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ABSTRACT 

We present methods to automatically identify and recommend sub-
tasks to help people explore and accomplish complex search tasks. 
Although Web searchers often exhibit directed search behaviors 
such as navigating to a particular Website or locating a particular 
item of information, many search scenarios involve more complex 
tasks such as learning about a new topic or planning a vacation. 
These tasks often involve multiple search queries and can span mul-
tiple sessions. Current search systems do not provide adequate sup-
port for tackling these tasks. Instead, they place most of the burden 
on the searcher for discovering which aspects of the task they 
should explore. Particularly challenging is the case when a searcher 
lacks the task knowledge necessary to decide which step to tackle 
next. In this paper, we propose methods to automatically mine 
search logs for tasks and build an association graph connecting 
multiple tasks together. We then leverage the task graph to assist 
new searchers in exploring new search topics or tackling multi-step 
search tasks. We demonstrate through experiments with human 
participants that we can discover related and interesting tasks to as-
sist with complex search scenarios. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval—selection process, search process. 

Keywords 

Exploratory search; Complex search tasks; Task recommendation. 

1. INTRODUCTION 
Search engines are the primary means by which people locate in-
formation online and complete search tasks. Queries issued to 
search engines have been categorized as navigational, informa-
tional or transactional [11]. This particular categorization has been 
useful for characterizing high-level information-search behavior 
and guiding the development of appropriate support (e.g., identify-
ing definitive results for navigational queries [1]). However, as the 
range of tasks that are possible online grows, more complex search 
activities, such as exploratory search [32], and multi-step search 
tasks [23] have been identified. In exploratory search, people seek 
to learn about a topic of interest or discover new information. In 
multi-step search tasks, searchers attempt to fulfill a complex infor-
mation need involving multiple aspects. Despite some trials [18], 
search engines today do not adequately support either of these sce-
narios. For searchers who are either unfamiliar with their problem 
domain, unfamiliar with the process to achieve their goal, or who 
lack a well-defined goal, there is a pressing need for assistance in 

searching. When attempting such tasks, searchers require support 
that extends beyond a list of search results. They need task comple-

tion systems that provide assistance by, among other things, outlin-
ing the necessary steps to explore or accomplish a complex task. 

Some previous attempts have been made to support people engaged 
in complex tasks by allowing them to take notes and record results 
that they already examined [18], or to provide task continuation as-
sistance, whereby the search engine can predict that a searcher is 
likely to resume a task and hence preemptively save and retrieve 
the current search state on the searcher’s behalf [34]. While these 
are good ways to support long term tasks, they do not help searchers 
directly explore or identify potential next steps for their tasks. Other 
research efforts have focused on building tours or trails to guide the 
searcher through their search process [20][35]. While useful, the 
methods proposed to date have involved restricted domains or hy-
pertext corpora rather than Web search [42], or have retrieved fo-
cused trails of URLs rather than lists of search results [39]. Other 
attempts have been made to augment browsing with serendipity, 
but have been limited to social media [35] or to named entities [8]. 

In this paper, we present and evaluate methods to automatically 
identify and recommend tasks that allow searchers to explore and 
accomplish complex (multi-aspect or multi-step) search tasks. We 
identify these suggestions by mining query logs from a popular 
commercial search engine to first identify complex tasks, and then 
automatically generate a graph connecting sub-tasks that are likely 
to have common interest from searchers. In doing so we learn from 
the aggregated activity of many searchers and apply this collective 
knowledge to assist others with similar search objectives. 

Our focus is to identify that a searcher is engaged in a complex 
search task and to help them explore different sub-tasks related to 
their complex search task. To better understand this, consider the 
example query [cheap flights to grand cayman] shown in Figure 
1. When the searcher enters this query, the method detects that they 
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Figure 1. Sub-graph generated from search-log data show-

ing connections between the tasks recommended for the 

query “Cheap Flights to Grand Cayman” (highlighted), 
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are engaged in a complex search task and that they may be inter-
ested in exploring more or fulfilling more steps. The figure shows 
a graph where every node is a search task. Search tasks are con-
nected if there is a high likelihood that both tasks can be steps in 
the same complex search task. The suggested tasks in Figure 1 ap-
pear reasonable to help searchers identify other steps for a complex 
task involving a trip to Grand Cayman. Note that this is a repre-
sentative set of tasks and there are many similar high-quality rec-
ommendations in the task graph that we generate. Since many 
searchers looking to fly to Grand Cayman have also been engaged 
in other activities to plan their trips, the proposed method automat-
ically identifies tasks about accommodation (“vacation rentals”), 
car rental (“car rental”), trip planning (“hurricane seasons”), and 
activities of possible interest (“snorkeling” and “scuba diving”). 

We make the following contributions with this research: 

• Develop methods to automatically identify queries in large-scale 
search logs that form part of complex search tasks. 

• Learn models to identify query intent and different aspects of the 
search tasks represented by each set of queries. 

• Construct a graph connecting tasks that are likely to be of inter-
est to searchers. This graph could be useful for a range of appli-
cations beyond task recommendation (e.g., advertising). 

• Apply the graph for the recommendation of a set of interesting 
and diverse tasks to support searchers during exploration. 

• Devise and apply metrics to measure aspects of task recommen-
dations, including novelty, diversity, and interestingness. 

The remainder of the paper is structured as follows. In Section 2, 
we describe related work in exploratory search, search trails, seren-
dipity, and query suggestions. Section 3 describes how we identify 
exploratory search intent from search activity. We describe the task 
extraction and graph construction in Section 4. Section 5 presents 
our recommendation approach. Our experiments and findings are 
summarized in Section 6 and we conclude in Section 7. 

2. RELATED WORK 
There are several areas of related work: (i) exploratory search, (ii) 
serendipity in Web search, (iii) creating trails and guided tours 
through information spaces, and (iv) query suggestions and related 
searches. We now describe previous work in each area in more de-
tail and discuss how our method and study extend this prior work. 

Exploratory Search: Many Web queries are directed searches 
where the searcher seeks to navigate to a particular Web resource 
or to locate a specific information item. Another class of search ac-
tivity is exploratory search [32][45]. Searchers engaged in explor-
atory search activities purposely try to learn about a topic and dis-
cover new information. This may be associated with information 
goals such as seeking different opinions on a topic, exploring or 
discovering aspects of a topic, or obtaining an overview of a topic.  

Research on exploratory search has focused on characterizing the 
exploratory search process and the different types of support that 
are required to help people perform exploratory searches [32][45]. 
Examples of this support include developing new search interfaces 
to helping media studies researchers refine their research questions 
and explore diverse topics [12], and creating interfaces to support 
complex search tasks [40]. Other research has focused on the pro-
longed nature of exploratory search tasks that can cause these tasks 
to span multiple sessions, and proposed solutions to preserve and 
restore the search state across these sessions [34]. Others examined 
personalizing the search experience for multi-session search tasks, 
showing the impact of task stage and task type [30]. 

To support exploration, previous work determines if a searcher is 
engaged in a complex search task and supports them within the cur-
rent session using tours or trails [23]. Other research has focused 
on identifying sessions where searchers are exploring and studying 
the impact of exploration on predicting search success [24]. Recent 
research has also examined the intrinsically-diverse nature of some 
information-seeking tasks. Such tasks typically require multiple 
queries on different aspects of the same information need [38]. The 
authors proposed an approach that could alter the result rankings 
and also provide them information on aspects of the task which they 
are likely to search for in the future. This relates to the aspectual 
retrieval task of the Text Retrieval Conference (TREC) Interactive 
Track [41], whereby searchers were expected to identify the differ-
ent aspects or instances of a given topic. 

Serendipity in Web Search: Serendipity is the act of encountering 
information unexpectedly. It has long been identified as valuable, 
both as a pleasure in itself and as part of task-focused problem solv-
ing [2]. Several research efforts have sought to characterize, under-
stand, and support serendipity in Web search. For example, André 
et al. [2] studied whether search-result personalization could reduce 
the potential for serendipitous information discoveries (e.g., by cre-
ating a filter bubble in which searchers are only shown limited in-
formation). They found that personalization does not harm seren-
dipity and may in fact be useful for supporting serendipity. 

Serendipity has also been considered in the context of collaborative 
filtering where interesting content is identified by matching indi-
viduals with similar interests. Previous work on collaborative fil-
tering has considered promoting novelty and serendipity by helping 
searchers to uncover less popular and more diverse items [46]. 

Another line of related research is that associated with entity search 
and recommendation. Lin et al. [29] proposed “active objects” 
where entities are paired with actions and given a query about some 
entity, all possible actions are recommended to searchers (e.g., ac-
tions on a book may be purchasing it, reading reviews, etc.). Previ-
ous work has also considered recommending queries based on an 
individual’s browsing behavior. In [9], entities are extracted from 
the page that a searcher is visiting and similar entities and queries 
are suggested. Finally, Bordino et al. [8] proposed a method to sup-
port serendipity in entity recommendation. They constructed an en-
tity graph based on Wikipedia and Yahoo! Answers and devised an 
algorithm to recommend new entities given a particular entity of 
interest to the searcher. They also examined the emotions attached 
to different entities and its impact on searcher interests. 

Tours and Trails: Another related research direction concerns the 
construction of tours and trails to guide searchers’ resource selec-
tion decisions during the search process [5][44]. Chalmers et al. 
[15] suggested that human recommenders build and share their 
Web navigation paths to support future searchers. Wexelblat and 
Maes [42] introduced annotations in Web browsers called Foot-

prints, assembled by the Website’s designer, that reveal trails that 
searchers take through a Website. They found that searchers re-
quired fewer steps to find information using the Footprints system.  

Trails have also been proposed as a way to guide users through the 
specific steps required to accomplish search tasks. Singla et al. [39] 
proposed trailfinding methods to support Web search by identify-
ing query-relevant trails from logs that could be shown to comple-
ment or replace traditional search result lists. An alternative to pre-
senting the full trail or guided tour are step-at-a-time recommenda-
tion. ScentTrails [36] combined browsing and searching into one 
interface by highlighting potentially valuable hyperlinks. Web-

Watcher [26] accompanied people as they explored the Web. The 



system highlighted hyperlinks, and learned from implicit feedback 
collected during earlier tours that it believed was of interest.  

Query Suggestions: There has been a significant amount of re-
search on the problem of finding and recommending query sugges-
tions [3][16][28][33]. Most query suggestions techniques use sim-
ilarity measures between queries using query terms, clicked docu-
ments, or sequences of queries in sessions. Although this work is 
related to ours, unlike query suggestion, our goal is not to help the 

user refine their current query. Rather, our objective is to help them 
identify and explore aspects related to their current complex task.  

Baeza-Yates et al. [3]  built models of query expansion based on a 
vector representation of queries. The query-click graph was used 
by Craswell and Szummer [16] to find related documents and que-
ries via random walks. Mei et al. [33] also used a bipartite graph 
connecting queries and clicks to find query suggestions via hitting 
time. Jones et al. [28] presented a method to generate query sug-
gestions by substituting the whole query or its sub phrases by new 
phrases collected from other searchers’ querying behavior. Other 
approaches address the challenge of generating query suggestions 
by modeling query flow in user search sessions. Boldi et al. [6] pre-
sented the concept of the query-flow graph which represents chains 
of related queries in search logs. They use this model for finding 
logical session boundaries and generating query recommendations.  

Prior work also studied the problem of predicting the next search 
action based on the current actions, either by predicting the next 
result click [13] or by predicting searchers’ short-term interests at 
a more general level of abstraction (e.g., topical categories [43]). 

Contributions of Our Study: We extend previous research in a 
number of ways. First, we devise and evaluate methods to automat-
ically identify queries, intents and different aspects of complex 
search tasks. Second, in contrast to prior work on query sugges-
tions, we do not try to help searchers refine their current query, ra-
ther we focus on recommending future queries that they should 
consider beyond current query refinements. Third, our work is not 
limited to entities, rather we cover a large span of aspects and tasks. 
Finally, we focus on supporting exploration in Web search rather 
than post-query navigation, or navigation though particular Web-
sites or restricted collections such as Wikipedia, all considered in 
prior research. 

3. COMPLEX SEARCH TASKS 

3.1 Data 
Our data consists of a sample of hundreds of thousands of search 
sessions from the usage logs of the Microsoft Bing Web search en-
gine during all of July 2013. Every log entry contained an anony-
mized user identifier, a timestamp, a query, and all search result 
clicks and their associated dwell times. Automated bot traffic, in-
tranet, and secure URLs (https) were removed at the source prior to 
analysis. Only queries tagged as English and from the United States 
locale were retained to remove geographic or linguistic variations. 

The log entries are segmented by time into sessions. In this study, 
session refers to a sequence of search activities terminated by a pro-
longed period of inactivity. We used 30 minutes of idle time to de-
marcate sessions, as has often been performed in related studies, 
e.g., [43] . Since a session can contain multiple related and unre-
lated searches, we further segment sessions into tasks and complex 
tasks [27]. We adopt the following definitions from prior work: 

Definition: A topically-coherent session is a set of related infor-
mation needs that belong to the same session. 

Definition: A search task is an atomic information need resulting 
in one or more queries. 

Definition: A complex search task is a multi-aspect or a multi-step 
information need consisting of a set of related tasks. 

Note that the terms “tasks” and “goals” and the terms “topically-
coherent session” and “missions” have been used to describe simi-
lar concepts in the literature [24][27]. Note also that since we only 
use topically-coherent sessions in our analyses, we use the terms 
“sessions” and “topically-coherent sessions” interchangeably to de-
note a related set of information needs within a fixed timeframe. 

3.2 Sessions with Complex Tasks 
We adopt the definition of complex tasks used in previous work 
[32][45].  Since our objective is to support searchers tackling com-
plex tasks, we want to focus on search sessions where searchers are: 

1. Engaged in learning and discovery (e.g., learning all aspects of 
a particular topic, comparing products, etc.), or 

2. Browsing information on a topic or a person of interest (e.g., a 
celebrity, a sports team, etc.), or 

3. Tackling a multi-step search task (e.g., planning a trip). 

Note that we use the terms exploratory tasks and complex tasks in-
terchangeably to denote one of the task types explained above. 
Since not all tasks meet these criteria, we need to appropriately han-
dle the cases that do not. The two most frequent cases are naviga-
tional searches (searcher is trying to reach a known site) or strug-
gling searches (searcher is experiencing difficulty in finding the re-
quired information) [24]. 

Navigational Searches: We removed the 500 most frequent que-
ries that also have low click entropy (≤ 0.15), representing the var-
iance in result clicks for these queries [19]. These are typically nav-
igational queries (e.g., facebook, nytimes) where the searcher is 
seeking to navigate to a particular website. Given their nature, these 
queries are unlikely to be part of exploratory tasks. 

Struggling Sessions: Struggling sessions are cases where searchers 
are experiencing difficulty in locating required information and 
hence issue multiple related queries. Previous work [24]  has shown 
that search sessions with multiple queries (three or more queries) 
can comprise exploration or struggle; the latter describing a situa-
tion where the searcher is having trouble locating required infor-
mation. To identify struggling sessions, we adopt the following list 
of session features shown to be useful for this task [24]: 

• Query features: Number of queries; time between queries; av-
erage query length. 

• Query-transition features: Average cosine similarity between 
queries, number of added, deleted, and substituted terms. 

• Click features: Number of clicks per query; average dwell time; 
percentage of unique URL and domain clicks. 

• Topical features: Open Directory Project (ODP, dmoz.org) cat-
egories of all visited URLs; count and entropy of all topics. 

We constructed a classifier to distinguish between struggling ses-
sions and other sessions using the features listed above and a Mul-
tiple Additive Regression Trees (MART) classifier [20]. The clas-
sifier was trained and tested using 10-fold cross validation. For this 
purpose, we use the labeled data described in [24]. The data con-
tained 3000 labeled sessions and over 13,000 queries. Every ses-
sion in these data was labeled as either a struggling session or not 
by a large number of crowd-sourced judges. The classifier could 
identify struggling sessions with an accuracy of 78.5 and an AUC 
of 83.4. We applied this classifier to our data to remove all strug-
gling sessions in addition to the navigational queries that we have 
removed earlier. We used the remaining sessions for our study. 



4. TASK GRAPH EXTRACTION 
In this section, we describe how we use the exploring sessions iden-
tified per the process in the previous section to identify and extract 
different tasks. We then show how we can build a graph to connect 
these tasks. This graph allows us to provide task recommendations 
to searchers as will be described in Section 5. In doing so, we can 
use the aggregated behavior of many searchers to support others 
who are also engaged in related search exploration. 

4.1 Identifying Tasks from Queries 
Using all unique queries from the dataset described in the previous 
section, our objective is to identify tasks. As described earlier, we 
adopt the definition of the task as an atomic information need. As 
such, a task can be a step in multi-step task (e.g., locating an eatery 
while planning a night out) or an aspect in a multi-aspect task (e.g., 
finding images of a celebrity while learning about their latest news). 
A task is represented by a group of queries with the same intent. 
For example, recalling Figure 1, finding a flight to Grand Cayman 
is a task that forms part of the broader complex task of planning a 
trip to Grand Cayman. Notice that a task can be represented by mul-
tiple distinct query statements (e.g., [flights to grand cayman], 

[flying to grand cayman], [grand cayman flights], etc.). As 
part of grouping queries, we pre-processed each query by lowercas-
ing the text, stripping punctuation, replacing all runs of whitespace 
with a single space, and trimming any leading or trailing spaces.  

We now describe the different lexical constituents that we seek to 
identify in every query and how they are used to find tasks. 

4.1.1 Entities 
We begin by tagging text spans in our queries that refer to an entity. 
For our purposes, we consider a text span to be an entity if it is 
represented in a knowledge base such as Freebase or Wikipedia. In 
our experiments, we pool all of the entities present in Wikipedia 
and Freebase, including people, places, companies, as well as 
events, concepts, and famous dates. 

We construct a lexicon by extracting each English lexical name as-
sociated with an entity in our knowledge base and represent it using 
a perfect hash data structure [17]. For each query, we lookup each 
possible n-gram in the perfect hash. Nested matches are resolved 
by greedy admission using a left longest match heuristic. 

Many of the knowledge sources used by our approach, such as 
Freebase, represent ontological items such as /time/event and /busi-

ness/employment_tenure, as well as reified relations such as 
/film/performance and /education/education. In order to filter these 
out, following [37], we identified all the lexical names in our query 
data and manually annotated the 300 most frequently matched 
types according to whether they represented non-entity types (as 
above) or entity types, e.g., /music/record_label, /aviation/airport, 
and /military/conflict (accounting for over 90% of the query traffic 
matching a lexical name). We then exclude any entity that is typed 
with a non-entity and none of the entity-annotated types. 

It is well known that lexical names are highly ambiguous. Since our 
goal is to tag queries with the presence of an entity, i.e., not to re-
solve the entity to a particular entry in the knowledge base, we are 
only concerned with names that are ambiguous with a non-entity 
sense. For example, the name “something” is problematic since it 
can refer to the Beatles song “Something” as well as the very com-
mon non-entity pronoun. We filtered out such highly ambiguous 
names from our lexicon by building a binary ambiguity classifier 
trained on 500 manually annotated names. A name is ambiguous if 
it holds a non-entity sense, such as the name “something”. For our 
learning algorithm, we use boosted decision trees [20]. We tune our 

hyper-parameters (i.e., number of iterations, learning rate, mini-
mum instances in leaf nodes, and the maximum number of leaves) 
using ten-fold cross-validation. The resulting binary classifier is 
then applied as a filter to all names in the lexicon. This operation 
generated a lexicon comprising around 11 million names that we 
use in building the task graph described later in this section. 

4.1.2 Collocations 
Definition: A collocation, also known as a multi-term keyword, is 
a sequence of words or terms that co-occur more often than would 
be expected by chance [31].  

Consider the query [cheap hotels in new york city] as an ex-
ample. A bag of word representation would treat the query as a set 
of six words: {“cheap”, “hotels”, etc.} in no particular order. If we 
try to understand the intent behind the query, we will determine that 
the user is searching for “cheap hotels” in “new york city” and that 
breaking these multi-term keywords into their constituent terms re-
sults in a loss of semantic meaning. 

Identifying term collocations is strongly related to the problem of 
query segmentation. Query segmentation involves dividing search 
query into individual phrases or semantic units [4]. Many solutions 
have been proposed to tackle the query-segmentation problem. 
Some employ a supervised learning framework [4], while others 
adopt an unsupervised framework [21]. We use unsupervised tech-
niques since they are simpler to implement, only require access to 
raw Web n-gram frequencies, and can achieve comparable perfor-
mance to state-of-the-art supervised methods [10]. 

To segment queries into collocations (keywords), we adopt a 
widely-used approach [21]. A segmentation is obtained by compu-
ting the point-wise mutual information score for each pair of con-

secutive terms. More formally, for a query � = ��	, ��, … , �	�: 

�������������� , ���	� = ���
���� , ���	�
����������	�

 

where ���� , ���	� is the joint probability of occurrence of the bi-

gram ��� , ���	� and ����� is the occurrence probability ��.  

A collocation break is introduced whenever the association be-

tween two words falls below a certain threshold Ƭ. Following [22], 

we used	Ƭ = 1.91. Note that this is larger than thresholds used in 
the literature (e.g., 0.895 [28]) since the objective of this work is to 
find collocations, which tend to require a higher degree of associa-
tion, rather than phrases as is usually the case in previous work. 

4.1.3 Terms and Prepositions 
In addition to entities and collocations, we use two additional tags 
to describe the remaining tokens in a query: “Prep” and “Term”. 
Prep describes prepositions such as (for, in, of, etc.). Any term not 
labeled as an entity, a collocation, or a preposition is tagged as term. 

4.1.4 Patterns 
Our objective is to identify queries that can be parsed into a task. 
We focus on queries that can be characterized using one of the fol-
lowing three patterns: 

• Refiner Prep Pivot (e.g., cheap_hotels in  new_york) 

• Pivot Refiner (e.g., apple_iphone reviews) 

• Pivot (e.g., tom cruise) 

Definition: A pivot is the central point of the query and can be any 
concept that is well defined and has been labeled as an entity or a 
collocation (e.g., “new york city”). 

Definition: A refiner is a query constituent intended to characterize 
a precise distinction or subtlety in a query (e.g., “hotels”). 



Restricting the queries that we use to those that follow these pat-
terns allows us to identify the pivot and refiner in every query using 
a simple set of dependency parsing rules. For phrases of the form 
“NNX NNX”, where NNX is a singular, plural, or proper noun, the 
pivot is the first noun. For phrases of the form “NNX IN NNX”, 
where IN is a preposition, the second noun is the pivot. These sim-
ple rules lead to higher precision analyses when compared to full 
dependency parsers, which tend to perform poorly on queries since 
they are typically short and often not grammatically well-formed.   

To find pivots and refiners in queries using the entity, collocation, 
term and prep tags, we start by resolving nested entity and colloca-
tion matches. Nested matches are resolved by greedy admission us-
ing a left longest match heuristic. For example, in the search query  
[reviews for apple iphone], the terms “apple” and “iphone” are 
identified as entities, and “apple iphone” is identified as a colloca-
tion. In this case the match is resolved by treating “apple iphone” 
as a single concept. We retain the information about the subsumed 
entities with the concept and we treat the concept as an entity. 

Figure 2 shows how a pivot and a refiner can be identified using the 
tags (entity, collocation, etc.) assigned to each token or multi-token 
keyword. As shown in Figure 2, a pivot can be either an entity or a 
collocation. Allowing collocations to serve as pivots significantly 
increases the coverage of our method and allows us to cover con-
cepts that are not typically labeled as entities (e.g., “fall wedding”, 
“resume writing”, etc.) as well as consecutive entities that are typi-
cally treated as a single entity (e.g., “apple iphone”). Conversely, a 
refiner could be a term or a collocation that it is intended to define 
a specific aspect of some entity (e.g., “cheap hotels”). Examples of 
queries and their corresponding lexical tags appear in Table 1. 

Since queries often lack syntactic structure, we also allow some 
patterns such as “Refiner Pivot”, e.g., “pictures tom_cruise”, only 
when the pivot is an entity and it is the only entity in the query. We 
also allow this pattern when the refiner is a question word, e.g., 
“what is adaptive radiation”. Restricting queries to the three pat-
terns described above allows us to understand query intent and 
group multiple queries with the same intent as we show later. In 
total, 72.9% of the queries in the exploration sessions identified in 
Section 3 followed these patterns. Therefore, these patterns allow 

us to capture a significant fraction of online exploratory searching. 
We now show how these queries are grouped to find tasks. 

4.2 Grouping Queries into Tasks 
Using the methodology described above, we extract 10.27 million 
queries from the search log dataset described in Section 3. Recall 
that a task is either a step in a multi-step complex task or an aspect 
in a multi-aspect task as defined earlier. Since the same task can be 
represented by multiple queries, we need to group all queries per-
taining to the same task together. One way to address this problem 
is to define a query similarity function and apply it to all pairs of 
queries and then cluster the resulting graph. However, this ap-
proach is very expensive since the number of pairs is quadratic in 
the millions of queries in our dataset. 

Alternatively, we can use the metadata we have about the queries 
(the refiner and pivot tags, the entity identifier, etc.) to significantly 
reduce the computational cost of the grouping process. To group 
queries with similar intent, we perform the following three steps: 

1. Every entity in the knowledge base is assigned a unique identi-
fier.  We assign entities present in queries identifiers by looking 
them up in the knowledge base and applying the identifier used 
for the entity therein. This allows us to match different surface 
forms of the same entity (e.g., “new york city” and “nyc”).Sur-
face forms with more than one identifier are ignored for this step. 
We then replace all entities with its entity identifier. 

2. We normalize the syntactic structure of all queries by transform-
ing all patterns of the form “Refiner Prep Pivot” to “Pivot Re-
finer” (e.g., “hotels in new york city” � “new york city hotels”). 

3. For queries with the same pivot, we match two refiners if they: 
(1) have the same lemma (lemmatization is the process of reduc-
ing an inflected spelling to its lexical root or lemma form); or 
(2) have a normalized edit distance of less than 0.2. This allows 
us to capture spelling mistakes and spelling variations. 

Applying these steps allows us to group queries such as: [hotels 

in new york city], [hotels in nyc], [nyc hotel], [nyc hotls], 
etc. into a single query group representing a single aspect. 

Every group of queries represents one aspect and is represented by 
the most frequent query in the group. This representation is used as 
the recommended surface form as we will explain in Section 5. We 
apply this method to the set of 10.27 million queries and identify 
7.69 million query groups (tasks) that we use to construct a graph.  

Table 1. Examples of task queries and corresponding  

lexical tags. Multi-word entities and collocations are  

separated by an underscore. 

Lexical Tags Example Query 

Term Prep Entity reviews of iphone 

Term Prep Entity attire for fall_wedding 

Term Prep Entity Entity reviews of apple iphone 

Collocation Prep Entity Entity user_reviews for iphone 

Collocation Prep Collocation center_pieces for fall_wedding 

Collocation Prep Entity Entity user_reviews for apple iphone 

Entity Term iphone reviews 

Collocation Term fall_wedding dresses 

Entity Object Term apple ipad prices 

Entity Collocation tom_cruise latest_movies 

Collocation Collocation fathers_day gift cards  

Entity Entity Collocation apple iphone protection_plan 

 

Figure 2. The basic lexical elements are entities, collocations, 

prepositions and terms. A pivot can be an entity or a colloca-

tion. A refiner can be a collocation or a term. An aspect is ei-

ther a pivot, or a pivot and refiner optionally connected by a 

connector. Dashed lines indicate that a constituent is optional. 
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4.3 Task Graph 
Recall that our main objective is to help searchers tackle complex 
tasks by recommending related and interesting tasks with respect to 
their current query. A good list of recommendations will contain 
different tasks that are related to the current one. A natural way to 
do that would be to construct a graph where related tasks are con-
nected. This graph can be used to suggest future queries given the 
current one. Since individuals may lack the necessary knowledge 
to explore all related tasks, we aggregate the search behavior of all 
searchers and encode inter-task relationships in a graph structure. 

We construct a graph ! = �", #, $� where " is the set of all tasks 
(query groups) described in the previous section. #	 = "	 × 	" is the 

set of possible associated tasks. $ ∶ 	# → 	 (0. .1)	is a function that 

assigns to every pair of tasks ��, *� a weight $��, *� representing the 
strength of their association. 

To measure the association between pairs of tasks we use the Nor-
malized Pointwise Mutual Information [10]. The Pointwise Mutual 
Information of any two discrete events +	and	, quantifies their de-
gree of association by the discrepancy between the probability of 
their coincidence given their joint distribution and the probability 
of their coincidence given only their individual distributions, as-
suming independence. The PMI value is 0 if the two variables are 
independent. Positive values of PMI indicate positive association 
while negative values indicate negative association. Since PMI can 
take arbitrary positive or negative values, we normalize it into 
NPMI, which has a value between [−1,+1], as follows: 

��-��+, ,� = − ���
��+, ,�
��+���,�

��� ��+, ,�/  

To compute the association value we need to determine when two 
tasks have co-occurred. We define co-occurrence between two 
tasks when the same searcher issues both queries within a 48-hour 
period. To reduce noise in this calculation, we discard all pairs that 
co-occurred less than 10 times unless they share the same pivot. 

5. TASK RECOMMENDATION 
Using the graph connecting the different tasks, our objective is rec-
ommend other tasks related to the current task that help the searcher 
explore related and novel aspects. Given the nature of the task 
graph, we operate in the space of search queries and recommend 
queries for a given query. To be valuable in this context, the set of 
recommended queries needs to be diverse, and the set should also 
be interesting and cover as many related tasks as possible. 

Given these requirements, we identify candidate recommendations 
using a random walk approach. Random walk based methods (e.g., 
personalized page rank [25]) have been widely used in the literature 
for a broad range of recommendation tasks [6][7][16]. Inspired by 
these methods, we define the random walk method as follows. 

Imagine a random surfer walking along the task graph !. Starting 

from one node � (i.e., a searcher query that matches one of the query 

groups), it either stays at � with probability 0 or moves to another 
adjacent node with probability 1 − 0. When it moves to an adjacent 

node, it selects a node * with probability 1�2 that is proportional to 

the weight of the edge connecting � and	*.  

We define the transition probabilities 13�	|3�*|�� from � to *	by nor-

malizing the weights of the edges in the task: 

13�	|3�*|�� =
5�2

∑ 5�77
 

Where 8 represents all nodes in the neighborhood of �. 13�|3	�*|�� 
denotes the transition probability from node � at step �	 to node * at 

step 2. We note that neither the weights 5�2 , nor the transition prob-

abilities are symmetric. 

We introduced the self-transition loops to reinforce the importance 
of the starting node and to slow the diffusion of the random walk to 
other nodes. Previous work has set the value of the self-loop prob-
ability to 0 = 0.9 [6][16]. We investigated different values of prob-

ability 0 and demonstrate their impact effect on performance in the 
evaluation section. We terminate the walk after a maximum of 30 
iterations or when the norm of the difference between two succes-

sive iterations is less than	10:;. We rank the recommended tasks 
based on the stationary distribution of the random walk. 

Before applying the random walk model, we removed any edge if 
its weight is less than 0.2 and we also removed nodes that no con-
nections to any other nodes. We also noticed that some nodes 
(tasks) have appeared in the graph with a very large degree (number 
of edges). These nodes are typically navigational queries that were 
not excluded using the navigational query filter described earlier in 
the paper. These nodes will result in connecting many unrelated 
tasks since they are very central to the graph. To alleviate this prob-

lem, we remove any node that has more than < edges in the graph. 

< was set heuristically to 300 and that resulted in removing of less 
than 1% of the nodes from the task graph. 

6. EVALUATION 
To evaluate our approach we build a task graph and use the methods 
outlined in Section 5, along with other baselines that will be de-
scribed below, to generate lists of exploratory query suggestions. 
For our data, we use four weeks of logs from the Microsoft Bing 
Web search engine as described in Section 3.1. The graph contains 
over one million nodes (tasks) and over 35 million edges (connec-
tions between tasks). The number of nodes is less than the number 
of tasks identified in Section 4.1 since we performed a lot of prun-
ing (e.g., removing unconnected nodes, nodes with very high de-
gree, etc.), as described in the preceding sections.  

We tested the performance of our system using a set of 300 test 
queries, of varying frequency. We split the nodes in the graph into 
three equally-sized groups according to their frequency, and sam-
pled 100 queries from each group resulting in a total of 300 queries. 
Examples of these queries are shown in Table 2. Each query is as-
sociated with a task (i.e., a node in the task graph). 

6.1 Research Questions 
To assess the quality of our task recommendation method for sup-
porting complex tasks, we performed crowd-sourced assessments 
to answer the following research questions: 

RQ1: Relatedness: Are the recommended tasks related to the orig-
inal query? Relatedness is important since searchers are unlikely to 
be interested in unrelated suggestions. 

RQ2: Interestingness: Will searchers be interested in exploring 
the recommended tasks given their original query? Interestingness 
is important since we are not trying to propose rewrites or refine-
ments of the current query. Hence, a searcher is likely to be inter-
ested in the suggestions if they are both related and novel. 

RQ3: Diversity: Are the recommendations intrinsically diverse? 
Diversity is important since we are providing multiple suggestions 
to searchers, and it is preferable to avoid redundancy. 

RQ4: Completeness: Do the recommendations address most of the 
sub-tasks (aspects or steps) associated with the task needed to ac-
complish the complex task? Given our objective of supporting ex-
ploration, it is desirable to assess the coverage of the suggestions. 



RQ5: Task recommendations vs. related searches: How are the 
task recommendations different from traditional related searches? 

6.2 Study Methodology 
Suggestions were labeled by judges who were recruited from the 
crowdsourcing service Clickworker.com, which provided access to 
crowd workers under contract. Judges resided in the United States 
and were fluent in English. As is necessary with a study on a remote 
crowdsourcing platform, we took several precautions to maintain 
data integrity. We restricted annotators to those based in the US 
because our logs came from searchers based in the US. We also 
used hidden quality control questions to filter out poor-quality 
judges. We had three judges work on every instance. In total we 
employed 69 judges and collected 6300 judgments for the first ex-
periment (Section 6.2.1) and 900 judgments for the second experi-
ment (Section 6.2.2). 

6.2.1 Evaluating Task Recommendations 
The objective of the first experiment is to evaluate the quality of 
task recommendations and answer RQ1 – RQ4 described above. As 
comparator methods, we generate and compare suggestions using 
the following techniques, which includes variations of the parame-
ters in the proposed methods (i.e., Random Walk and Random 
Walk + Div) and some other methods used as baselines in the study: 

• Random Walk (two variants): As explained in Section 5, we 
use a random walk based model over the aspect graph to gener-
ate recommendations. Recommendations are ranked based on 
the stationary distribution of the random walk. We experiment 
with two variants of this method by setting the self-probability 
0 to 0.7 and 0.9. This allows us to study the effect of allowing 
the random walk to diffuse more from the original query. We 

noticed a clear reduction in quality as 0 decreases, so we did not 
experiment with any other values of 0 during the human judg-
ment process. 

• Random Walk + Diversity (two variants): To measure the 
need for an extra diversity step, we use a Maximal Marginal Rel-
evance (MMR) [14] like function that tries to promote “relevant 
novelty” instead of just relevance. To measure relevant novelty, 
we measure relevance and novelty independently and then rank 
recommendations based on a linear combination of both. For-
mally we seek to maximize the following function: 

>��?@���� = A	B@�@C��� , D� − �1 − A�max
2H�

>�-� �� , �2� 

where D is the original query, > = ��� , … , �� is the list of sug-

gestions, B@�@C��� , D� is the stationary distribution score de-

scribed above normalized to be ϵ(0,1) , >�-J�� , �2K is function 

to measure the similarity between different aspects. In this study, 

we define >�-�+, ,� as the cosine similarity between word text 

frequency representations of + and ,. Finally, Aϵ(0,1) is a pa-
rameter to control the tradeoff between aspect relevance and as-
pect diversity. We set A to 0.5 in all our experiments. We tried 

to change A to 0.3 and 0.7, but we did not notice a significant 
change in the results. We applied these criteria to re-rank the top 
20 results as defined by the value of the random walk stationary 
distribution. For queries with fewer than 20 aspects recom-
mended, we re-rank all available suggestions. 

• Second Order Similarity: This baseline identifies candidate 
recommendations using a second order co-occurrence model 

over our graph !. Offline, we compute the similarity matrix be-
tween all pairs of tasks as follows. For each task �, we construct 

a multi-dimensional vector �L consisting of |"| coordinates, 

where �� = $��, ��, i.e., the weight of the edge between tasks t 

and i in	!. The similarity between two tasks �	 and �� is then 

computed as the cosine of the angle between �	MMML and	��MMML. This 
baseline identifies recommendations for a task by selecting other 
tasks with the highest pairwise similarity to the current task. 

• Neighbors Ranked: For every query, we obtain the correspond-
ing node (task) and retrieve all neighbors of that node. Neigh-
bors are ordered by the weight of the edges connecting them to 
the original node and the neighbors with the highest such weight 
are returned. 

• Neighbors Random: This baseline is similar to the Neighbors 

Ranked baseline except that we do not order the neighbors ac-
cording to their weights. Rather nodes are selected uniformly at 
random without replacement from the set of neighbors. 

For every method, we show a maximum of eight recommendations 
to judges. Judges were provided with an original query (one of the 
300 used in the experiment) and a list of suggestions, and asked to 
judge the following dimensions on a three-point scale: 

Relatedness: Suggestions are: (1) Related: all suggestions are re-
lated to the original query; (2) Somewhat Related: many sugges-
tions are related to the original query; or (3) Not Related: most or 
all of the suggestions are not related to the original query. 

Interestingness: Suggestions are: (1) Interesting: all suggestions 
are interesting given the original query; (2) Somewhat Interesting: 
many suggestions are interesting; or (3) Not Interestingness: most 
or all suggestions are uninteresting. 

Diversity: Suggestions are (1) Diverse: suggestions are completely 
distinct from one another; (2) Somewhat Diverse: many suggestions 
are distinct but some are redundant; or (3) Not Diverse: most or all 
suggestions are redundant. 

Completeness: Suggestions are (1) Complete: I cannot think of any 
missing aspects or steps related to the task; (2) Somewhat Com-

plete: I can think of a few missing aspects or steps; or (3) Not Com-

plete: I can think of many missing aspects or steps. 

Since most judges label largely disjoint sets of aspects, we do not 
report the standard Cohen’s kappa for inter-annotator agreement. 
Instead, we report label agreement, which was 87.4%, 81.4%, 
87.0% and 70.8% for relatedness, interestingness, diversity, and 
completeness respectively. This level of agreement demonstrates 
that judgment variance is quite small, and increases our confidence 
in the reliability of the judgments for evaluating our methods. 

Table 2. Examples of queries in the evaluation set. 

Example Queries 

vacation packages to cancun 

baltimore inner harbor attractions 

adam levine engaged 

celebrities born on halloween  

george zimmerman verdict 

nbc canceled shows 

what is adaptive radiation 

side effects of amitriptyline 

bland diet menu 

gettysburg deaths 

mother’s day gift ideas 

fall wedding wedding decorations 

 



6.2.2 Task Recommendations vs. Related Searches 
The objective of the second experiment is to answer RQ5, which 
tries to characterize the differences between our task recommenda-
tions and traditional related searches. This is valuable in quantify-
ing the degree of difference between the two approaches. We gen-
erated recommendations using the task graph and the random walk 
method (Random Walk (β=0.7)) and suggestions using the related 
searches from a state-of-the-art related search system that used 
query similarity (e.g., [28]), query-log based learning (e.g., [6][33]) 
and diversification (e.g., [46]). 

To understand the relation between the two lists of suggestions, we 
conducted a comparative experiment where we showed judges the 
original query and the two lists side-by-side. The ordering in which 
the result sets were assigned to sides (left or right) was randomized. 
We ask judges to select the best list according to the rating dimen-
sions described in the previous subsection (i.e., relatedness, inter-
estingness, diversity. and completeness). Judges reported their pref-
erences using a five-point scale where the points ranged from a 
strong preference for the left side to strong preference for the right 
side. The five response options are: Left is better, Left is slightly 

better, About the same, Right is slightly better, and Right is better.  

To compare the lists N and O, we define a WinLoss measure as the 

number of times N is preferred over O minus the number of times 

O is preferred over N, divided by the total number of instances. This 
ranges between –1 (B always wins) and +1 (A always wins). 

6.3 Findings 

6.3.1 Task Recommendation 
Table 3 shows the percentage of each response for the proposed 
methods and baselines in terms of relatedness, interestingness, di-
versity and completeness. A χ2 test shows that the difference be-
tween proportions is significant at the � ≤ 0.001 level for all vari-
ants of the random walk methods. The significance of the difference 

between the random walk methods and the other baselines is shown 
in the table where appropriate. 

Relatedness: The table shows that the random walk based methods 
perform best when it comes to relatedness with the best performing 
method being the random walk method with a self-loop probability 

0 = 0.9 and with no re-ranking for diversity applied. Relatedness 
slightly decreases whenever the re-ranking for diversity is used for 
both random walk method irrespective of 0. The second order sim-
ilarity baseline performs well too. Surprisingly, the recommenda-
tion based on the edge strength performs worse than the random 
walk methods even for relatedness. One explanation is that the way 
that relatedness is measured in a random walk takes both direct con-
nections and indirect connections (through other nodes) into con-
sideration, resulting in recommendations that are more relevant. As 
expected, when we select neighbors at random, we get the worst 
relatedness performance. 

Interestingness: Interestingness is a more important measure than 
relatedness given that the focus of this paper is in devising tech-
niques to support exploration. Like relatedness, we notice that the 
random walk methods outperform all other baselines. Unlike relat-
edness, the best performing method is the random walk method 
with a self-loop probability 0 = 0.7. Re-ranking for diversity has a 
slight effect on the performance when applied. This shows that 
smaller self-loop probability values are likely to allow more diffu-
sion from the original node resulting in less related but obvious rec-
ommendations and more related and interesting recommendations. 
We also notice that the re-ranking for diversity also has a minor 
positive effect on the interestingness of the suggestions showing 
that the results are interesting to the judges even without the appli-
cation of the re-ranking for diversity step. 

Diversity: Our measure here is intended to measure the redundancy 
of the suggestions when compared to one another. The table shows 
that all methods perform very well in terms of diversity with most 

 

 

 

 Random Walk 

(β=0.7) + Div. 

Random Walk 

(β=0.7) 

Random Walk 

(β=0.9) + Div. 

Random Walk 

(β=0.9) 

Second Order 

Similarity 

Neighbors 

Ranked  

Neighbors 

Random  

 Relatedness 

Related 67.56%*2,
†

3,^3 70.80%*3,
†

3,^3 62.22%*2,
†

3,^3 67.70%†
3,^3 68.85% 61.94% 55.33% 

Somewhat Related 23.67% 21.52% 29.78% 25.63% 21.58% 26.64% 29.67% 

Not Related 8.77% 7.68% 8.00% 6.67% 9.56% 11.42% 15.00% 

 Interestingness 

Interesting 66.67%*3,
†

3,^3 58.19%*1,
†

3,^3 43.44%*3,
†

3,^3 58.44%*3,
†

3,^3 63.39% 51.21% 44.33% 

Somewhat Interesting 25.11% 32.01% 47.11% 29.72% 26.05% 31.83% 35.00% 

Not Interesting 8.22% 9.80% 9.44% 11.84% 10.56% 16.96% 20.67% 

 Diversity 

Diverse 63.44%*3,
†

3,^3 62.43%*3,
†

3,^3 60.89%*1,
†

1,^3 55.75%*3,
†

3,^3 72.13% 58.82% 53.33% 

Somewhat Diverse 32.33% 33.22% 37.78% 37.21% 20.22% 30.45% 32.33% 

Not Diverse 4.22% 4.35% 1.33% 7.04% 7.65% 10.73% 14.33% 

 Completeness 

Complete 48.67%*3,
†

3,^3 47.60%*1,
†

3,^3 44.22%†
3,^2 40.45%*1,

†
2,^3 43.44% 43.94% 35.00% 

Somewhat Complete 38.33% 39.58% 44.67% 39.66% 34.15% 31.83% 38.33% 

Not Complete 13.00% 12.82% 11.11% 19.89% 22.40% 24.22% 26.67% 

 

Table 3. Performance in terms of Relatedness, Interestingness, Diversity and Completenes for the Task recommendations 

methods and baselines. All the differences between the random walk methods are statistically significant at P ≤ Q. QQR 

using a χ2 test. Signficance of the random walk methods to the second order, neighbors ranked and neighbors random is 

denoted  as *,  †, ^ respectively. P ≤ Q. QS is denoted as *, P ≤ Q. QR is denoted as *2 and P ≤ Q. QQR is denoted as *3. 



suggestions labeled as “Diverse” or ‘Somewhat Diverse” with the 
exception of the neighbor recommendation methods which does not 
intentionally promote diversity. We also notice that the re-ranking 
for diversity has a higher effect on the random walk method when 
the self-loop probability is set to 0.9 compared to when it is set to 
0.7. This shows that when we add more diffusion in the random 
walk model (smaller self-loop probabilities), we already obtain di-
verse results leaving little or no room for the re-ranking for diver-
sity to achieve any gains in performance. 

Completeness: We observe that all proposed methods and base-
lines achieve lower performance on completeness as compared to 
other metrics (relatedness, interestingness, etc.) with all of them 
achieving similar performance. These results should be interpreted 
with some caution since the degree of completeness is directly re-
lated to the number of suggestions that we provide. As part of our 
experiment, we tried to increase the number of task recommenda-
tions from 8 to 12 and noticed that the completeness improves but 
other metrics such as relatedness and interestingness are degraded. 
We should also consider that increasing the number of suggestions 
may have a negative effect on how the suggestions are perceived, 
since many of the suggestions may be confusing or distracting. 

Overall, the findings of this analysis show that the task recommen-
dations generated using our methods yield significant gains over 
the baselines in a number of important measures of recommenda-
tion value. However, the baselines in this part of the study are all 
based on the task graph. As part of our analysis, we also wanted to 
compare the output from our methods with that from other sources. 
As such, we evaluated against a strong comparator: related searches 
from a commercial search engine, which generates suggestions via 
many signals including many searchers’ within-session refine-
ments. As mentioned earlier, related searches address a different 
problem than task recommendations. Related searches focus on 
helping searchers refine queries, whereas task recommendations 
purposely direct people to different aspects of the search task. 

6.3.2 Task Recommendations vs. Related Searches 
Given that we are suggesting queries (although for a different pur-
pose—exploration rather than refinement), it seems reasonable to 
compare the performance of our method with a state-of-the-art re-
lated search system. The results of the side-by-side judgments de-
scribed in Section 6.2.2 are shown in Table 4 where we report the 
win-loss measure for both lists of suggestions. A positive value in-
dicates that the proposed method wins (+1 means it always wins) 
and a negative value indicates that related searches win (–1 mean-
ing that it always wins). The table shows that related searches are 
perceived to be much better in terms of relatedness to the original 
query by judges. They are also perceived to be much worse in terms 
of all other measures (interestingness, diversity and completeness). 

The differences are significant at the � < 0.001 level using a Z-test 
of proportions.  

These results should be interpreted in light of the different objec-
tives of related searches and exploratory suggestions. Related 
searches are intended to help searchers refine their query while the 
focus of the methods proposed in this paper is to identify queries 
that are typically involved in exploratory and complex tasks, and 
assist searchers in exploring more aspects of those tasks. The task 
recommendations are not intended to replace related searches and 

in fact they should also be used in different types of task (e.g., when 
searchers are in an exploratory mode [24]) or in different types of 
information seeking (e.g., when people are browsing the Web). 

7. DISCUSSION AND CONCLUSIONS 
There are many different types of search tasks that people pursue 
on search engines. Some searches are directed with the objective of 
navigating to a website or looking up a simple piece of information. 
Other searches are more exploratory in nature where the user is 
seeking to learn about different aspects of a topic or perform a com-
plex multi-step task. Current search systems provide little, if any, 
support for the latter type of search. In this paper, we proposed a 
method that learns from the behavior of many searchers to support 
new searchers engaged in complex tasks. We do that by identifying 
different tasks commonly explored by searchers and connecting 
them using a task graph constructed to relate similar search tasks. 
We employ this task graph to generate task recommendations for 
searchers to assist them in exploring different aspects of a topic or 
identifying necessary steps to attain task completion. We demon-
strate through experimentation with humans that our task recom-
mendations are related and interesting with respect to the original 
query. Importantly, given our objectives in supporting search ex-
ploration, we also show that the lists of suggestions that our method 
generates are diverse and cover most of the sub-tasks related to the 
search tasks studied. Importantly, we also show that our methods 
generate recommendations more suited to supporting exploratory 
search than related searches in a competitive Web search engine. 

Despite our promising findings, we should acknowledge some lim-
itations of the method and this study. The approach used to identify 
tasks is currently limited in the queries that we can handle to those 
with a particular syntax (although it did cover almost three quarters 
of the queries in the exploration sessions identified through our au-
tomated analysis). More work is required to generalize the method 
to all query types. In addition, although we demonstrated signifi-
cant promise in our methods along dimensions important for sup-
porting exploration (diversity, interestingness, etc.), we need to 
evaluate the utility of the task recommendations in helping search-
ers complete exploratory and complex tasks. To this end, laboratory 
studies of searchers using the task recommendations are a necessary 
next step, coupled with other studies in more naturalistic settings. 

The task recommendations can help searchers discover interesting 
tasks to assist them in exploration. At present, related searches are 
typically shown on the result page of the original query. This may 
not be an ideal place to show the task recommendations since they 
may distract the searcher from fulfilling the information needs as-
sociated with the current query. Search engines could present the 
recommendations on result pages or in a browser toolbar at a time 
where they estimate that the searcher has met their current needs 
and does not seek to refine their queries (e.g., after pressing the 
back button following a long dwell click, etc.). Personalized task 
recommendations, tailored to searchers’ long-term interests (and 
what aspects of the complex task they have attempted thus far), 
could also be shown on the search engine homepage. Several Web 
browsers now offer page recommendations for particular websites 
(e.g., the Flip Ahead and Suggested Sites features in Internet Ex-
plorer suggest pages of potential interest to users given their current 
browsing context). This could offer on-demand or proactive assis-
tance to those in complex search tasks. Future work involves fur-
ther analysis, including measuring the value of the task recommen-
dations for task completion. Other opportunities include model re-
finements such as richer query intent to handle other query types 
and extending the edges to cover templates (e.g., “cheap_flights to 
CITY”, “hotels in CITY”) rather than specific search queries. 

Table 4. Win-Loss for the task recommendations vs.  

related searches. Positive = task recommendations preferred. 

 Relatedness Interestingness Diversity Completeness 

Win-Loss –0.60 0.44 0.54 0.65 
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