems in
preliminary versions of DKM, and more generally led
us to a better understanding of the properties provided
by DKM and some restructuring of its codebase. For
modularity, we added abstract interfaces, so that we
could easily pick and mix between C# and F# imple-
mentations.

In particular, modeling lead us to provide access to
the ‘unprotect policy’ effectively used to unprotect a
blob, by adding a read-only property to IDKM, so that a
suspicious user can inspect the policy and its algorithms
before processing the unprotected data. Technically,
this enables us to verify a more precise authentication
property.

We also wrote new unit tests to check corner cases
for some security properties and prevent regression after
fixing some vulnerabilities. In the paragraphs below, we
enumerate the identified problems and verified resolu-
tions that address these vulnerabilities.

Group attribution. In a preliminary version of DKM,
although the key and decoded policy were cryptograph-
ically authenticated in Unprotect, the unprotected data
could be attributed to the wrong group, potentially
leading to confusion and misuse of data. The “attack”
went as follows:

1) assume we have two groups, A and B, used to
store different sorts of data (e.g. credentials for
different services);

2) an adversary with access to the untrusted storage
reads a blob for group A and writes it at the
location of a blob for group B;

3) a user who is a member of both groups A and
B reads that blob and attempts to unprotect it as
data belonging to group B.

Although the user can derive the correct keys to unpro-
tect that blob (as data belonging to group A), this par-
ticular attempt should fail—otherwise, the user would
treat A’s credentials as if they were B’s credentials (e.g.
pass them to a compromised service).

To prevent the attack, DKM keys must be fetched
from a container that includes only the keys of the
target group of the unprotect, here the keys for group B.
This property was broken in case the DKM keys were
retrieved from the local key cache, which was indexed
only by key identifiers: if the user had recently accessed
group A, then the DKM key for A would sit in its
cache, so the unprotect with target group B above would
fetch it and silently succeed. We fixed this problem by
indexing the cache by group name and key identifier,
and also added specific tests for this attack.

12C# F# F7 Verification
Module itf (.cs) impl (.cs) itf (.fsi) impl (.fs) itf (.fs7) queries (.smp) time (S)
Var − − 10 38 13 185 2.10
Db − − 10 23 16 0 1.94
CryptoModel − − 100 328 322 − −
Acls − − − 51 26 − −
KeyPolicy − 390 24 120 44 0 2.25
AuthEnc 169 523 36 244 143 1112 4.07
Repository 206 508 − 368 172 865 2.18
DKM 367 1125 − 275 119 880 3.88
total for DKM 742 2546 180 1447 855 3042 18.48
SampleServer − − 53 330 39 16 3.23
Tests − 7192 − 197 − − −

Fig. 5. Lines of code in C#, F#, and F7, and verification time. itf is interface, impl is implementation.

Although this kind of logical attack is trivial to fix
once identified, it is unlikely to be found by undi-
rected testing. On the other hand, models written for
traditional formal analyses may miss implementation
details such as local key caches, and thus also miss this
attack. Our verification method involves systematically
building (and checking) a correspondence between the
production code and the model. Thus, it is well adapted
to detect this kind of logical attack.

Implicit Authentication of the Authentication
Method. Our verification effort discovered a construc-
tion problem in the input of the key derivation func-
tion. When using CBC encryption and MAC, the key
derivation algorithm KDF did not differentiate between
the encrypt-then-MAC and MAC-then-encrypt authen-
tication methods, violating the unambiguous encoding
promise stated in Section III. In other words, the algo-
rithms but not the method were included as parameters
for key derivation, allowing the adversary to change this
method and cause the same keys to be shared between
different methods using the same algorithms. For ex-
ample, an adversary would have been able to inject
blobs (apparently) protected with MAC-then-encrypt
and, assuming it could break this method, recover
their keys and then also unprotect blobs protected with
encrypt-then-MAC. In contrast, our formal model re-
quires resistance against chosen-ciphertext attacks only
when the method is MAC-then-encrypt, which is fine as
long as DKM uses separate keys for blobs (apparently)
encrypted with distinct methods. We caught this vulner-
ability using our new model for cryptographic agility.

To remove the vulnerability, we redefined the input
of KDF to include the method Mes as well as its algo-
rithms Ies (see Equation (3) in Section III). We let Mes

be 1 for GCM (encoded in one byte), 2 for MAC-then-
encrypt (encoded in one byte), and the empty bytestring
for Encrypt-then-MAC. One might ask why we use this
ad hoc encoding instead of 3. There is a very practical
issue at work: backward compatibility with deployed

software. The default policy uses Encrypt-then-MAC.
So, we inquired with the early users of DKM to make
sure that none of them changed the default Mes setting
in their DKM configuration. Thus, an empty, but still
unambiguous encoding lets us be backward compatible
with all protected blobs in deployed environments,
while protecting new deployments with a modified
mechanism. In practice, we do not foresee a default
mechanism anything other than Encrypt-then-MAC or
AES-GCM.

Setting Key Lengths & Policy updates. We also identi-
fied several inconsistencies in the choice of appropriate
key lengths for the various algorithms, to ensure that
each key has enough entropy for all algorithms it is used
for. To compute the length of the DKM key k defined
in Section III, we initially included the encryption E
and MAC algorithm H key lengths but not the PRF
|Hd| key length in the key derivation function. Also,
we did not systematically re-compute and re-check that
key length when using the DKM key with a decoded
policy, so that a key allocated for a given policy could
be used (in principle) for another policy, even if the
later policy would mandate a longer key. Formally,
these discrepancies yield typechecking errors on the
refinements of the key values. We fixed these issues
before DKM was integrated into a product.

Cryptographic Policy in Unprotect. The DKM unpro-
tect operation does not consult the policy in the repos-
itory. Instead, DKM parses out the effective unprotect
policy from an protected blob, giving the adversary var-
ious knobs to play with. Assuming that parsing is done
properly, we discovered that not all key lengths were
verified against the decoded policy. In particular, the
length of the DKM key k was not checked against the
authenticated encryption and key derivation algorithms
despite the checks to make sure that the derived key
were of proper lengths.

The fix was straightforward: every DKM unprotect
operation checked that the DKM key k was at least

13
as long as the key length Lk computed from the
key derivation and authenticated encryption algorithms
in (1).

B. Limitations of F7

Our case study also reveals limitations of the verifi-
cation tools we used. Although F7 can handle complex
logical models at the level of details of production code,
it lacks support for many imperative and object-oriented
programming patterns. In principle, our model could be
checked directly against the C# codebase, but this would
involve engineering beyond the scope of our case study.
Our verification effort also stress the need for better
error messages for logical debugging and for a local
refinement-type inference while developing the model.

In terms of cryptographic verification, our method
relies on symbolic assumptions on the underlying prim-
itives. In future work, it would be revealing to formally
validate these assumptions against more concrete cryp-
tographic hypotheses, such as those for agility [1].

C. Conclusions

In modern distributed systems persisted data requires
flexible key management and cryptographically agile
policies to achieve long-term security and availability.
This need is not only theoretical; it is identified in
numerous actual software products and forms a basis
for our effort. As a response, we design, implement, and
verify DKM, a new security component that solves this
problem and keeps cryptographic complexity behind a
simple, high-level API for services that require data
protection.

As part of the development cycle of this new security
component we build, verify, and maintain a reference
implementation. This yields security guarantees beyond
those obtainable by independent verification efforts on
simplified formal models. In our experience with DKM,
this approach significantly improved our design and
understanding, and helped us identify and fix several
vulnerabilities early in its development cycle, avoiding
costly post-deployment updates. Taking advantage of
recent advances in automated tools for cryptography,
this was achieved at a reasonable cost: a 15% overhead
in code size including new verification libraries.

References
[1] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryp-

tographic agility and its relation to circular encryption.
In EUROCRYPT 2010, LNCS, pages 403–422. Springer,
Berlin, Germany, May 2010.

[2] T. Acar, M. Belenkiy, L. Nguyen, and C. Ellison. Key
management in distributed systems. Technical Report
MSR–TR–2010–78, Microsoft Research, June 2010.

[3] M. Bellare. New proofs for NMAC and HMAC: Security
without collision-resistance. In CRYPTO 2006, volume
4117 of LNCS, pages 602–619. Springer, Berlin, Ger-
many, Aug. 20–24, 2006.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
functions for message authentication. In N. Koblitz,
editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15,
Santa Barbara, CA, USA, Aug. 18–22, 1996. Springer,
Berlin, Germany.

[5] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon,
and S. Maffeis. Refinement types for secure implementa-
tions. Technical Report MSR–TR–2008–118, Microsoft
Research, 2008. A preliminary, abridged version appears
in the proceedings of CSF’08.

[6] K. Bhargavan, C. Fournet, and A. D. Gordon. A
semantics for web services authentication. In ACM
Symposium on Principles of Programming Languages
(POPL’04), pages 198–209, 2004. An extended version
appears as Technical Report MSR–TR–2003–83.

[7] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu.
Cryptographically verified implementations for TLS. In
ACM Conference on Computer and Communications
Security, pages 459–468, Alexandria, VA, USA, 2008.
ACM Press.

[8] K. Bhargavan, C. Fournet, and A. D. Gordon. F7:
refinement types for F#, Sept. 2008. Available from
http://research.microsoft.com/F7/.

[9] K. Bhargavan, C. Fournet, A. D. Gordon, and N. Swamy.
Verified implementations of the Information Card fed-
erated identity-management protocol. In Proceedings
of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS’08), pages 123–
135, Tokyo, Japan, 2008. ACM Press.

[10] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular
verification of security protocol code by typing. In ACM
Symposium on Principles of Programming Languages
(POPL’10), Jan. 2010.

[11] S. Chaki and A. Datta. ASPIER: An automated frame-
work for verifying security protocol implementations.
In IEEE Computer Security Foundations Symposium,
pages 172–185, Port Jefferson, NY, USA, 2009. IEEE
Computer Society.

[12] L. Chen. NIST Special Publication 800-108: Rec-
ommendation for Key Derivation Using Pseudorandom
Functions. Information Technology Laboratory, National
Institute of Standards and Technology, Gaithersburg, MD
20899-8900, Oct. 2009.

[13] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08), volume 4963 of
LNCS, pages 337–340. Springer, 2008.

[14] A. Dey and S. Weis. KeyCzar: A Cryptographic Toolkit.
Google, Inc., Aug. 2008. http://keyczar.googlecode.com/
files/keyczar05b.pdf.

[15] T. Dierks and E. Rescorla. RFC 5246, The Transport
Layer Security (TLS) Protocol Version 1.2. IETF, Aug.
2008. http://www.ietf.org/rfc/rfc5246.txt.

[16] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
IT–29(2):198–208, 1983.

[17] W. Ehrsam, C. Meyer, R. Powers, J. Smith, and W. Tuch-
man. Product Block Cipher System for Data Security.
International Business Machines, Feb. 1975.

[18] J. Goubault-Larrecq and F. Parrennes. Cryptographic

14
protocol analysis on real C code. In VMCAI’05, pages
363–379, 2005.

[19] D. Harkins and D. Carrel. RFC 2409, The Internet Key
Exchange (IKE). IETF, Nov. 1998. http://www.ietf.org/
rfc/rfc2409.txt.

[20] RFC 4306, The Internet Key Exchange (IKEv2). IETF,
Dec. 2005. http://www.ietf.org/rfc/rfc4306.txt.

[21] J.Rizzo and T.Duong. Practical padding oracle attacks.
In Black Hat Europe, Barcelona, Spain, Apr. 2010.

[22] H. Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 631–648,
Santa Barbara, CA, USA, Aug. 15–19, 2010. Springer,
Berlin, Germany.

[23] D. A. McGrew and J. Viega. The security and per-
formance of the Galois/counter mode (GCM) of op-
eration. In A. Canteaut and K. Viswanathan, editors,
INDOCRYPT 2004, volume 3348 of LNCS, pages 343–
355, Chennai, India, Dec. 20–22, 2004. Springer, Berlin,
Germany.

[24] Cryptography. Microsoft, Mar. 2010. http://msdn.
microsoft.com/en-us/library/aa380255(VS.85).aspx.

[25] Cryptography API: Next Generation. Microsoft,
Mar. 2010. http://msdn.microsoft.com/en-us/library/
aa376210(VS.85).aspx.

[26] NAI Labs, Network Associates, Inc. Windows Data
Protection. Microsoft, Oct. 2001. http://msdn.microsoft.
com/en-us/library/ms995355.aspx.

[27] PKCS#11 v2.30: Cryptographic Token Interface Stan-
dard. RSA Laboratories, Apr. 2009. http://www.rsa.
com/rsalabs/node.asp?id=2133.

[28] K. Scarfone, M. Souppaya, and M. Sexton. NIST
Special Publication 800-111: Guide to Storage Encryp-
tion Technologies for End User Devices. Information
Technology Laboratory, National Institute of Standards
and Technology, Gaithersburg, MD 20899-8900, Nov.
2007.

[29] T.Ylonen and C.Lonvick. RFC 4251, The Secure Shell
(SSH) Protocol Architecture. IETF, Jan. 2006. http://
www.ietf.org/rfc/rfc4251.txt.

[30] S. Vaudenay. Security flaws induced by CBC padding
- applications to SSL, IPSEC, WTLS ... In L. R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 534–546, Amsterdam, The Netherlands,
Apr. 28 – May 2, 2002. Springer, Berlin, Germany.

[31] X. Wang and H. Yu. How to break MD5 and other
hash functions. In R. Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 19–35, Aarhus, Denmark,
May 22–26, 2005. Springer, Berlin, Germany.

[32] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the
full SHA-1. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 17–36, Santa Barbara, CA, USA,
Aug. 14–18, 2005. Springer, Berlin, Germany.

Appendix

We first review our method for verifying the security
of code written in F#, relying on logical models type-
checked by F7. Section A explains how we apply this
method to DKM.

Symbolic Cryptography. Formal verification relies on
a series of security assumptions, expressed as hypothe-

ses on the interface of the cryptographic-algorithm
libraries. In the absence of formal security proofs on
the concrete design and implementation of the core
primitives, we rely instead on dual, non-standard im-
plementation of these libraries, which embody the target
security properties in some more abstract programming
model, as initially proposed by Dolev and Yao [16].
Hence, we obtain theorems about the security of pro-
tocol implementations linked against symbolic crypto-
graphic libraries, against all adversaries with access to
selected protocol and library interfaces, and we can
independently review whether those symbolic libraries
adequately reflect the strengths and known weaknesses
of the underlying cryptography. We refer to Bengtson
et al. [5] and Bhargavan et al. [10] for a detailed descrip-
tion and security analysis of two large cryptographic
libraries using F# and F7. Section A also illustrates
our approach on the interface for keyed cryptographic
hashes.

Refinement Typechecking. Our main verification tool
is F7, a refinement type checker developed for the
purpose of verifying protocol implementations [5]. F7
supplements F# with much-richer types carrying first-
order-logic formulas that can specify properties of the
values that have those types. These formulas are verified
during type-checking, by calling an automated theorem
prover. (In our case, we rely on Z3, an SMT solver.)
After typechecking, these formulas are erased, and we
are left with ordinary F# programs with plain .NET
types.

Sample Refinements. For example, let ‘bytes’ be the
type of byte arrays (byte[] in C#) and suppose we
use bytes to represent cryptographic key values. For
verification purposes, instead of bytes, we may use a
more precise refined type for keys, declared in F7 as

type key = b:bytes { Length(b) = 32 ∧ SymmetricKey(b)
}

This type is inhabited by values b of type ‘bytes’,
its base type at runtime, that also meet the logical
refinement specified by the formula between braces.
Hence, keys are bytes such that two facts hold: (1)
the byte array has length 32, and (2) the predicate
‘SymmetricKey(b)’ holds, which, in our model, may
indicate that the key was correctly generated by a
particular algorithm.

Suppose our encryption function takes a formal key
parameter with type ‘key’, rather than just ‘bytes’. Then,
typechecking an encryption involves proving that these
two facts hold for the actual key passed as an argument.
(Refinement formulas on arguments act as logical pre-
conditions.) Moreover, if the key generation function
is the only function with a result type refined with
the fact ‘SymmetricKey(b)’, then typechecking prevents

15
any other bytes from being treated as keys, and thus
well-typed programs use only correctly-generated keys
for encryption. (Refinement formulas on results act as
logical post-conditions.)

Programs typechecked with F7 can use two special
specification statements:

• The statement ‘assert C’ asks the typechecker to
verify that formula C holds in the current context,
that is, can be deduced from the current typing
environment. Otherwise, typechecking fails.

• Conversely, ‘assume C’ tells the typechecker that
formula C holds. For instance, we may use a
statement ‘assumeSymmetricKey(b)’ within the im-
plementation of our key-generation function, to
promote 32 freshly-generated random bytes and
give its result the type ‘key’.

These statements have no effect at runtime (since
all formulas are erased after typechecking) but they
must be carefully reviewed to understand the logical
properties established by typechecking. The main type-
safety theorem for F7 states that, whenever a well-typed
program executes an assert C, the formula C logically
follows from the conjunction of all previously-assumed
formulas.

We now outline our verified model, highlighting some
of its logical properties. The main novelties are (1)
the handling of imperative programming features; (2)
the first symbolic model for cryptographic agility—all
crypto functions are parameterized by their algorithm
and the protocol retains security properties even when
some of those algorithms are broken; and (3) a precise
account of access-control and group management.

We describe verification in three categories: program
verification, cryptographic verification, and API verifi-
cation.

A. Program Verification

Untrusted functions. Many functions implemented in
C# are irrelevant for the security of DKM. Technically,
we verify this by declaring their types in F7 without
any refinement; typechecking code that uses them under
those plain types (that is, in particular, without mak-
ing any assumption on the values returned by those
functions); and implementing them in F# using calls
to C#. This approach enables us to safely limit our
modeling effort. For instance, the format for encoding
policies into protected blobs is irrelevant for security:
their model only ensures that encoding and decoding
functions operate on public bytes.

Mutable Objects. Our executable model is more con-
crete and imperative than those previously verified with
F7, so we extend its verification libraries accordingly.

For instance, a new F7 module ‘Var’ provides a sim-
ple abstraction to keep track of the values of variables
and fields that are mutable (as usual in C#) but should be
written at most once during the lifetime of the object
(as often in DKM code, for instance for each of the
private fields of AuthEncrypt for keys, IV, etc, which
are gradually filled as the blob is processed). A variable
r of type Var.t can be written at most once and read
any number of times; both operations are typed in F7
with a logical postcondition Val(r,v) stating that v is the
current value stored in r. Writing a second time to a
variable triggers a run-time error (detected by testing).
As a benefit, ‘Var’ can includes an F7 assumption
stating that this type of variable stores at most one
value (logically, !r,v,v’. Val(r,v)∧Val(r,v’)⇒ v = v’ where
! is universal quantification); this assumption is used
during typechecking and enables efficient verification
of the code that depends on such variables, essentially
as if they were immutable.
Stream-based I/O. As shown in Section V, our C# code
systematically relies on I/O streams for incrementally
reading and writing both (authentic, confidential) source
bytes to be protected and (raw, public) blob bytes after
protection.

For verification, we need to distinguish between read-
ers and writers, and to precisely keep track of logical
refinements on the stream contents. To this end, we
decompose the single ‘System.IO.MemoryStream’ type
into several, more precise types in F7, and we introduce
functions for casting streams into input-only streams
and output-only streams:

val newMemoryStream: unit →α Stream
val read only: α Stream →α InStream
val write only: α Stream →αOutStream

(In F#, all these types are plain memory streams,
and we define let read only s = s and let write only s = s
.) Input streams can be read, but not written, so they are
contravariant; conversely output streams are covariant.
Hence, for example, in a typing context such that we
have a logical implication C ⇒C′, a stream of type (x
:bytes{C})InStream can safely be passed as a stream of
type (x:bytes{C′}) InStream (since the latter refinement
is less demanding on the values read off the stream).
This kind of subtyping on polarized streams is used for
instance to give different, precise types to the content
of the plaintext stream, as it is passed from DKM to
AuthEncrypt.

B. Cryptographic Verification

Core Cryptographic Model. We refer to Bhargavan
et al. [10] for a general description of modeling crypto-
graphic libraries as refined F7 modules. We develop our
own libraries to account for cryptographic agility: all

16
primitives take an extra ‘algorithm identifier’ parameter,
and all symbolic security properties are conditioned
by special predicates that specify our cryptographic
assumptions on these algorithms. (This is illustrated
below for keyed hash functions.)

Our formal model includes a few sample algorithms
for each kind of cryptographic primitive. In contrast
with production code, it also deliberately includes one
“broken” algorithm of each kind to accurately reflect
potential attacks when using poor policies. Formally, we
do not assume anything about those algorithms. Thus,
when those algorithms are run, we can pessimistically
give full control of their behavior to the adversary: the
adversary receives all their arguments (including the
key!) and sends back any bytes to be used as the result
of the algorithm. This enable us to verify, for instance,
that plaintexts protected with strong algorithms remain
secure, even if some other plaintexts within the same
group are (poorly) protected using broken algorithms.

type oid =
| Aes128CBC (∗ sample encryption algorithm ∗)
| Aes128GCM (∗ sample authenticated−encryption

algorithm ∗)
| WeakEncryption (∗ sample bad encryption algorithm ∗)
| Sha256 (∗ sample hash algorithm ∗)
| WeakHash (∗ sample bad hash algorithm ∗)
| NoAlgo (∗ no algorithm (null in C#) ∗)

type security assumptions =
| PRF of oid (∗ ok for key derivation ∗)
| CPA of oid (∗ ok for encrypting authenticated data ∗)
| CCA of oid (∗ ok for encrypting any data ∗)
| CMA of oid (∗ ok for authenticating data (MACs) ∗)
| CCM of oid (∗ ok for authenticated encryption ∗)

We also use different refinements on the raw “bytes”
datatype to check the consistency of the algorithms
used, for instance, for generating keys and IVs versus
those used later for encryption.
Sample primitive: authentication. We illustrate our
approach for authentication primitives, which have the
following plain types in F#:

val mac: oid →Key → bytes → bytes
val macVerify: oid →Key → bytes → bytes → unit

Both functions take as parameters an algorithm identi-
fier a, a key k, and the bytes value v to be authenticated;
the mac function returns a MAC m, whereas macVerify
takes a MAC as fourth argument, and either returns
nothing (if verification succeeds) or raises an exception
(if verification fails). In F7, these two functions are
given the more precise refinement types below:

val mac: a:oid → k:Key → v:bytes
{ ((IsMACKey(k) ∧MACSays(k,v))
∨ (Pub(k.value) ∧Pub(v))) ∧ k.oid = a } →

m:bytes { (Pub(v) ⇒Pub(m)) ∧ IsMAC(m,k,v) }

val macVerify: a:oid → k:Key

{ (IsMACKey(k) ∨Pub(k.value)) ∧ k.oid = a }
→ v:bytes →m:bytes → unit { IsMAC(m,k,v) }

assume !m,k,v.
IsMAC(m,k,v) ∧CMA(k.oid) ⇒MACSays(k,v) ∨Pub(k.

value)
In these refinement types,

• the preconditions for both functions demand that k
be a MAC key, using the fact IsMACKey(k) whose
algorithm identifier matches the one passed as
parameter (using the equality k.oid = a). Thus, for
instance, any erroneous code that may potentially
call macVerify with a key derived for another
algorithm would trigger a type error during its
verification.

• The predicate MACSays logically specifies the
meaning of an “authentic” value for a given key.
It is a precondition of mac, and a (conditional)
postcondition of macVerify.

• The predicate Pub tracks the knowledge of the
adversary, that is, public and potentially tainted
values. For instance, Pub(v)⇒Pub(m) in the mac
postcondition says that the MAC of m is pub-

lic, and can thus be written to untrusted storage,
provided that the MACed value v is also public;
otherwise the MAC may leak information on v.

• The fact CMA(k.oid) records a security assumption
stating that the algorithm with identifier k.oid pro-
tects integrity against chosen-message attacks, that
is, even if the adversary can influence the values
being MACed. This fact is not a precondition for
calling our two functions, but is required to deduce
MACSays after calling macVerify.

• The fact Pub(k.value) models the potential use of
compromised keys. Its use here reflects the pos-
sibility that the group key has been leaked, or
provided by the adversary.

• The predicate IsMAC is the postcondition of a
successful MAC verification; otherwise macVerify
throws a security exception. The assumption above
gives it logical meaning.

Thus, following the logical definition of IsMAC, after
cryptographic verification, we only know that, if the
algorithm is CMA, then either the verified value v is
authentic or the adversary knows the authentication key.
This logical property will need to be combined with
properties of the key derivation to rule out the second
alternative.
Sample primitive: key derivation. We give below the
type of our key-derivation function, and the definition of
its first postcondition IsDerivedMACKey. We omit the
definition of its counterpart for encryption IsDerivedEn-
cryptionKey.

val deriveKeys:

17
p:KeyPolicy → n:bytes →
s:Key { s.oid = p.KdfMacAlgorithm } →
ke:Key ∗ ka:Key { IsDerivedEncryptionKey(ke,p,n,s)

∧ IsDerivedMACKey(ka,p,n,s) }

assume !ka,p,n,s.
IsDerivedMACKey(ka,p,n,s) ⇒
(ka.oid = p.MacAlgorithm
∧ (PRF(p.KdfMacAlgorithm) ∧CMA(p.MacAlgorithm)

∧Pub(ka.value) ⇒Pub(s.value))
∧ (p.AuthEncMethod = MacThenEncrypt ⇒

(!x. MACSays(ka,x) ⇔Protect(s,p,x)))
∧ (p.AuthEncMethod = EncryptThenMac ⇒

(!x. MACSays(ka,x) ⇔
(∃plain,ke,iv,e. IsEncryptThenMac(x,s,p,n,plain,ke,iv

,e)))))

Intuitively, the assumed formula defines the specific
logical properties of each kind of keys that may be
derived from group key s according to policy p. For
example, if we use the MAC-then-encrypt method, then
the post-condition of deriveKeys tells us that the key ka
matches the MAC algorithm in the policy, and that the
logical meaning of authentication with ka, defined by
the predicate MACSays, is that the authenticated value
is a DKM plaintext protected using the group key s and
policy p, as recorded by the fact Protect(s,p,plain).

Authenticated Encryptions. The declared types of the
two main functions for authenticated encryptions are:

val authenticatedEncrypt:
p:KeyPolicy →
r:bytes → iv:bytes { IsIV(iv,p.EncryptionAlgorithm) } →
s:Key { s.oid = p.KdfMacAlgorithm } →
text:bytes { Protect(s,p,text) } → blob:bytes
{ Pub(iv) ∧ (Confidential(p) ∨Pub(text) ⇒Pub(blob)) }

val authenticatedDecrypt:
p:KeyPolicy →
r:pubs → iv:pubs →
k:Key { k.oid = p.KdfMacAlgorithm } →
blob:pubs → int → int → text:bytes
{ Authentic(p) ⇒ (Protect(k,p,text) ∨Pub(k.value)) }
Their typechecked implementation is given in Sec-

tion VI; it has specialized code for each of the three
possible methods prescribed by the policy p. Notice that
the security postconditions depend on the cryptographic
properties of the policy: for instance, to deduce that
the decrypted text is authentic after calling authenti-
catedDecrypt, we need Authentic(p) to hold, a predicate
defined from the security assumptions on the three
security algorithms of p.

C. API Verification

Repository. Our implementation of the IRepository in-
terface maintains mutable state for each group using
an in-memory database with entries of the following
refined type:

type StoredGroup =
n: groupname ∗
(p:KeyPolicy{GroupPolicy(n,p)}) list ref ∗
(guid,k:Key{GroupKey(n,k)}) Db.t ∗
(principal, right list) Db.t { ∃o. Created(o,n) }

Each entry includes a list of past and present policies; a
list of all keys for the group; and an ACL that records
the access level for each user. We maintain a list of
the successive policies that have been stored for the
group, rather than just the current policy, to account for
weak synchronization and the possibility of protecting
a plaintext with an out-of-date policy.

The refinement formulas in the type StoredGroup
above are essential to structure our model: to typecheck
code that stores a new policy, for instance, one has to
prove that this policy is a valid policy for that group (this
is tracked by the predicate GroupPolicy). Conversely,
when typechecking code that fetches a policy from the
repository, we know that this policy was valid at some
point in the past.

We give below the logical definitions of the predicates
that give a formal meaning to the statements “x had a
access to group n” (with e.g a = Read, or a = Write)
and “the policy p was valid at some point for group n”.
These predicates are recursively defined to keep track of
delegation chains for group access (from runtime events
Created, Granted, and Corrupt) and of the origin of any
stored policy (from runtime events Default or Assigned),
respectively.

assume !x,n,a. HadAccess(x,n,a) ⇔
Created(x,n) ∨
∃z.(HadAccess(z,n,Owner) ∧ (Granted(z,n,a,x)∨Corrupt(z

)))

assume !n,p. GroupPolicy(n,p) ⇔
∃o. Created(o,n) ∧
(Default(p) ∨
(∃z. HadAccess(z,n,Write) ∧ (Assigned(z,n,p)∨Corrupt(z)))

)

Main DKM Interface. Relying on logical definitions
from all refined modules, we arrive at the following
types for the two main functions of DKM:

val DkmProtect:
id:principal → dkm:Dkm →
plaintext:
(t:bytes {CanProtect(dkm.GroupName, id, t)}) InStream

→
protectedData: pubs OutStream → unit

val DkmUnprotect:
id:principal → dkm:Dkm →
ciphertext: pubs InStream →
plaintext:
(t: bytes { ∃p. Var.Val(dkm.DecodedPolicy,p)
∧Unprotected(id,dkm.GroupName,p,t) }) OutStream →

unit

18
Instead of just returning a pair of a plaintext and a

decoded policy, Unprotect stores the decoded policy
in a variable and sends the plaintext bytes on an
output stream. Accordingly, the effective postcondition
of Unprotect is attached as a refinement of any bytes
sent on that stream, with an existential quantifier on the
content of the decoded-policy variable.

The most precise property verified as a postcondition
of Unprotect is defined as follows:

assume !x,n,p,t. Unprotected(x,n,p,t) ⇔
∃k,ae. (

Var.Val(ae.Policy,p) ∧Var.Val(ae.Key,k)
∧HadAccess(x,n,Read) ∧GroupKey(n,k)
∧APP(k,p,t) (∗ needed just as a logic hint ∗)
∧ (Authentic(p) ⇒

(GroupPolicy(n,p) ∧∃y. Protected(y,n,p,t))
∨ (∃z. HadAccess(z,n,Read) ∧Corrupt(z))))

where the application-specific predicate CanProtect
records data protected in the group.

Typechecking these properties involves delicate sub-
typing, as the conditions passed from one function to
another evolve from properties on users and groups to
properties on keys and algorithms. (In the definition,
the APP predicate is included as a hint for Z3, our
underlying prover; it is logically redundant with the rest
of the formula but it helps Z3 instantiate variables in the
proof search; its definition is omitted.)

