
Supporting Complex Search Tasks
Ahmed Hassan Awadallah, Ryen W. White, Patrick Pantel, Susan T. Dumais, Yi-Min Wang

Microsoft Research
Redmond, WA 98052, USA

{hassanam, ryenw, ppantel, sdumais, ymwang}@microsoft.com

ABSTRACT

We present methods to automatically identify and recommend sub-
tasks to help people explore and accomplish complex search tasks.
Although Web searchers often exhibit directed search behaviors
such as navigating to a particular Website or locating a particular
item of information, many search scenarios involve more complex
tasks such as learning about a new topic or planning a vacation.
These tasks often involve multiple search queries and can span mul-
tiple sessions. Current search systems do not provide adequate sup-
port for tackling these tasks. Instead, they place most of the burden
on the searcher for discovering which aspects of the task they
should explore. Particularly challenging is the case when a searcher
lacks the task knowledge necessary to decide which step to tackle
next. In this paper, we propose methods to automatically mine
search logs for tasks and build an association graph connecting
multiple tasks together. We then leverage the task graph to assist
new searchers in exploring new search topics or tackling multi-step
search tasks. We demonstrate through experiments with human
participants that we can discover related and interesting tasks to as-
sist with complex search scenarios.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—selection process, search process.

Keywords

Exploratory search; Complex search tasks; Task recommendation.

1. INTRODUCTION
Search engines are the primary means by which people locate in-
formation online and complete search tasks. Queries issued to
search engines have been categorized as navigational, informa-
tional or transactional [11]. This particular categorization has been
useful for characterizing high-level information-search behavior
and guiding the development of appropriate support (e.g., identify-
ing definitive results for navigational queries [1]). However, as the
range of tasks that are possible online grows, more complex search
activities, such as exploratory search [32], and multi-step search
tasks [23] have been identified. In exploratory search, people seek
to learn about a topic of interest or discover new information. In
multi-step search tasks, searchers attempt to fulfill a complex infor-
mation need involving multiple aspects. Despite some trials [18],
search engines today do not adequately support either of these sce-
narios. For searchers who are either unfamiliar with their problem
domain, unfamiliar with the process to achieve their goal, or who
lack a well-defined goal, there is a pressing need for assistance in

searching. When attempting such tasks, searchers require support
that extends beyond a list of search results. They need task comple-

tion systems that provide assistance by, among other things, outlin-
ing the necessary steps to explore or accomplish a complex task.

Some previous attempts have been made to support people engaged
in complex tasks by allowing them to take notes and record results
that they already examined [18], or to provide task continuation as-
sistance, whereby the search engine can predict that a searcher is
likely to resume a task and hence preemptively save and retrieve
the current search state on the searcher’s behalf [34]. While these
are good ways to support long term tasks, they do not help searchers
directly explore or identify potential next steps for their tasks. Other
research efforts have focused on building tours or trails to guide the
searcher through their search process [20][35]. While useful, the
methods proposed to date have involved restricted domains or hy-
pertext corpora rather than Web search [42], or have retrieved fo-
cused trails of URLs rather than lists of search results [39]. Other
attempts have been made to augment browsing with serendipity,
but have been limited to social media [35] or to named entities [8].

In this paper, we present and evaluate methods to automatically
identify and recommend tasks that allow searchers to explore and
accomplish complex (multi-aspect or multi-step) search tasks. We
identify these suggestions by mining query logs from a popular
commercial search engine to first identify complex tasks, and then
automatically generate a graph connecting sub-tasks that are likely
to have common interest from searchers. In doing so we learn from
the aggregated activity of many searchers and apply this collective
knowledge to assist others with similar search objectives.

Our focus is to identify that a searcher is engaged in a complex
search task and to help them explore different sub-tasks related to
their complex search task. To better understand this, consider the
example query [cheap flights to grand cayman] shown in Figure
1. When the searcher enters this query, the method detects that they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’14, November 3 – 7, 2014, Shanghai, China.
Copyright 2014 ACM 1-58113-000-0/00/0010 …$15.00.
http://dx.doi.org/10.1145/2661829.2661912

Figure 1. Sub-graph generated from search-log data show-

ing connections between the tasks recommended for the

query “Cheap Flights to Grand Cayman” (highlighted),

Grand Cayman

Car Rental

Snorkeling in
Grand Cayman

Grand Cayman
Hurricane Season

Grand Cayman
Vacation Rentals

Scuba Diving in
Grand Cayman

Cheap Flights to
Grand Cayman

are engaged in a complex search task and that they may be inter-
ested in exploring more or fulfilling more steps. The figure shows
a graph where every node is a search task. Search tasks are con-
nected if there is a high likelihood that both tasks can be steps in
the same complex search task. The suggested tasks in Figure 1 ap-
pear reasonable to help searchers identify other steps for a complex
task involving a trip to Grand Cayman. Note that this is a repre-
sentative set of tasks and there are many similar high-quality rec-
ommendations in the task graph that we generate. Since many
searchers looking to fly to Grand Cayman have also been engaged
in other activities to plan their trips, the proposed method automat-
ically identifies tasks about accommodation (“vacation rentals”),
car rental (“car rental”), trip planning (“hurricane seasons”), and
activities of possible interest (“snorkeling” and “scuba diving”).

We make the following contributions with this research:

• Develop methods to automatically identify queries in large-scale
search logs that form part of complex search tasks.

• Learn models to identify query intent and different aspects of the
search tasks represented by each set of queries.

• Construct a graph connecting tasks that are likely to be of inter-
est to searchers. This graph could be useful for a range of appli-
cations beyond task recommendation (e.g., advertising).

• Apply the graph for the recommendation of a set of interesting
and diverse tasks to support searchers during exploration.

• Devise and apply metrics to measure aspects of task recommen-
dations, including novelty, diversity, and interestingness.

The remainder of the paper is structured as follows. In Section 2,
we describe related work in exploratory search, search trails, seren-
dipity, and query suggestions. Section 3 describes how we identify
exploratory search intent from search activity. We describe the task
extraction and graph construction in Section 4. Section 5 presents
our recommendation approach. Our experiments and findings are
summarized in Section 6 and we conclude in Section 7.

2. RELATED WORK
There are several areas of related work: (i) exploratory search, (ii)
serendipity in Web search, (iii) creating trails and guided tours
through information spaces, and (iv) query suggestions and related
searches. We now describe previous work in each area in more de-
tail and discuss how our method and study extend this prior work.

Exploratory Search: Many Web queries are directed searches
where the searcher seeks to navigate to a particular Web resource
or to locate a specific information item. Another class of search ac-
tivity is exploratory search [32][45]. Searchers engaged in explor-
atory search activities purposely try to learn about a topic and dis-
cover new information. This may be associated with information
goals such as seeking different opinions on a topic, exploring or
discovering aspects of a topic, or obtaining an overview of a topic.

Research on exploratory search has focused on characterizing the
exploratory search process and the different types of support that
are required to help people perform exploratory searches [32][45].
Examples of this support include developing new search interfaces
to helping media studies researchers refine their research questions
and explore diverse topics [12], and creating interfaces to support
complex search tasks [40]. Other research has focused on the pro-
longed nature of exploratory search tasks that can cause these tasks
to span multiple sessions, and proposed solutions to preserve and
restore the search state across these sessions [34]. Others examined
personalizing the search experience for multi-session search tasks,
showing the impact of task stage and task type [30].

To support exploration, previous work determines if a searcher is
engaged in a complex search task and supports them within the cur-
rent session using tours or trails [23]. Other research has focused
on identifying sessions where searchers are exploring and studying
the impact of exploration on predicting search success [24]. Recent
research has also examined the intrinsically-diverse nature of some
information-seeking tasks. Such tasks typically require multiple
queries on different aspects of the same information need [38]. The
authors proposed an approach that could alter the result rankings
and also provide them information on aspects of the task which they
are likely to search for in the future. This relates to the aspectual
retrieval task of the Text Retrieval Conference (TREC) Interactive
Track [41], whereby searchers were expected to identify the differ-
ent aspects or instances of a given topic.

Serendipity in Web Search: Serendipity is the act of encountering
information unexpectedly. It has long been identified as valuable,
both as a pleasure in itself and as part of task-focused problem solv-
ing [2]. Several research efforts have sought to characterize, under-
stand, and support serendipity in Web search. For example, André
et al. [2] studied whether search-result personalization could reduce
the potential for serendipitous information discoveries (e.g., by cre-
ating a filter bubble in which searchers are only shown limited in-
formation). They found that personalization does not harm seren-
dipity and may in fact be useful for supporting serendipity.

Serendipity has also been considered in the context of collaborative
filtering where interesting content is identified by matching indi-
viduals with similar interests. Previous work on collaborative fil-
tering has considered promoting novelty and serendipity by helping
searchers to uncover less popular and more diverse items [46].

Another line of related research is that associated with entity search
and recommendation. Lin et al. [29] proposed “active objects”
where entities are paired with actions and given a query about some
entity, all possible actions are recommended to searchers (e.g., ac-
tions on a book may be purchasing it, reading reviews, etc.). Previ-
ous work has also considered recommending queries based on an
individual’s browsing behavior. In [9], entities are extracted from
the page that a searcher is visiting and similar entities and queries
are suggested. Finally, Bordino et al. [8] proposed a method to sup-
port serendipity in entity recommendation. They constructed an en-
tity graph based on Wikipedia and Yahoo! Answers and devised an
algorithm to recommend new entities given a particular entity of
interest to the searcher. They also examined the emotions attached
to different entities and its impact on searcher interests.

Tours and Trails: Another related research direction concerns the
construction of tours and trails to guide searchers’ resource selec-
tion decisions during the search process [5][44]. Chalmers et al.
[15] suggested that human recommenders build and share their
Web navigation paths to support future searchers. Wexelblat and
Maes [42] introduced annotations in Web browsers called Foot-

prints, assembled by the Website’s designer, that reveal trails that
searchers take through a Website. They found that searchers re-
quired fewer steps to find information using the Footprints system.

Trails have also been proposed as a way to guide users through the
specific steps required to accomplish search tasks. Singla et al. [39]
proposed trailfinding methods to support Web search by identify-
ing query-relevant trails from logs that could be shown to comple-
ment or replace traditional search result lists. An alternative to pre-
senting the full trail or guided tour are step-at-a-time recommenda-
tion. ScentTrails [36] combined browsing and searching into one
interface by highlighting potentially valuable hyperlinks. Web-

Watcher [26] accompanied people as they explored the Web. The

system highlighted hyperlinks, and learned from implicit feedback
collected during earlier tours that it believed was of interest.

Query Suggestions: There has been a significant amount of re-
search on the problem of finding and recommending query sugges-
tions [3][16][28][33]. Most query suggestions techniques use sim-
ilarity measures between queries using query terms, clicked docu-
ments, or sequences of queries in sessions. Although this work is
related to ours, unlike query suggestion, our goal is not to help the

user refine their current query. Rather, our objective is to help them
identify and explore aspects related to their current complex task.

Baeza-Yates et al. [3] built models of query expansion based on a
vector representation of queries. The query-click graph was used
by Craswell and Szummer [16] to find related documents and que-
ries via random walks. Mei et al. [33] also used a bipartite graph
connecting queries and clicks to find query suggestions via hitting
time. Jones et al. [28] presented a method to generate query sug-
gestions by substituting the whole query or its sub phrases by new
phrases collected from other searchers’ querying behavior. Other
approaches address the challenge of generating query suggestions
by modeling query flow in user search sessions. Boldi et al. [6] pre-
sented the concept of the query-flow graph which represents chains
of related queries in search logs. They use this model for finding
logical session boundaries and generating query recommendations.

Prior work also studied the problem of predicting the next search
action based on the current actions, either by predicting the next
result click [13] or by predicting searchers’ short-term interests at
a more general level of abstraction (e.g., topical categories [43]).

Contributions of Our Study: We extend previous research in a
number of ways. First, we devise and evaluate methods to automat-
ically identify queries, intents and different aspects of complex
search tasks. Second, in contrast to prior work on query sugges-
tions, we do not try to help searchers refine their current query, ra-
ther we focus on recommending future queries that they should
consider beyond current query refinements. Third, our work is not
limited to entities, rather we cover a large span of aspects and tasks.
Finally, we focus on supporting exploration in Web search rather
than post-query navigation, or navigation though particular Web-
sites or restricted collections such as Wikipedia, all considered in
prior research.

3. COMPLEX SEARCH TASKS

3.1 Data
Our data consists of a sample of hundreds of thousands of search
sessions from the usage logs of the Microsoft Bing Web search en-
gine during all of July 2013. Every log entry contained an anony-
mized user identifier, a timestamp, a query, and all search result
clicks and their associated dwell times. Automated bot traffic, in-
tranet, and secure URLs (https) were removed at the source prior to
analysis. Only queries tagged as English and from the United States
locale were retained to remove geographic or linguistic variations.

The log entries are segmented by time into sessions. In this study,
session refers to a sequence of search activities terminated by a pro-
longed period of inactivity. We used 30 minutes of idle time to de-
marcate sessions, as has often been performed in related studies,
e.g., [43] . Since a session can contain multiple related and unre-
lated searches, we further segment sessions into tasks and complex
tasks [27]. We adopt the following definitions from prior work:

Definition: A topically-coherent session is a set of related infor-
mation needs that belong to the same session.

Definition: A search task is an atomic information need resulting
in one or more queries.

Definition: A complex search task is a multi-aspect or a multi-step
information need consisting of a set of related tasks.

Note that the terms “tasks” and “goals” and the terms “topically-
coherent session” and “missions” have been used to describe simi-
lar concepts in the literature [24][27]. Note also that since we only
use topically-coherent sessions in our analyses, we use the terms
“sessions” and “topically-coherent sessions” interchangeably to de-
note a related set of information needs within a fixed timeframe.

3.2 Sessions with Complex Tasks
We adopt the definition of complex tasks used in previous work
[32][45]. Since our objective is to support searchers tackling com-
plex tasks, we want to focus on search sessions where searchers are:

1. Engaged in learning and discovery (e.g., learning all aspects of
a particular topic, comparing products, etc.), or

2. Browsing information on a topic or a person of interest (e.g., a
celebrity, a sports team, etc.), or

3. Tackling a multi-step search task (e.g., planning a trip).

Note that we use the terms exploratory tasks and complex tasks in-
terchangeably to denote one of the task types explained above.
Since not all tasks meet these criteria, we need to appropriately han-
dle the cases that do not. The two most frequent cases are naviga-
tional searches (searcher is trying to reach a known site) or strug-
gling searches (searcher is experiencing difficulty in finding the re-
quired information) [24].

Navigational Searches: We removed the 500 most frequent que-
ries that also have low click entropy (≤ 0.15), representing the var-
iance in result clicks for these queries [19]. These are typically nav-
igational queries (e.g., facebook, nytimes) where the searcher is
seeking to navigate to a particular website. Given their nature, these
queries are unlikely to be part of exploratory tasks.

Struggling Sessions: Struggling sessions are cases where searchers
are experiencing difficulty in locating required information and
hence issue multiple related queries. Previous work [24] has shown
that search sessions with multiple queries (three or more queries)
can comprise exploration or struggle; the latter describing a situa-
tion where the searcher is having trouble locating required infor-
mation. To identify struggling sessions, we adopt the following list
of session features shown to be useful for this task [24]:

• Query features: Number of queries; time between queries; av-
erage query length.

• Query-transition features: Average cosine similarity between
queries, number of added, deleted, and substituted terms.

• Click features: Number of clicks per query; average dwell time;
percentage of unique URL and domain clicks.

• Topical features: Open Directory Project (ODP, dmoz.org) cat-
egories of all visited URLs; count and entropy of all topics.

We constructed a classifier to distinguish between struggling ses-
sions and other sessions using the features listed above and a Mul-
tiple Additive Regression Trees (MART) classifier [20]. The clas-
sifier was trained and tested using 10-fold cross validation. For this
purpose, we use the labeled data described in [24]. The data con-
tained 3000 labeled sessions and over 13,000 queries. Every ses-
sion in these data was labeled as either a struggling session or not
by a large number of crowd-sourced judges. The classifier could
identify struggling sessions with an accuracy of 78.5 and an AUC
of 83.4. We applied this classifier to our data to remove all strug-
gling sessions in addition to the navigational queries that we have
removed earlier. We used the remaining sessions for our study.

4. TASK GRAPH EXTRACTION
In this section, we describe how we use the exploring sessions iden-
tified per the process in the previous section to identify and extract
different tasks. We then show how we can build a graph to connect
these tasks. This graph allows us to provide task recommendations
to searchers as will be described in Section 5. In doing so, we can
use the aggregated behavior of many searchers to support others
who are also engaged in related search exploration.

4.1 Identifying Tasks from Queries
Using all unique queries from the dataset described in the previous
section, our objective is to identify tasks. As described earlier, we
adopt the definition of the task as an atomic information need. As
such, a task can be a step in multi-step task (e.g., locating an eatery
while planning a night out) or an aspect in a multi-aspect task (e.g.,
finding images of a celebrity while learning about their latest news).
A task is represented by a group of queries with the same intent.
For example, recalling Figure 1, finding a flight to Grand Cayman
is a task that forms part of the broader complex task of planning a
trip to Grand Cayman. Notice that a task can be represented by mul-
tiple distinct query statements (e.g., [flights to grand cayman],

[flying to grand cayman], [grand cayman flights], etc.). As
part of grouping queries, we pre-processed each query by lowercas-
ing the text, stripping punctuation, replacing all runs of whitespace
with a single space, and trimming any leading or trailing spaces.

We now describe the different lexical constituents that we seek to
identify in every query and how they are used to find tasks.

4.1.1 Entities
We begin by tagging text spans in our queries that refer to an entity.
For our purposes, we consider a text span to be an entity if it is
represented in a knowledge base such as Freebase or Wikipedia. In
our experiments, we pool all of the entities present in Wikipedia
and Freebase, including people, places, companies, as well as
events, concepts, and famous dates.

We construct a lexicon by extracting each English lexical name as-
sociated with an entity in our knowledge base and represent it using
a perfect hash data structure [17]. For each query, we lookup each
possible n-gram in the perfect hash. Nested matches are resolved
by greedy admission using a left longest match heuristic.

Many of the knowledge sources used by our approach, such as
Freebase, represent ontological items such as /time/event and /busi-

ness/employment_tenure, as well as reified relations such as
/film/performance and /education/education. In order to filter these
out, following [37], we identified all the lexical names in our query
data and manually annotated the 300 most frequently matched
types according to whether they represented non-entity types (as
above) or entity types, e.g., /music/record_label, /aviation/airport,
and /military/conflict (accounting for over 90% of the query traffic
matching a lexical name). We then exclude any entity that is typed
with a non-entity and none of the entity-annotated types.

It is well known that lexical names are highly ambiguous. Since our
goal is to tag queries with the presence of an entity, i.e., not to re-
solve the entity to a particular entry in the knowledge base, we are
only concerned with names that are ambiguous with a non-entity
sense. For example, the name “something” is problematic since it
can refer to the Beatles song “Something” as well as the very com-
mon non-entity pronoun. We filtered out such highly ambiguous
names from our lexicon by building a binary ambiguity classifier
trained on 500 manually annotated names. A name is ambiguous if
it holds a non-entity sense, such as the name “something”. For our
learning algorithm, we use boosted decision trees [20]. We tune our

hyper-parameters (i.e., number of iterations, learning rate, mini-
mum instances in leaf nodes, and the maximum number of leaves)
using ten-fold cross-validation. The resulting binary classifier is
then applied as a filter to all names in the lexicon. This operation
generated a lexicon comprising around 11 million names that we
use in building the task graph described later in this section.

4.1.2 Collocations
Definition: A collocation, also known as a multi-term keyword, is
a sequence of words or terms that co-occur more often than would
be expected by chance [31].

Consider the query [cheap hotels in new york city] as an ex-
ample. A bag of word representation would treat the query as a set
of six words: {“cheap”, “hotels”, etc.} in no particular order. If we
try to understand the intent behind the query, we will determine that
the user is searching for “cheap hotels” in “new york city” and that
breaking these multi-term keywords into their constituent terms re-
sults in a loss of semantic meaning.

Identifying term collocations is strongly related to the problem of
query segmentation. Query segmentation involves dividing search
query into individual phrases or semantic units [4]. Many solutions
have been proposed to tackle the query-segmentation problem.
Some employ a supervised learning framework [4], while others
adopt an unsupervised framework [21]. We use unsupervised tech-
niques since they are simpler to implement, only require access to
raw Web n-gram frequencies, and can achieve comparable perfor-
mance to state-of-the-art supervised methods [10].

To segment queries into collocations (keywords), we adopt a
widely-used approach [21]. A segmentation is obtained by compu-
ting the point-wise mutual information score for each pair of con-

secutive terms. More formally, for a query � = ��	, ��, … , �	�:

�������������� , ���	� = ���
���� , ���	�
����������	�

where ���� , ���	� is the joint probability of occurrence of the bi-

gram ��� , ���	� and ����� is the occurrence probability ��.

A collocation break is introduced whenever the association be-

tween two words falls below a certain threshold Ƭ. Following [22],

we used	Ƭ = 1.91. Note that this is larger than thresholds used in
the literature (e.g., 0.895 [28]) since the objective of this work is to
find collocations, which tend to require a higher degree of associa-
tion, rather than phrases as is usually the case in previous work.

4.1.3 Terms and Prepositions
In addition to entities and collocations, we use two additional tags
to describe the remaining tokens in a query: “Prep” and “Term”.
Prep describes prepositions such as (for, in, of, etc.). Any term not
labeled as an entity, a collocation, or a preposition is tagged as term.

4.1.4 Patterns
Our objective is to identify queries that can be parsed into a task.
We focus on queries that can be characterized using one of the fol-
lowing three patterns:

• Refiner Prep Pivot (e.g., cheap_hotels in new_york)

• Pivot Refiner (e.g., apple_iphone reviews)

• Pivot (e.g., tom cruise)

Definition: A pivot is the central point of the query and can be any
concept that is well defined and has been labeled as an entity or a
collocation (e.g., “new york city”).

Definition: A refiner is a query constituent intended to characterize
a precise distinction or subtlety in a query (e.g., “hotels”).

Restricting the queries that we use to those that follow these pat-
terns allows us to identify the pivot and refiner in every query using
a simple set of dependency parsing rules. For phrases of the form
“NNX NNX”, where NNX is a singular, plural, or proper noun, the
pivot is the first noun. For phrases of the form “NNX IN NNX”,
where IN is a preposition, the second noun is the pivot. These sim-
ple rules lead to higher precision analyses when compared to full
dependency parsers, which tend to perform poorly on queries since
they are typically short and often not grammatically well-formed.

To find pivots and refiners in queries using the entity, collocation,
term and prep tags, we start by resolving nested entity and colloca-
tion matches. Nested matches are resolved by greedy admission us-
ing a left longest match heuristic. For example, in the search query
[reviews for apple iphone], the terms “apple” and “iphone” are
identified as entities, and “apple iphone” is identified as a colloca-
tion. In this case the match is resolved by treating “apple iphone”
as a single concept. We retain the information about the subsumed
entities with the concept and we treat the concept as an entity.

Figure 2 shows how a pivot and a refiner can be identified using the
tags (entity, collocation, etc.) assigned to each token or multi-token
keyword. As shown in Figure 2, a pivot can be either an entity or a
collocation. Allowing collocations to serve as pivots significantly
increases the coverage of our method and allows us to cover con-
cepts that are not typically labeled as entities (e.g., “fall wedding”,
“resume writing”, etc.) as well as consecutive entities that are typi-
cally treated as a single entity (e.g., “apple iphone”). Conversely, a
refiner could be a term or a collocation that it is intended to define
a specific aspect of some entity (e.g., “cheap hotels”). Examples of
queries and their corresponding lexical tags appear in Table 1.

Since queries often lack syntactic structure, we also allow some
patterns such as “Refiner Pivot”, e.g., “pictures tom_cruise”, only
when the pivot is an entity and it is the only entity in the query. We
also allow this pattern when the refiner is a question word, e.g.,
“what is adaptive radiation”. Restricting queries to the three pat-
terns described above allows us to understand query intent and
group multiple queries with the same intent as we show later. In
total, 72.9% of the queries in the exploration sessions identified in
Section 3 followed these patterns. Therefore, these patterns allow

us to capture a significant fraction of online exploratory searching.
We now show how these queries are grouped to find tasks.

4.2 Grouping Queries into Tasks
Using the methodology described above, we extract 10.27 million
queries from the search log dataset described in Section 3. Recall
that a task is either a step in a multi-step complex task or an aspect
in a multi-aspect task as defined earlier. Since the same task can be
represented by multiple queries, we need to group all queries per-
taining to the same task together. One way to address this problem
is to define a query similarity function and apply it to all pairs of
queries and then cluster the resulting graph. However, this ap-
proach is very expensive since the number of pairs is quadratic in
the millions of queries in our dataset.

Alternatively, we can use the metadata we have about the queries
(the refiner and pivot tags, the entity identifier, etc.) to significantly
reduce the computational cost of the grouping process. To group
queries with similar intent, we perform the following three steps:

1. Every entity in the knowledge base is assigned a unique identi-
fier. We assign entities present in queries identifiers by looking
them up in the knowledge base and applying the identifier used
for the entity therein. This allows us to match different surface
forms of the same entity (e.g., “new york city” and “nyc”).Sur-
face forms with more than one identifier are ignored for this step.
We then replace all entities with its entity identifier.

2. We normalize the syntactic structure of all queries by transform-
ing all patterns of the form “Refiner Prep Pivot” to “Pivot Re-
finer” (e.g., “hotels in new york city” � “new york city hotels”).

3. For queries with the same pivot, we match two refiners if they:
(1) have the same lemma (lemmatization is the process of reduc-
ing an inflected spelling to its lexical root or lemma form); or
(2) have a normalized edit distance of less than 0.2. This allows
us to capture spelling mistakes and spelling variations.

Applying these steps allows us to group queries such as: [hotels

in new york city], [hotels in nyc], [nyc hotel], [nyc hotls],
etc. into a single query group representing a single aspect.

Every group of queries represents one aspect and is represented by
the most frequent query in the group. This representation is used as
the recommended surface form as we will explain in Section 5. We
apply this method to the set of 10.27 million queries and identify
7.69 million query groups (tasks) that we use to construct a graph.

Table 1. Examples of task queries and corresponding

lexical tags. Multi-word entities and collocations are

separated by an underscore.

Lexical Tags Example Query

Term Prep Entity reviews of iphone

Term Prep Entity attire for fall_wedding

Term Prep Entity Entity reviews of apple iphone

Collocation Prep Entity Entity user_reviews for iphone

Collocation Prep Collocation center_pieces for fall_wedding

Collocation Prep Entity Entity user_reviews for apple iphone

Entity Term iphone reviews

Collocation Term fall_wedding dresses

Entity Object Term apple ipad prices

Entity Collocation tom_cruise latest_movies

Collocation Collocation fathers_day gift cards

Entity Entity Collocation apple iphone protection_plan

Figure 2. The basic lexical elements are entities, collocations,

prepositions and terms. A pivot can be an entity or a colloca-

tion. A refiner can be a collocation or a term. An aspect is ei-

ther a pivot, or a pivot and refiner optionally connected by a

connector. Dashed lines indicate that a constituent is optional.

“tom cruise”
“new york”

“apple”

“fall wedding”
“cheap flights”
“apple iphone”

“for”
“in”
“at”

“flights”
“price”

“dresses”

Lexical

Intermediary

Semantic

Entity Collocation Term Prep.

Pivot Refiner

Aspect

Connector

or or

4.3 Task Graph
Recall that our main objective is to help searchers tackle complex
tasks by recommending related and interesting tasks with respect to
their current query. A good list of recommendations will contain
different tasks that are related to the current one. A natural way to
do that would be to construct a graph where related tasks are con-
nected. This graph can be used to suggest future queries given the
current one. Since individuals may lack the necessary knowledge
to explore all related tasks, we aggregate the search behavior of all
searchers and encode inter-task relationships in a graph structure.

We construct a graph ! = �", #, $� where " is the set of all tasks
(query groups) described in the previous section. #	 = "	 × 	" is the

set of possible associated tasks. $ ∶ 	# → 	 (0. .1)	is a function that

assigns to every pair of tasks ��, *� a weight $��, *� representing the
strength of their association.

To measure the association between pairs of tasks we use the Nor-
malized Pointwise Mutual Information [10]. The Pointwise Mutual
Information of any two discrete events +	and	, quantifies their de-
gree of association by the discrepancy between the probability of
their coincidence given their joint distribution and the probability
of their coincidence given only their individual distributions, as-
suming independence. The PMI value is 0 if the two variables are
independent. Positive values of PMI indicate positive association
while negative values indicate negative association. Since PMI can
take arbitrary positive or negative values, we normalize it into
NPMI, which has a value between [−1,+1], as follows:

��-��+, ,� = − ���
��+, ,�
��+���,�

��� ��+, ,�/

To compute the association value we need to determine when two
tasks have co-occurred. We define co-occurrence between two
tasks when the same searcher issues both queries within a 48-hour
period. To reduce noise in this calculation, we discard all pairs that
co-occurred less than 10 times unless they share the same pivot.

5. TASK RECOMMENDATION
Using the graph connecting the different tasks, our objective is rec-
ommend other tasks related to the current task that help the searcher
explore related and novel aspects. Given the nature of the task
graph, we operate in the space of search queries and recommend
queries for a given query. To be valuable in this context, the set of
recommended queries needs to be diverse, and the set should also
be interesting and cover as many related tasks as possible.

Given these requirements, we identify candidate recommendations
using a random walk approach. Random walk based methods (e.g.,
personalized page rank [25]) have been widely used in the literature
for a broad range of recommendation tasks [6][7][16]. Inspired by
these methods, we define the random walk method as follows.

Imagine a random surfer walking along the task graph !. Starting

from one node � (i.e., a searcher query that matches one of the query

groups), it either stays at � with probability 0 or moves to another
adjacent node with probability 1 − 0. When it moves to an adjacent

node, it selects a node * with probability 1�2 that is proportional to

the weight of the edge connecting � and	*.

We define the transition probabilities 13�	|3�*|�� from � to *	by nor-

malizing the weights of the edges in the task:

13�	|3�*|�� =
5�2

∑ 5�77

Where 8 represents all nodes in the neighborhood of �. 13�|3	�*|��
denotes the transition probability from node � at step �	 to node * at

step 2. We note that neither the weights 5�2 , nor the transition prob-

abilities are symmetric.

We introduced the self-transition loops to reinforce the importance
of the starting node and to slow the diffusion of the random walk to
other nodes. Previous work has set the value of the self-loop prob-
ability to 0 = 0.9 [6][16]. We investigated different values of prob-

ability 0 and demonstrate their impact effect on performance in the
evaluation section. We terminate the walk after a maximum of 30
iterations or when the norm of the difference between two succes-

sive iterations is less than	10:;. We rank the recommended tasks
based on the stationary distribution of the random walk.

Before applying the random walk model, we removed any edge if
its weight is less than 0.2 and we also removed nodes that no con-
nections to any other nodes. We also noticed that some nodes
(tasks) have appeared in the graph with a very large degree (number
of edges). These nodes are typically navigational queries that were
not excluded using the navigational query filter described earlier in
the paper. These nodes will result in connecting many unrelated
tasks since they are very central to the graph. To alleviate this prob-

lem, we remove any node that has more than < edges in the graph.

< was set heuristically to 300 and that resulted in removing of less
than 1% of the nodes from the task graph.

6. EVALUATION
To evaluate our approach we build a task graph and use the methods
outlined in Section 5, along with other baselines that will be de-
scribed below, to generate lists of exploratory query suggestions.
For our data, we use four weeks of logs from the Microsoft Bing
Web search engine as described in Section 3.1. The graph contains
over one million nodes (tasks) and over 35 million edges (connec-
tions between tasks). The number of nodes is less than the number
of tasks identified in Section 4.1 since we performed a lot of prun-
ing (e.g., removing unconnected nodes, nodes with very high de-
gree, etc.), as described in the preceding sections.

We tested the performance of our system using a set of 300 test
queries, of varying frequency. We split the nodes in the graph into
three equally-sized groups according to their frequency, and sam-
pled 100 queries from each group resulting in a total of 300 queries.
Examples of these queries are shown in Table 2. Each query is as-
sociated with a task (i.e., a node in the task graph).

6.1 Research Questions
To assess the quality of our task recommendation method for sup-
porting complex tasks, we performed crowd-sourced assessments
to answer the following research questions:

RQ1: Relatedness: Are the recommended tasks related to the orig-
inal query? Relatedness is important since searchers are unlikely to
be interested in unrelated suggestions.

RQ2: Interestingness: Will searchers be interested in exploring
the recommended tasks given their original query? Interestingness
is important since we are not trying to propose rewrites or refine-
ments of the current query. Hence, a searcher is likely to be inter-
ested in the suggestions if they are both related and novel.

RQ3: Diversity: Are the recommendations intrinsically diverse?
Diversity is important since we are providing multiple suggestions
to searchers, and it is preferable to avoid redundancy.

RQ4: Completeness: Do the recommendations address most of the
sub-tasks (aspects or steps) associated with the task needed to ac-
complish the complex task? Given our objective of supporting ex-
ploration, it is desirable to assess the coverage of the suggestions.

RQ5: Task recommendations vs. related searches: How are the
task recommendations different from traditional related searches?

6.2 Study Methodology
Suggestions were labeled by judges who were recruited from the
crowdsourcing service Clickworker.com, which provided access to
crowd workers under contract. Judges resided in the United States
and were fluent in English. As is necessary with a study on a remote
crowdsourcing platform, we took several precautions to maintain
data integrity. We restricted annotators to those based in the US
because our logs came from searchers based in the US. We also
used hidden quality control questions to filter out poor-quality
judges. We had three judges work on every instance. In total we
employed 69 judges and collected 6300 judgments for the first ex-
periment (Section 6.2.1) and 900 judgments for the second experi-
ment (Section 6.2.2).

6.2.1 Evaluating Task Recommendations
The objective of the first experiment is to evaluate the quality of
task recommendations and answer RQ1 – RQ4 described above. As
comparator methods, we generate and compare suggestions using
the following techniques, which includes variations of the parame-
ters in the proposed methods (i.e., Random Walk and Random
Walk + Div) and some other methods used as baselines in the study:

• Random Walk (two variants): As explained in Section 5, we
use a random walk based model over the aspect graph to gener-
ate recommendations. Recommendations are ranked based on
the stationary distribution of the random walk. We experiment
with two variants of this method by setting the self-probability
0 to 0.7 and 0.9. This allows us to study the effect of allowing
the random walk to diffuse more from the original query. We

noticed a clear reduction in quality as 0 decreases, so we did not
experiment with any other values of 0 during the human judg-
ment process.

• Random Walk + Diversity (two variants): To measure the
need for an extra diversity step, we use a Maximal Marginal Rel-
evance (MMR) [14] like function that tries to promote “relevant
novelty” instead of just relevance. To measure relevant novelty,
we measure relevance and novelty independently and then rank
recommendations based on a linear combination of both. For-
mally we seek to maximize the following function:

>��?@���� = A	B@�@C��� , D� − �1 − A�max
2H�

>�-� �� , �2�

where D is the original query, > = ��� , … , �� is the list of sug-

gestions, B@�@C��� , D� is the stationary distribution score de-

scribed above normalized to be ϵ(0,1) , >�-J�� , �2K is function

to measure the similarity between different aspects. In this study,

we define >�-�+, ,� as the cosine similarity between word text

frequency representations of + and ,. Finally, Aϵ(0,1) is a pa-
rameter to control the tradeoff between aspect relevance and as-
pect diversity. We set A to 0.5 in all our experiments. We tried

to change A to 0.3 and 0.7, but we did not notice a significant
change in the results. We applied these criteria to re-rank the top
20 results as defined by the value of the random walk stationary
distribution. For queries with fewer than 20 aspects recom-
mended, we re-rank all available suggestions.

• Second Order Similarity: This baseline identifies candidate
recommendations using a second order co-occurrence model

over our graph !. Offline, we compute the similarity matrix be-
tween all pairs of tasks as follows. For each task �, we construct

a multi-dimensional vector �L consisting of |"| coordinates,

where �� = $��, ��, i.e., the weight of the edge between tasks t

and i in	!. The similarity between two tasks �	 and �� is then

computed as the cosine of the angle between �	MMML and	��MMML. This
baseline identifies recommendations for a task by selecting other
tasks with the highest pairwise similarity to the current task.

• Neighbors Ranked: For every query, we obtain the correspond-
ing node (task) and retrieve all neighbors of that node. Neigh-
bors are ordered by the weight of the edges connecting them to
the original node and the neighbors with the highest such weight
are returned.

• Neighbors Random: This baseline is similar to the Neighbors

Ranked baseline except that we do not order the neighbors ac-
cording to their weights. Rather nodes are selected uniformly at
random without replacement from the set of neighbors.

For every method, we show a maximum of eight recommendations
to judges. Judges were provided with an original query (one of the
300 used in the experiment) and a list of suggestions, and asked to
judge the following dimensions on a three-point scale:

Relatedness: Suggestions are: (1) Related: all suggestions are re-
lated to the original query; (2) Somewhat Related: many sugges-
tions are related to the original query; or (3) Not Related: most or
all of the suggestions are not related to the original query.

Interestingness: Suggestions are: (1) Interesting: all suggestions
are interesting given the original query; (2) Somewhat Interesting:
many suggestions are interesting; or (3) Not Interestingness: most
or all suggestions are uninteresting.

Diversity: Suggestions are (1) Diverse: suggestions are completely
distinct from one another; (2) Somewhat Diverse: many suggestions
are distinct but some are redundant; or (3) Not Diverse: most or all
suggestions are redundant.

Completeness: Suggestions are (1) Complete: I cannot think of any
missing aspects or steps related to the task; (2) Somewhat Com-

plete: I can think of a few missing aspects or steps; or (3) Not Com-

plete: I can think of many missing aspects or steps.

Since most judges label largely disjoint sets of aspects, we do not
report the standard Cohen’s kappa for inter-annotator agreement.
Instead, we report label agreement, which was 87.4%, 81.4%,
87.0% and 70.8% for relatedness, interestingness, diversity, and
completeness respectively. This level of agreement demonstrates
that judgment variance is quite small, and increases our confidence
in the reliability of the judgments for evaluating our methods.

Table 2. Examples of queries in the evaluation set.

Example Queries

vacation packages to cancun

baltimore inner harbor attractions

adam levine engaged

celebrities born on halloween

george zimmerman verdict

nbc canceled shows

what is adaptive radiation

side effects of amitriptyline

bland diet menu

gettysburg deaths

mother’s day gift ideas

fall wedding wedding decorations

6.2.2 Task Recommendations vs. Related Searches
The objective of the second experiment is to answer RQ5, which
tries to characterize the differences between our task recommenda-
tions and traditional related searches. This is valuable in quantify-
ing the degree of difference between the two approaches. We gen-
erated recommendations using the task graph and the random walk
method (Random Walk (β=0.7)) and suggestions using the related
searches from a state-of-the-art related search system that used
query similarity (e.g., [28]), query-log based learning (e.g., [6][33])
and diversification (e.g., [46]).

To understand the relation between the two lists of suggestions, we
conducted a comparative experiment where we showed judges the
original query and the two lists side-by-side. The ordering in which
the result sets were assigned to sides (left or right) was randomized.
We ask judges to select the best list according to the rating dimen-
sions described in the previous subsection (i.e., relatedness, inter-
estingness, diversity. and completeness). Judges reported their pref-
erences using a five-point scale where the points ranged from a
strong preference for the left side to strong preference for the right
side. The five response options are: Left is better, Left is slightly

better, About the same, Right is slightly better, and Right is better.

To compare the lists N and O, we define a WinLoss measure as the

number of times N is preferred over O minus the number of times

O is preferred over N, divided by the total number of instances. This
ranges between –1 (B always wins) and +1 (A always wins).

6.3 Findings

6.3.1 Task Recommendation
Table 3 shows the percentage of each response for the proposed
methods and baselines in terms of relatedness, interestingness, di-
versity and completeness. A χ2 test shows that the difference be-
tween proportions is significant at the � ≤ 0.001 level for all vari-
ants of the random walk methods. The significance of the difference

between the random walk methods and the other baselines is shown
in the table where appropriate.

Relatedness: The table shows that the random walk based methods
perform best when it comes to relatedness with the best performing
method being the random walk method with a self-loop probability

0 = 0.9 and with no re-ranking for diversity applied. Relatedness
slightly decreases whenever the re-ranking for diversity is used for
both random walk method irrespective of 0. The second order sim-
ilarity baseline performs well too. Surprisingly, the recommenda-
tion based on the edge strength performs worse than the random
walk methods even for relatedness. One explanation is that the way
that relatedness is measured in a random walk takes both direct con-
nections and indirect connections (through other nodes) into con-
sideration, resulting in recommendations that are more relevant. As
expected, when we select neighbors at random, we get the worst
relatedness performance.

Interestingness: Interestingness is a more important measure than
relatedness given that the focus of this paper is in devising tech-
niques to support exploration. Like relatedness, we notice that the
random walk methods outperform all other baselines. Unlike relat-
edness, the best performing method is the random walk method
with a self-loop probability 0 = 0.7. Re-ranking for diversity has a
slight effect on the performance when applied. This shows that
smaller self-loop probability values are likely to allow more diffu-
sion from the original node resulting in less related but obvious rec-
ommendations and more related and interesting recommendations.
We also notice that the re-ranking for diversity also has a minor
positive effect on the interestingness of the suggestions showing
that the results are interesting to the judges even without the appli-
cation of the re-ranking for diversity step.

Diversity: Our measure here is intended to measure the redundancy
of the suggestions when compared to one another. The table shows
that all methods perform very well in terms of diversity with most

 Random Walk

(β=0.7) + Div.

Random Walk

(β=0.7)

Random Walk

(β=0.9) + Div.

Random Walk

(β=0.9)

Second Order

Similarity

Neighbors

Ranked

Neighbors

Random

 Relatedness

Related 67.56%*2,
†

3,^3 70.80%*3,
†

3,^3 62.22%*2,
†

3,^3 67.70%†
3,^3 68.85% 61.94% 55.33%

Somewhat Related 23.67% 21.52% 29.78% 25.63% 21.58% 26.64% 29.67%

Not Related 8.77% 7.68% 8.00% 6.67% 9.56% 11.42% 15.00%

 Interestingness

Interesting 66.67%*3,
†

3,^3 58.19%*1,
†

3,^3 43.44%*3,
†

3,^3 58.44%*3,
†

3,^3 63.39% 51.21% 44.33%

Somewhat Interesting 25.11% 32.01% 47.11% 29.72% 26.05% 31.83% 35.00%

Not Interesting 8.22% 9.80% 9.44% 11.84% 10.56% 16.96% 20.67%

 Diversity

Diverse 63.44%*3,
†

3,^3 62.43%*3,
†

3,^3 60.89%*1,
†

1,^3 55.75%*3,
†

3,^3 72.13% 58.82% 53.33%

Somewhat Diverse 32.33% 33.22% 37.78% 37.21% 20.22% 30.45% 32.33%

Not Diverse 4.22% 4.35% 1.33% 7.04% 7.65% 10.73% 14.33%

 Completeness

Complete 48.67%*3,
†

3,^3 47.60%*1,
†

3,^3 44.22%†
3,^2 40.45%*1,

†
2,^3 43.44% 43.94% 35.00%

Somewhat Complete 38.33% 39.58% 44.67% 39.66% 34.15% 31.83% 38.33%

Not Complete 13.00% 12.82% 11.11% 19.89% 22.40% 24.22% 26.67%

Table 3. Performance in terms of Relatedness, Interestingness, Diversity and Completenes for the Task recommendations

methods and baselines. All the differences between the random walk methods are statistically significant at P ≤ Q. QQR

using a χ2 test. Signficance of the random walk methods to the second order, neighbors ranked and neighbors random is

denoted as *, †, ^ respectively. P ≤ Q. QS is denoted as *, P ≤ Q. QR is denoted as *2 and P ≤ Q. QQR is denoted as *3.

suggestions labeled as “Diverse” or ‘Somewhat Diverse” with the
exception of the neighbor recommendation methods which does not
intentionally promote diversity. We also notice that the re-ranking
for diversity has a higher effect on the random walk method when
the self-loop probability is set to 0.9 compared to when it is set to
0.7. This shows that when we add more diffusion in the random
walk model (smaller self-loop probabilities), we already obtain di-
verse results leaving little or no room for the re-ranking for diver-
sity to achieve any gains in performance.

Completeness: We observe that all proposed methods and base-
lines achieve lower performance on completeness as compared to
other metrics (relatedness, interestingness, etc.) with all of them
achieving similar performance. These results should be interpreted
with some caution since the degree of completeness is directly re-
lated to the number of suggestions that we provide. As part of our
experiment, we tried to increase the number of task recommenda-
tions from 8 to 12 and noticed that the completeness improves but
other metrics such as relatedness and interestingness are degraded.
We should also consider that increasing the number of suggestions
may have a negative effect on how the suggestions are perceived,
since many of the suggestions may be confusing or distracting.

Overall, the findings of this analysis show that the task recommen-
dations generated using our methods yield significant gains over
the baselines in a number of important measures of recommenda-
tion value. However, the baselines in this part of the study are all
based on the task graph. As part of our analysis, we also wanted to
compare the output from our methods with that from other sources.
As such, we evaluated against a strong comparator: related searches
from a commercial search engine, which generates suggestions via
many signals including many searchers’ within-session refine-
ments. As mentioned earlier, related searches address a different
problem than task recommendations. Related searches focus on
helping searchers refine queries, whereas task recommendations
purposely direct people to different aspects of the search task.

6.3.2 Task Recommendations vs. Related Searches
Given that we are suggesting queries (although for a different pur-
pose—exploration rather than refinement), it seems reasonable to
compare the performance of our method with a state-of-the-art re-
lated search system. The results of the side-by-side judgments de-
scribed in Section 6.2.2 are shown in Table 4 where we report the
win-loss measure for both lists of suggestions. A positive value in-
dicates that the proposed method wins (+1 means it always wins)
and a negative value indicates that related searches win (–1 mean-
ing that it always wins). The table shows that related searches are
perceived to be much better in terms of relatedness to the original
query by judges. They are also perceived to be much worse in terms
of all other measures (interestingness, diversity and completeness).

The differences are significant at the � < 0.001 level using a Z-test
of proportions.

These results should be interpreted in light of the different objec-
tives of related searches and exploratory suggestions. Related
searches are intended to help searchers refine their query while the
focus of the methods proposed in this paper is to identify queries
that are typically involved in exploratory and complex tasks, and
assist searchers in exploring more aspects of those tasks. The task
recommendations are not intended to replace related searches and

in fact they should also be used in different types of task (e.g., when
searchers are in an exploratory mode [24]) or in different types of
information seeking (e.g., when people are browsing the Web).

7. DISCUSSION AND CONCLUSIONS
There are many different types of search tasks that people pursue
on search engines. Some searches are directed with the objective of
navigating to a website or looking up a simple piece of information.
Other searches are more exploratory in nature where the user is
seeking to learn about different aspects of a topic or perform a com-
plex multi-step task. Current search systems provide little, if any,
support for the latter type of search. In this paper, we proposed a
method that learns from the behavior of many searchers to support
new searchers engaged in complex tasks. We do that by identifying
different tasks commonly explored by searchers and connecting
them using a task graph constructed to relate similar search tasks.
We employ this task graph to generate task recommendations for
searchers to assist them in exploring different aspects of a topic or
identifying necessary steps to attain task completion. We demon-
strate through experimentation with humans that our task recom-
mendations are related and interesting with respect to the original
query. Importantly, given our objectives in supporting search ex-
ploration, we also show that the lists of suggestions that our method
generates are diverse and cover most of the sub-tasks related to the
search tasks studied. Importantly, we also show that our methods
generate recommendations more suited to supporting exploratory
search than related searches in a competitive Web search engine.

Despite our promising findings, we should acknowledge some lim-
itations of the method and this study. The approach used to identify
tasks is currently limited in the queries that we can handle to those
with a particular syntax (although it did cover almost three quarters
of the queries in the exploration sessions identified through our au-
tomated analysis). More work is required to generalize the method
to all query types. In addition, although we demonstrated signifi-
cant promise in our methods along dimensions important for sup-
porting exploration (diversity, interestingness, etc.), we need to
evaluate the utility of the task recommendations in helping search-
ers complete exploratory and complex tasks. To this end, laboratory
studies of searchers using the task recommendations are a necessary
next step, coupled with other studies in more naturalistic settings.

The task recommendations can help searchers discover interesting
tasks to assist them in exploration. At present, related searches are
typically shown on the result page of the original query. This may
not be an ideal place to show the task recommendations since they
may distract the searcher from fulfilling the information needs as-
sociated with the current query. Search engines could present the
recommendations on result pages or in a browser toolbar at a time
where they estimate that the searcher has met their current needs
and does not seek to refine their queries (e.g., after pressing the
back button following a long dwell click, etc.). Personalized task
recommendations, tailored to searchers’ long-term interests (and
what aspects of the complex task they have attempted thus far),
could also be shown on the search engine homepage. Several Web
browsers now offer page recommendations for particular websites
(e.g., the Flip Ahead and Suggested Sites features in Internet Ex-
plorer suggest pages of potential interest to users given their current
browsing context). This could offer on-demand or proactive assis-
tance to those in complex search tasks. Future work involves fur-
ther analysis, including measuring the value of the task recommen-
dations for task completion. Other opportunities include model re-
finements such as richer query intent to handle other query types
and extending the edges to cover templates (e.g., “cheap_flights to
CITY”, “hotels in CITY”) rather than specific search queries.

Table 4. Win-Loss for the task recommendations vs.

related searches. Positive = task recommendations preferred.

 Relatedness Interestingness Diversity Completeness

Win-Loss –0.60 0.44 0.54 0.65

REFERENCES
[1] Agichtein, E. and Zheng, Z. (2006). Identifying “best bet”

web search results by mining past user behavior. Proc. KDD,

902−908.
[2] André, P., Teevan, J., and Dumais, S. (2009). From x-rays to

silly putty via Uranus: Serendipity and its role in Web

search. Proc. SIGCHI, 2033−2036.

[3] Baeza-Yates, R., Hurtado, C., and Mendoza, M. (2004).
Query recommendation using query logs in search engines.
Proc. EDBT, 588−596.

[4] Bergsma, S. and Wang, I. (2007). Learning noun phrase

query segmentation. Proc. EMNLP, 816−826.

[5] Bilenko, M. and White, R.W. (2008). Mining the search
trails of surfing crowds: Identifying relevant websites from

user activity. Proc. WWW, 51−60.

[6] Boldi, P., Bonchi, F., Castillo, C., Donato, D., and Vigna, S.
(2009). Query suggestions using query-flow graphs. Proc.

WSCD, 56−63.

[7] Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., and Ven-
turini, R. (2012). Efficient query recommendations in the
long tail via center-piece subgraphs. Proc. SIGIR, 345−354.

[8] Bordino, I., Mejova, Y., and Lalmas, M. (2013). Penguins in
sweaters, or serendipitous entity search on user-generated

content. Proc. CIKM, 109−118.

[9] Bordino, I., Francisci Morales, G. D., Weber, I., and Bonchi,
F. (2013). From machu_picchu to “rafting the urubamba
river”: Anticipating information needs via the entity-query

graph. Proc. WSDM, 275−284.

[10] Bouma, G. (2009). Normalized (pointwise) mutual infor-

mation in collocation extraction. Proc. GSCL, 31−40.

[11] Broder, A. (2002). A taxonomy of web search. SIGIR Forum,

36(2), 3−10.

[12] Bron, M., Gorp, J., Vishneuski, A., Nack, F., Leeuw, S., and
De Rijke, M. (2012). A subjunctive exploratory search inter-
face to support media studies researchers. Proc. SIGIR,
425−434.

[13] Cao, H., Jiang, D., Pei, I., Chen, E., and Li, H. (2009) To-
wards context-aware search by learning a very large variable
length hidden Markov model from search logs. Proc. WWW,
191−200.

[14] Carbonell, J. and Goldstein, J. (1998). The use of MMR, di-
versity-based reranking for reordering documents and pro-
ducing summaries. Proc. SIGIR, 335−336.

[15] Chalmers, M., Rodden, K., and Brodbeck, D. (1998). The or-
der of things: Activity-centered information access. Proc.
WWW, 359−367.

[16] Craswell, N. and Szummer. M. (2007). Random walks on the
click graph. Proc. SIGIR, 239−246.

[17] Czech, Z. J., Havas, G., and Majewski, B. S. (1992). An opti-
mal algorithm for generating minimal perfect hash functions.

Information Processing Letters, 43(5): 257−264.

[18] Donato, D., Bonchi, F., Chi, T., and Maarek, Y. (2010). Do
you want to take notes? Identifying research missions in Ya-

hoo! Search Pad. Proc. WWW, 321−330.

[19] Dou, Z., Song, R., and Wen, J.R. (2007). A large-scale evalu-
ation and analysis of personalized search strategies. Proc.

WWW, 581−590.
[20] Friedman, J.H., Hastie, T., and Tibshirani, R. (1998). Addi-

tive Logistic Regression: A Statistical View of Boosting.
Technical Report, Stanford University.

[21] Hagen, M., Potthast, M., Stein, B., and Brautigam, C. (2010).

Query segmentation revisited. Proc. WWW, 97−106.

[22] Hassan, A. (2013). Identifying web search query reformula-
tion using concept based matching. Proc. EMNLP,

1000−1010.

[23] Hassan, A. and White, R.W. (2012). Task tours: Helping us-
ers tackle complex search tasks. Proc. CIKM, 1885–1889.

[24] Hassan, A., White, R.W., Dumais, S., and Wang, Y. (2014).
Exploring or struggling? Disambiguating long search ses-

sions. Proc. WSDM, 53−62.

[25] Jeh, G. and Widom, J. (2003). Scaling personalized web

search. Proc. WWW, 269−273.

[26] Joachims, T., Freitag, D., and Mitchell, T. (1997). Web-
Watcher: A tour guide for the World Wide Web. Proc.

IJCAI, 770−775.

[27] Jones, R. and Klinkner, K.L. (2008). Beyond the session
timeout: Automatic hierarchical segmentation of search top-

ics in query logs. Proc. CIKM, 699−708.

[28] Jones, R., Rey, B., Madani, O., and Greiner, W. (200). Gen-

erating query substitutions. Proc. WWW, 387−396.

[29] Lin, T., Pantel, P., Gamon, M., Kannan, A., and Fuxman, A.
(2012). Active objects: Actions for entity-centric search.

Proc. WWW, 589−598.

[30] Liu, J. and Belkin, N.J. (2010). Personalizing information re-
trieval for multi-session search tasks. Proc. SIGIR, 26−33.

[31] Manning, C.D. and Schütze, H. (1999). Foundations of Sta-
tistical Natural Language Processing. Cambridge, MA: MIT
Press.

[32] Marchionini, G. (2006). Exploratory search: From finding to
understanding. CACM, 49(4): 41−46.

[33] Mei, Q., Zhou, D., and Church, K. (2008). Query suggestion
using hitting time. Proc. CIKM, 469−478

[34] Morris, D., Morris, M.R., and Venolia, G. (2008). SearchBar:
A search-centric web history for task resumption and infor-
mation refinding. Proc. SIGCHI, 1207−1216.

[35] O’Connor, B., Krieger, M., and Ahn, D. (2010). TweetMotif:
Exploratory search and topic summarization for twitter.
Proc. ICWSM, 384–385.

[36] Olston, C. and Chi, E. (2003). ScentTrails: Integrating

browsing and searching on the web. TOCHI, 10(3): 1−21.

[37] Pantel, P., Lin, T., and Gamon, M. (2012). Mining entity

types from query logs via user intent. Proc. ACL, 563−571.

[38] Raman, K., Bennett, P.N., and Collins-Thompson, K. (2013).
Toward whole session relevance: Exploring intrinsic diver-
sity in web search. Proc. SIGIR, 463–472.

[39] Singla, A., White, R.W., and Huang, J. (2010). Studying
trailfinding algorithms for enhanced web search. Proc.

SIGIR, 443−450.

[40] Villa, R., Cantador, I., Joho, H., and Jose, J. (2009). An as-
pectual interface for supporting complex search tasks. Proc.
SIGIR, 379-386.

[41] Voorhees, E.M. and Harman, D.K. eds. (2000). TREC-9. The
ninth Text REtrieval Conference. Washington, D.C.: GPO.

[42] Wexelblat, A. and Maes, P. (1999). Footprints: history-rich

tools for information foraging. Proc. SIGCHI, 270−277.

[43] White, R.W., Bennett, P., and Dumais, S. (2010). Predicting
short-term interests using activity-based search context.

Proc. CIKM, 1009−1018.

[44] White, R.W. and Huang, J. (2010). Assessing the scenic
route: Measuring the value of search trails in web logs.

Proc. of SIGIR, 587−594.

[45] White, R.W. and Roth, R.A. (2009). Exploratory Search: Be-
yond the Query-Response Paradigm. Morgan Claypool.

[46] Ziegler, C., McNee, S.M., Konstan, J.A., and Lausen, G.
(2005). Improving recommendation lists through topic diver-

sification, Proc. WWW, 22−32.

